xref: /linux/arch/x86/kernel/cpu/common.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/init.h>
18 #include <linux/kprobes.h>
19 #include <linux/kgdb.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/syscore_ops.h>
23 
24 #include <asm/stackprotector.h>
25 #include <asm/perf_event.h>
26 #include <asm/mmu_context.h>
27 #include <asm/archrandom.h>
28 #include <asm/hypervisor.h>
29 #include <asm/processor.h>
30 #include <asm/tlbflush.h>
31 #include <asm/debugreg.h>
32 #include <asm/sections.h>
33 #include <asm/vsyscall.h>
34 #include <linux/topology.h>
35 #include <linux/cpumask.h>
36 #include <asm/pgtable.h>
37 #include <linux/atomic.h>
38 #include <asm/proto.h>
39 #include <asm/setup.h>
40 #include <asm/apic.h>
41 #include <asm/desc.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/mtrr.h>
44 #include <asm/hwcap2.h>
45 #include <linux/numa.h>
46 #include <asm/asm.h>
47 #include <asm/bugs.h>
48 #include <asm/cpu.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/pat.h>
52 #include <asm/microcode.h>
53 #include <asm/microcode_intel.h>
54 #include <asm/intel-family.h>
55 #include <asm/cpu_device_id.h>
56 
57 #ifdef CONFIG_X86_LOCAL_APIC
58 #include <asm/uv/uv.h>
59 #endif
60 
61 #include "cpu.h"
62 
63 u32 elf_hwcap2 __read_mostly;
64 
65 /* all of these masks are initialized in setup_cpu_local_masks() */
66 cpumask_var_t cpu_initialized_mask;
67 cpumask_var_t cpu_callout_mask;
68 cpumask_var_t cpu_callin_mask;
69 
70 /* representing cpus for which sibling maps can be computed */
71 cpumask_var_t cpu_sibling_setup_mask;
72 
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76 
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79 
80 /* correctly size the local cpu masks */
81 void __init setup_cpu_local_masks(void)
82 {
83 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
85 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
86 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87 }
88 
89 static void default_init(struct cpuinfo_x86 *c)
90 {
91 #ifdef CONFIG_X86_64
92 	cpu_detect_cache_sizes(c);
93 #else
94 	/* Not much we can do here... */
95 	/* Check if at least it has cpuid */
96 	if (c->cpuid_level == -1) {
97 		/* No cpuid. It must be an ancient CPU */
98 		if (c->x86 == 4)
99 			strcpy(c->x86_model_id, "486");
100 		else if (c->x86 == 3)
101 			strcpy(c->x86_model_id, "386");
102 	}
103 #endif
104 }
105 
106 static const struct cpu_dev default_cpu = {
107 	.c_init		= default_init,
108 	.c_vendor	= "Unknown",
109 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
110 };
111 
112 static const struct cpu_dev *this_cpu = &default_cpu;
113 
114 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115 #ifdef CONFIG_X86_64
116 	/*
117 	 * We need valid kernel segments for data and code in long mode too
118 	 * IRET will check the segment types  kkeil 2000/10/28
119 	 * Also sysret mandates a special GDT layout
120 	 *
121 	 * TLS descriptors are currently at a different place compared to i386.
122 	 * Hopefully nobody expects them at a fixed place (Wine?)
123 	 */
124 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130 #else
131 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135 	/*
136 	 * Segments used for calling PnP BIOS have byte granularity.
137 	 * They code segments and data segments have fixed 64k limits,
138 	 * the transfer segment sizes are set at run time.
139 	 */
140 	/* 32-bit code */
141 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 	/* 16-bit code */
143 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 	/* 16-bit data */
145 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146 	/* 16-bit data */
147 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
148 	/* 16-bit data */
149 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
150 	/*
151 	 * The APM segments have byte granularity and their bases
152 	 * are set at run time.  All have 64k limits.
153 	 */
154 	/* 32-bit code */
155 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156 	/* 16-bit code */
157 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158 	/* data */
159 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160 
161 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 	GDT_STACK_CANARY_INIT
164 #endif
165 } };
166 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167 
168 static int __init x86_mpx_setup(char *s)
169 {
170 	/* require an exact match without trailing characters */
171 	if (strlen(s))
172 		return 0;
173 
174 	/* do not emit a message if the feature is not present */
175 	if (!boot_cpu_has(X86_FEATURE_MPX))
176 		return 1;
177 
178 	setup_clear_cpu_cap(X86_FEATURE_MPX);
179 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
180 	return 1;
181 }
182 __setup("nompx", x86_mpx_setup);
183 
184 #ifdef CONFIG_X86_64
185 static int __init x86_nopcid_setup(char *s)
186 {
187 	/* nopcid doesn't accept parameters */
188 	if (s)
189 		return -EINVAL;
190 
191 	/* do not emit a message if the feature is not present */
192 	if (!boot_cpu_has(X86_FEATURE_PCID))
193 		return 0;
194 
195 	setup_clear_cpu_cap(X86_FEATURE_PCID);
196 	pr_info("nopcid: PCID feature disabled\n");
197 	return 0;
198 }
199 early_param("nopcid", x86_nopcid_setup);
200 #endif
201 
202 static int __init x86_noinvpcid_setup(char *s)
203 {
204 	/* noinvpcid doesn't accept parameters */
205 	if (s)
206 		return -EINVAL;
207 
208 	/* do not emit a message if the feature is not present */
209 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
210 		return 0;
211 
212 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
213 	pr_info("noinvpcid: INVPCID feature disabled\n");
214 	return 0;
215 }
216 early_param("noinvpcid", x86_noinvpcid_setup);
217 
218 #ifdef CONFIG_X86_32
219 static int cachesize_override = -1;
220 static int disable_x86_serial_nr = 1;
221 
222 static int __init cachesize_setup(char *str)
223 {
224 	get_option(&str, &cachesize_override);
225 	return 1;
226 }
227 __setup("cachesize=", cachesize_setup);
228 
229 static int __init x86_sep_setup(char *s)
230 {
231 	setup_clear_cpu_cap(X86_FEATURE_SEP);
232 	return 1;
233 }
234 __setup("nosep", x86_sep_setup);
235 
236 /* Standard macro to see if a specific flag is changeable */
237 static inline int flag_is_changeable_p(u32 flag)
238 {
239 	u32 f1, f2;
240 
241 	/*
242 	 * Cyrix and IDT cpus allow disabling of CPUID
243 	 * so the code below may return different results
244 	 * when it is executed before and after enabling
245 	 * the CPUID. Add "volatile" to not allow gcc to
246 	 * optimize the subsequent calls to this function.
247 	 */
248 	asm volatile ("pushfl		\n\t"
249 		      "pushfl		\n\t"
250 		      "popl %0		\n\t"
251 		      "movl %0, %1	\n\t"
252 		      "xorl %2, %0	\n\t"
253 		      "pushl %0		\n\t"
254 		      "popfl		\n\t"
255 		      "pushfl		\n\t"
256 		      "popl %0		\n\t"
257 		      "popfl		\n\t"
258 
259 		      : "=&r" (f1), "=&r" (f2)
260 		      : "ir" (flag));
261 
262 	return ((f1^f2) & flag) != 0;
263 }
264 
265 /* Probe for the CPUID instruction */
266 int have_cpuid_p(void)
267 {
268 	return flag_is_changeable_p(X86_EFLAGS_ID);
269 }
270 
271 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273 	unsigned long lo, hi;
274 
275 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
276 		return;
277 
278 	/* Disable processor serial number: */
279 
280 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281 	lo |= 0x200000;
282 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
283 
284 	pr_notice("CPU serial number disabled.\n");
285 	clear_cpu_cap(c, X86_FEATURE_PN);
286 
287 	/* Disabling the serial number may affect the cpuid level */
288 	c->cpuid_level = cpuid_eax(0);
289 }
290 
291 static int __init x86_serial_nr_setup(char *s)
292 {
293 	disable_x86_serial_nr = 0;
294 	return 1;
295 }
296 __setup("serialnumber", x86_serial_nr_setup);
297 #else
298 static inline int flag_is_changeable_p(u32 flag)
299 {
300 	return 1;
301 }
302 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
303 {
304 }
305 #endif
306 
307 static __init int setup_disable_smep(char *arg)
308 {
309 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
310 	/* Check for things that depend on SMEP being enabled: */
311 	check_mpx_erratum(&boot_cpu_data);
312 	return 1;
313 }
314 __setup("nosmep", setup_disable_smep);
315 
316 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
317 {
318 	if (cpu_has(c, X86_FEATURE_SMEP))
319 		cr4_set_bits(X86_CR4_SMEP);
320 }
321 
322 static __init int setup_disable_smap(char *arg)
323 {
324 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
325 	return 1;
326 }
327 __setup("nosmap", setup_disable_smap);
328 
329 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
330 {
331 	unsigned long eflags = native_save_fl();
332 
333 	/* This should have been cleared long ago */
334 	BUG_ON(eflags & X86_EFLAGS_AC);
335 
336 	if (cpu_has(c, X86_FEATURE_SMAP)) {
337 #ifdef CONFIG_X86_SMAP
338 		cr4_set_bits(X86_CR4_SMAP);
339 #else
340 		cr4_clear_bits(X86_CR4_SMAP);
341 #endif
342 	}
343 }
344 
345 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
346 {
347 	/* Check the boot processor, plus build option for UMIP. */
348 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
349 		goto out;
350 
351 	/* Check the current processor's cpuid bits. */
352 	if (!cpu_has(c, X86_FEATURE_UMIP))
353 		goto out;
354 
355 	cr4_set_bits(X86_CR4_UMIP);
356 
357 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
358 
359 	return;
360 
361 out:
362 	/*
363 	 * Make sure UMIP is disabled in case it was enabled in a
364 	 * previous boot (e.g., via kexec).
365 	 */
366 	cr4_clear_bits(X86_CR4_UMIP);
367 }
368 
369 DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
370 EXPORT_SYMBOL(cr_pinning);
371 unsigned long cr4_pinned_bits __ro_after_init;
372 EXPORT_SYMBOL(cr4_pinned_bits);
373 
374 /*
375  * Once CPU feature detection is finished (and boot params have been
376  * parsed), record any of the sensitive CR bits that are set, and
377  * enable CR pinning.
378  */
379 static void __init setup_cr_pinning(void)
380 {
381 	unsigned long mask;
382 
383 	mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
384 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
385 	static_key_enable(&cr_pinning.key);
386 }
387 
388 /*
389  * Protection Keys are not available in 32-bit mode.
390  */
391 static bool pku_disabled;
392 
393 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
394 {
395 	struct pkru_state *pk;
396 
397 	/* check the boot processor, plus compile options for PKU: */
398 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
399 		return;
400 	/* checks the actual processor's cpuid bits: */
401 	if (!cpu_has(c, X86_FEATURE_PKU))
402 		return;
403 	if (pku_disabled)
404 		return;
405 
406 	cr4_set_bits(X86_CR4_PKE);
407 	pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
408 	if (pk)
409 		pk->pkru = init_pkru_value;
410 	/*
411 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
412 	 * cpuid bit to be set.  We need to ensure that we
413 	 * update that bit in this CPU's "cpu_info".
414 	 */
415 	get_cpu_cap(c);
416 }
417 
418 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
419 static __init int setup_disable_pku(char *arg)
420 {
421 	/*
422 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
423 	 * runtime checks are against OSPKE so clearing the
424 	 * bit does nothing.
425 	 *
426 	 * This way, we will see "pku" in cpuinfo, but not
427 	 * "ospke", which is exactly what we want.  It shows
428 	 * that the CPU has PKU, but the OS has not enabled it.
429 	 * This happens to be exactly how a system would look
430 	 * if we disabled the config option.
431 	 */
432 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
433 	pku_disabled = true;
434 	return 1;
435 }
436 __setup("nopku", setup_disable_pku);
437 #endif /* CONFIG_X86_64 */
438 
439 /*
440  * Some CPU features depend on higher CPUID levels, which may not always
441  * be available due to CPUID level capping or broken virtualization
442  * software.  Add those features to this table to auto-disable them.
443  */
444 struct cpuid_dependent_feature {
445 	u32 feature;
446 	u32 level;
447 };
448 
449 static const struct cpuid_dependent_feature
450 cpuid_dependent_features[] = {
451 	{ X86_FEATURE_MWAIT,		0x00000005 },
452 	{ X86_FEATURE_DCA,		0x00000009 },
453 	{ X86_FEATURE_XSAVE,		0x0000000d },
454 	{ 0, 0 }
455 };
456 
457 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
458 {
459 	const struct cpuid_dependent_feature *df;
460 
461 	for (df = cpuid_dependent_features; df->feature; df++) {
462 
463 		if (!cpu_has(c, df->feature))
464 			continue;
465 		/*
466 		 * Note: cpuid_level is set to -1 if unavailable, but
467 		 * extended_extended_level is set to 0 if unavailable
468 		 * and the legitimate extended levels are all negative
469 		 * when signed; hence the weird messing around with
470 		 * signs here...
471 		 */
472 		if (!((s32)df->level < 0 ?
473 		     (u32)df->level > (u32)c->extended_cpuid_level :
474 		     (s32)df->level > (s32)c->cpuid_level))
475 			continue;
476 
477 		clear_cpu_cap(c, df->feature);
478 		if (!warn)
479 			continue;
480 
481 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
482 			x86_cap_flag(df->feature), df->level);
483 	}
484 }
485 
486 /*
487  * Naming convention should be: <Name> [(<Codename>)]
488  * This table only is used unless init_<vendor>() below doesn't set it;
489  * in particular, if CPUID levels 0x80000002..4 are supported, this
490  * isn't used
491  */
492 
493 /* Look up CPU names by table lookup. */
494 static const char *table_lookup_model(struct cpuinfo_x86 *c)
495 {
496 #ifdef CONFIG_X86_32
497 	const struct legacy_cpu_model_info *info;
498 
499 	if (c->x86_model >= 16)
500 		return NULL;	/* Range check */
501 
502 	if (!this_cpu)
503 		return NULL;
504 
505 	info = this_cpu->legacy_models;
506 
507 	while (info->family) {
508 		if (info->family == c->x86)
509 			return info->model_names[c->x86_model];
510 		info++;
511 	}
512 #endif
513 	return NULL;		/* Not found */
514 }
515 
516 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
517 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
518 
519 void load_percpu_segment(int cpu)
520 {
521 #ifdef CONFIG_X86_32
522 	loadsegment(fs, __KERNEL_PERCPU);
523 #else
524 	__loadsegment_simple(gs, 0);
525 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
526 #endif
527 	load_stack_canary_segment();
528 }
529 
530 #ifdef CONFIG_X86_32
531 /* The 32-bit entry code needs to find cpu_entry_area. */
532 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
533 #endif
534 
535 /* Load the original GDT from the per-cpu structure */
536 void load_direct_gdt(int cpu)
537 {
538 	struct desc_ptr gdt_descr;
539 
540 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
541 	gdt_descr.size = GDT_SIZE - 1;
542 	load_gdt(&gdt_descr);
543 }
544 EXPORT_SYMBOL_GPL(load_direct_gdt);
545 
546 /* Load a fixmap remapping of the per-cpu GDT */
547 void load_fixmap_gdt(int cpu)
548 {
549 	struct desc_ptr gdt_descr;
550 
551 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
552 	gdt_descr.size = GDT_SIZE - 1;
553 	load_gdt(&gdt_descr);
554 }
555 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
556 
557 /*
558  * Current gdt points %fs at the "master" per-cpu area: after this,
559  * it's on the real one.
560  */
561 void switch_to_new_gdt(int cpu)
562 {
563 	/* Load the original GDT */
564 	load_direct_gdt(cpu);
565 	/* Reload the per-cpu base */
566 	load_percpu_segment(cpu);
567 }
568 
569 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
570 
571 static void get_model_name(struct cpuinfo_x86 *c)
572 {
573 	unsigned int *v;
574 	char *p, *q, *s;
575 
576 	if (c->extended_cpuid_level < 0x80000004)
577 		return;
578 
579 	v = (unsigned int *)c->x86_model_id;
580 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
581 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
582 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
583 	c->x86_model_id[48] = 0;
584 
585 	/* Trim whitespace */
586 	p = q = s = &c->x86_model_id[0];
587 
588 	while (*p == ' ')
589 		p++;
590 
591 	while (*p) {
592 		/* Note the last non-whitespace index */
593 		if (!isspace(*p))
594 			s = q;
595 
596 		*q++ = *p++;
597 	}
598 
599 	*(s + 1) = '\0';
600 }
601 
602 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
603 {
604 	unsigned int eax, ebx, ecx, edx;
605 
606 	c->x86_max_cores = 1;
607 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
608 		return;
609 
610 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
611 	if (eax & 0x1f)
612 		c->x86_max_cores = (eax >> 26) + 1;
613 }
614 
615 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
616 {
617 	unsigned int n, dummy, ebx, ecx, edx, l2size;
618 
619 	n = c->extended_cpuid_level;
620 
621 	if (n >= 0x80000005) {
622 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
623 		c->x86_cache_size = (ecx>>24) + (edx>>24);
624 #ifdef CONFIG_X86_64
625 		/* On K8 L1 TLB is inclusive, so don't count it */
626 		c->x86_tlbsize = 0;
627 #endif
628 	}
629 
630 	if (n < 0x80000006)	/* Some chips just has a large L1. */
631 		return;
632 
633 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
634 	l2size = ecx >> 16;
635 
636 #ifdef CONFIG_X86_64
637 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
638 #else
639 	/* do processor-specific cache resizing */
640 	if (this_cpu->legacy_cache_size)
641 		l2size = this_cpu->legacy_cache_size(c, l2size);
642 
643 	/* Allow user to override all this if necessary. */
644 	if (cachesize_override != -1)
645 		l2size = cachesize_override;
646 
647 	if (l2size == 0)
648 		return;		/* Again, no L2 cache is possible */
649 #endif
650 
651 	c->x86_cache_size = l2size;
652 }
653 
654 u16 __read_mostly tlb_lli_4k[NR_INFO];
655 u16 __read_mostly tlb_lli_2m[NR_INFO];
656 u16 __read_mostly tlb_lli_4m[NR_INFO];
657 u16 __read_mostly tlb_lld_4k[NR_INFO];
658 u16 __read_mostly tlb_lld_2m[NR_INFO];
659 u16 __read_mostly tlb_lld_4m[NR_INFO];
660 u16 __read_mostly tlb_lld_1g[NR_INFO];
661 
662 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
663 {
664 	if (this_cpu->c_detect_tlb)
665 		this_cpu->c_detect_tlb(c);
666 
667 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
668 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
669 		tlb_lli_4m[ENTRIES]);
670 
671 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
672 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
673 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
674 }
675 
676 int detect_ht_early(struct cpuinfo_x86 *c)
677 {
678 #ifdef CONFIG_SMP
679 	u32 eax, ebx, ecx, edx;
680 
681 	if (!cpu_has(c, X86_FEATURE_HT))
682 		return -1;
683 
684 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
685 		return -1;
686 
687 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
688 		return -1;
689 
690 	cpuid(1, &eax, &ebx, &ecx, &edx);
691 
692 	smp_num_siblings = (ebx & 0xff0000) >> 16;
693 	if (smp_num_siblings == 1)
694 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
695 #endif
696 	return 0;
697 }
698 
699 void detect_ht(struct cpuinfo_x86 *c)
700 {
701 #ifdef CONFIG_SMP
702 	int index_msb, core_bits;
703 
704 	if (detect_ht_early(c) < 0)
705 		return;
706 
707 	index_msb = get_count_order(smp_num_siblings);
708 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
709 
710 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
711 
712 	index_msb = get_count_order(smp_num_siblings);
713 
714 	core_bits = get_count_order(c->x86_max_cores);
715 
716 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
717 				       ((1 << core_bits) - 1);
718 #endif
719 }
720 
721 static void get_cpu_vendor(struct cpuinfo_x86 *c)
722 {
723 	char *v = c->x86_vendor_id;
724 	int i;
725 
726 	for (i = 0; i < X86_VENDOR_NUM; i++) {
727 		if (!cpu_devs[i])
728 			break;
729 
730 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
731 		    (cpu_devs[i]->c_ident[1] &&
732 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
733 
734 			this_cpu = cpu_devs[i];
735 			c->x86_vendor = this_cpu->c_x86_vendor;
736 			return;
737 		}
738 	}
739 
740 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
741 		    "CPU: Your system may be unstable.\n", v);
742 
743 	c->x86_vendor = X86_VENDOR_UNKNOWN;
744 	this_cpu = &default_cpu;
745 }
746 
747 void cpu_detect(struct cpuinfo_x86 *c)
748 {
749 	/* Get vendor name */
750 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
751 	      (unsigned int *)&c->x86_vendor_id[0],
752 	      (unsigned int *)&c->x86_vendor_id[8],
753 	      (unsigned int *)&c->x86_vendor_id[4]);
754 
755 	c->x86 = 4;
756 	/* Intel-defined flags: level 0x00000001 */
757 	if (c->cpuid_level >= 0x00000001) {
758 		u32 junk, tfms, cap0, misc;
759 
760 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
761 		c->x86		= x86_family(tfms);
762 		c->x86_model	= x86_model(tfms);
763 		c->x86_stepping	= x86_stepping(tfms);
764 
765 		if (cap0 & (1<<19)) {
766 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
767 			c->x86_cache_alignment = c->x86_clflush_size;
768 		}
769 	}
770 }
771 
772 static void apply_forced_caps(struct cpuinfo_x86 *c)
773 {
774 	int i;
775 
776 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
777 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
778 		c->x86_capability[i] |= cpu_caps_set[i];
779 	}
780 }
781 
782 static void init_speculation_control(struct cpuinfo_x86 *c)
783 {
784 	/*
785 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
786 	 * and they also have a different bit for STIBP support. Also,
787 	 * a hypervisor might have set the individual AMD bits even on
788 	 * Intel CPUs, for finer-grained selection of what's available.
789 	 */
790 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
791 		set_cpu_cap(c, X86_FEATURE_IBRS);
792 		set_cpu_cap(c, X86_FEATURE_IBPB);
793 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
794 	}
795 
796 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
797 		set_cpu_cap(c, X86_FEATURE_STIBP);
798 
799 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
800 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
801 		set_cpu_cap(c, X86_FEATURE_SSBD);
802 
803 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
804 		set_cpu_cap(c, X86_FEATURE_IBRS);
805 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
806 	}
807 
808 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
809 		set_cpu_cap(c, X86_FEATURE_IBPB);
810 
811 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
812 		set_cpu_cap(c, X86_FEATURE_STIBP);
813 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
814 	}
815 
816 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
817 		set_cpu_cap(c, X86_FEATURE_SSBD);
818 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
819 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
820 	}
821 }
822 
823 static void init_cqm(struct cpuinfo_x86 *c)
824 {
825 	if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
826 		c->x86_cache_max_rmid  = -1;
827 		c->x86_cache_occ_scale = -1;
828 		return;
829 	}
830 
831 	/* will be overridden if occupancy monitoring exists */
832 	c->x86_cache_max_rmid = cpuid_ebx(0xf);
833 
834 	if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
835 	    cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
836 	    cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
837 		u32 eax, ebx, ecx, edx;
838 
839 		/* QoS sub-leaf, EAX=0Fh, ECX=1 */
840 		cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
841 
842 		c->x86_cache_max_rmid  = ecx;
843 		c->x86_cache_occ_scale = ebx;
844 	}
845 }
846 
847 void get_cpu_cap(struct cpuinfo_x86 *c)
848 {
849 	u32 eax, ebx, ecx, edx;
850 
851 	/* Intel-defined flags: level 0x00000001 */
852 	if (c->cpuid_level >= 0x00000001) {
853 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
854 
855 		c->x86_capability[CPUID_1_ECX] = ecx;
856 		c->x86_capability[CPUID_1_EDX] = edx;
857 	}
858 
859 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
860 	if (c->cpuid_level >= 0x00000006)
861 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
862 
863 	/* Additional Intel-defined flags: level 0x00000007 */
864 	if (c->cpuid_level >= 0x00000007) {
865 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
866 		c->x86_capability[CPUID_7_0_EBX] = ebx;
867 		c->x86_capability[CPUID_7_ECX] = ecx;
868 		c->x86_capability[CPUID_7_EDX] = edx;
869 
870 		/* Check valid sub-leaf index before accessing it */
871 		if (eax >= 1) {
872 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
873 			c->x86_capability[CPUID_7_1_EAX] = eax;
874 		}
875 	}
876 
877 	/* Extended state features: level 0x0000000d */
878 	if (c->cpuid_level >= 0x0000000d) {
879 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
880 
881 		c->x86_capability[CPUID_D_1_EAX] = eax;
882 	}
883 
884 	/* AMD-defined flags: level 0x80000001 */
885 	eax = cpuid_eax(0x80000000);
886 	c->extended_cpuid_level = eax;
887 
888 	if ((eax & 0xffff0000) == 0x80000000) {
889 		if (eax >= 0x80000001) {
890 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
891 
892 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
893 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
894 		}
895 	}
896 
897 	if (c->extended_cpuid_level >= 0x80000007) {
898 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
899 
900 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
901 		c->x86_power = edx;
902 	}
903 
904 	if (c->extended_cpuid_level >= 0x80000008) {
905 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
906 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
907 	}
908 
909 	if (c->extended_cpuid_level >= 0x8000000a)
910 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
911 
912 	init_scattered_cpuid_features(c);
913 	init_speculation_control(c);
914 	init_cqm(c);
915 
916 	/*
917 	 * Clear/Set all flags overridden by options, after probe.
918 	 * This needs to happen each time we re-probe, which may happen
919 	 * several times during CPU initialization.
920 	 */
921 	apply_forced_caps(c);
922 }
923 
924 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
925 {
926 	u32 eax, ebx, ecx, edx;
927 
928 	if (c->extended_cpuid_level >= 0x80000008) {
929 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
930 
931 		c->x86_virt_bits = (eax >> 8) & 0xff;
932 		c->x86_phys_bits = eax & 0xff;
933 	}
934 #ifdef CONFIG_X86_32
935 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
936 		c->x86_phys_bits = 36;
937 #endif
938 	c->x86_cache_bits = c->x86_phys_bits;
939 }
940 
941 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
942 {
943 #ifdef CONFIG_X86_32
944 	int i;
945 
946 	/*
947 	 * First of all, decide if this is a 486 or higher
948 	 * It's a 486 if we can modify the AC flag
949 	 */
950 	if (flag_is_changeable_p(X86_EFLAGS_AC))
951 		c->x86 = 4;
952 	else
953 		c->x86 = 3;
954 
955 	for (i = 0; i < X86_VENDOR_NUM; i++)
956 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
957 			c->x86_vendor_id[0] = 0;
958 			cpu_devs[i]->c_identify(c);
959 			if (c->x86_vendor_id[0]) {
960 				get_cpu_vendor(c);
961 				break;
962 			}
963 		}
964 #endif
965 }
966 
967 #define NO_SPECULATION	BIT(0)
968 #define NO_MELTDOWN	BIT(1)
969 #define NO_SSB		BIT(2)
970 #define NO_L1TF		BIT(3)
971 #define NO_MDS		BIT(4)
972 #define MSBDS_ONLY	BIT(5)
973 
974 #define VULNWL(_vendor, _family, _model, _whitelist)	\
975 	{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
976 
977 #define VULNWL_INTEL(model, whitelist)		\
978 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
979 
980 #define VULNWL_AMD(family, whitelist)		\
981 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
982 
983 #define VULNWL_HYGON(family, whitelist)		\
984 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
985 
986 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
987 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
988 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
989 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
990 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
991 
992 	/* Intel Family 6 */
993 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION),
994 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION),
995 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION),
996 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION),
997 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION),
998 
999 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY),
1000 	VULNWL_INTEL(ATOM_SILVERMONT_X,		NO_SSB | NO_L1TF | MSBDS_ONLY),
1001 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY),
1002 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY),
1003 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY),
1004 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY),
1005 
1006 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1007 
1008 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY),
1009 
1010 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF),
1011 	VULNWL_INTEL(ATOM_GOLDMONT_X,		NO_MDS | NO_L1TF),
1012 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF),
1013 
1014 	/* AMD Family 0xf - 0x12 */
1015 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
1016 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
1017 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
1018 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
1019 
1020 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1021 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS),
1022 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS),
1023 	{}
1024 };
1025 
1026 static bool __init cpu_matches(unsigned long which)
1027 {
1028 	const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1029 
1030 	return m && !!(m->driver_data & which);
1031 }
1032 
1033 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1034 {
1035 	u64 ia32_cap = 0;
1036 
1037 	if (cpu_matches(NO_SPECULATION))
1038 		return;
1039 
1040 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1041 	setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1042 
1043 	if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1044 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1045 
1046 	if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1047 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1048 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1049 
1050 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1051 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1052 
1053 	if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1054 		setup_force_cpu_bug(X86_BUG_MDS);
1055 		if (cpu_matches(MSBDS_ONLY))
1056 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1057 	}
1058 
1059 	if (cpu_matches(NO_MELTDOWN))
1060 		return;
1061 
1062 	/* Rogue Data Cache Load? No! */
1063 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1064 		return;
1065 
1066 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1067 
1068 	if (cpu_matches(NO_L1TF))
1069 		return;
1070 
1071 	setup_force_cpu_bug(X86_BUG_L1TF);
1072 }
1073 
1074 /*
1075  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1076  * unfortunately, that's not true in practice because of early VIA
1077  * chips and (more importantly) broken virtualizers that are not easy
1078  * to detect. In the latter case it doesn't even *fail* reliably, so
1079  * probing for it doesn't even work. Disable it completely on 32-bit
1080  * unless we can find a reliable way to detect all the broken cases.
1081  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1082  */
1083 static void detect_nopl(void)
1084 {
1085 #ifdef CONFIG_X86_32
1086 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1087 #else
1088 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1089 #endif
1090 }
1091 
1092 /*
1093  * Do minimum CPU detection early.
1094  * Fields really needed: vendor, cpuid_level, family, model, mask,
1095  * cache alignment.
1096  * The others are not touched to avoid unwanted side effects.
1097  *
1098  * WARNING: this function is only called on the boot CPU.  Don't add code
1099  * here that is supposed to run on all CPUs.
1100  */
1101 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1102 {
1103 #ifdef CONFIG_X86_64
1104 	c->x86_clflush_size = 64;
1105 	c->x86_phys_bits = 36;
1106 	c->x86_virt_bits = 48;
1107 #else
1108 	c->x86_clflush_size = 32;
1109 	c->x86_phys_bits = 32;
1110 	c->x86_virt_bits = 32;
1111 #endif
1112 	c->x86_cache_alignment = c->x86_clflush_size;
1113 
1114 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1115 	c->extended_cpuid_level = 0;
1116 
1117 	if (!have_cpuid_p())
1118 		identify_cpu_without_cpuid(c);
1119 
1120 	/* cyrix could have cpuid enabled via c_identify()*/
1121 	if (have_cpuid_p()) {
1122 		cpu_detect(c);
1123 		get_cpu_vendor(c);
1124 		get_cpu_cap(c);
1125 		get_cpu_address_sizes(c);
1126 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1127 
1128 		if (this_cpu->c_early_init)
1129 			this_cpu->c_early_init(c);
1130 
1131 		c->cpu_index = 0;
1132 		filter_cpuid_features(c, false);
1133 
1134 		if (this_cpu->c_bsp_init)
1135 			this_cpu->c_bsp_init(c);
1136 	} else {
1137 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1138 	}
1139 
1140 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1141 
1142 	cpu_set_bug_bits(c);
1143 
1144 	fpu__init_system(c);
1145 
1146 #ifdef CONFIG_X86_32
1147 	/*
1148 	 * Regardless of whether PCID is enumerated, the SDM says
1149 	 * that it can't be enabled in 32-bit mode.
1150 	 */
1151 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1152 #endif
1153 
1154 	/*
1155 	 * Later in the boot process pgtable_l5_enabled() relies on
1156 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1157 	 * enabled by this point we need to clear the feature bit to avoid
1158 	 * false-positives at the later stage.
1159 	 *
1160 	 * pgtable_l5_enabled() can be false here for several reasons:
1161 	 *  - 5-level paging is disabled compile-time;
1162 	 *  - it's 32-bit kernel;
1163 	 *  - machine doesn't support 5-level paging;
1164 	 *  - user specified 'no5lvl' in kernel command line.
1165 	 */
1166 	if (!pgtable_l5_enabled())
1167 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1168 
1169 	detect_nopl();
1170 }
1171 
1172 void __init early_cpu_init(void)
1173 {
1174 	const struct cpu_dev *const *cdev;
1175 	int count = 0;
1176 
1177 #ifdef CONFIG_PROCESSOR_SELECT
1178 	pr_info("KERNEL supported cpus:\n");
1179 #endif
1180 
1181 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1182 		const struct cpu_dev *cpudev = *cdev;
1183 
1184 		if (count >= X86_VENDOR_NUM)
1185 			break;
1186 		cpu_devs[count] = cpudev;
1187 		count++;
1188 
1189 #ifdef CONFIG_PROCESSOR_SELECT
1190 		{
1191 			unsigned int j;
1192 
1193 			for (j = 0; j < 2; j++) {
1194 				if (!cpudev->c_ident[j])
1195 					continue;
1196 				pr_info("  %s %s\n", cpudev->c_vendor,
1197 					cpudev->c_ident[j]);
1198 			}
1199 		}
1200 #endif
1201 	}
1202 	early_identify_cpu(&boot_cpu_data);
1203 }
1204 
1205 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1206 {
1207 #ifdef CONFIG_X86_64
1208 	/*
1209 	 * Empirically, writing zero to a segment selector on AMD does
1210 	 * not clear the base, whereas writing zero to a segment
1211 	 * selector on Intel does clear the base.  Intel's behavior
1212 	 * allows slightly faster context switches in the common case
1213 	 * where GS is unused by the prev and next threads.
1214 	 *
1215 	 * Since neither vendor documents this anywhere that I can see,
1216 	 * detect it directly instead of hardcoding the choice by
1217 	 * vendor.
1218 	 *
1219 	 * I've designated AMD's behavior as the "bug" because it's
1220 	 * counterintuitive and less friendly.
1221 	 */
1222 
1223 	unsigned long old_base, tmp;
1224 	rdmsrl(MSR_FS_BASE, old_base);
1225 	wrmsrl(MSR_FS_BASE, 1);
1226 	loadsegment(fs, 0);
1227 	rdmsrl(MSR_FS_BASE, tmp);
1228 	if (tmp != 0)
1229 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1230 	wrmsrl(MSR_FS_BASE, old_base);
1231 #endif
1232 }
1233 
1234 static void generic_identify(struct cpuinfo_x86 *c)
1235 {
1236 	c->extended_cpuid_level = 0;
1237 
1238 	if (!have_cpuid_p())
1239 		identify_cpu_without_cpuid(c);
1240 
1241 	/* cyrix could have cpuid enabled via c_identify()*/
1242 	if (!have_cpuid_p())
1243 		return;
1244 
1245 	cpu_detect(c);
1246 
1247 	get_cpu_vendor(c);
1248 
1249 	get_cpu_cap(c);
1250 
1251 	get_cpu_address_sizes(c);
1252 
1253 	if (c->cpuid_level >= 0x00000001) {
1254 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1255 #ifdef CONFIG_X86_32
1256 # ifdef CONFIG_SMP
1257 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1258 # else
1259 		c->apicid = c->initial_apicid;
1260 # endif
1261 #endif
1262 		c->phys_proc_id = c->initial_apicid;
1263 	}
1264 
1265 	get_model_name(c); /* Default name */
1266 
1267 	detect_null_seg_behavior(c);
1268 
1269 	/*
1270 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1271 	 * systems that run Linux at CPL > 0 may or may not have the
1272 	 * issue, but, even if they have the issue, there's absolutely
1273 	 * nothing we can do about it because we can't use the real IRET
1274 	 * instruction.
1275 	 *
1276 	 * NB: For the time being, only 32-bit kernels support
1277 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1278 	 * whether to apply espfix using paravirt hooks.  If any
1279 	 * non-paravirt system ever shows up that does *not* have the
1280 	 * ESPFIX issue, we can change this.
1281 	 */
1282 #ifdef CONFIG_X86_32
1283 # ifdef CONFIG_PARAVIRT_XXL
1284 	do {
1285 		extern void native_iret(void);
1286 		if (pv_ops.cpu.iret == native_iret)
1287 			set_cpu_bug(c, X86_BUG_ESPFIX);
1288 	} while (0);
1289 # else
1290 	set_cpu_bug(c, X86_BUG_ESPFIX);
1291 # endif
1292 #endif
1293 }
1294 
1295 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1296 {
1297 	/*
1298 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1299 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1300 	 * in case CQM bits really aren't there in this CPU.
1301 	 */
1302 	if (c != &boot_cpu_data) {
1303 		boot_cpu_data.x86_cache_max_rmid =
1304 			min(boot_cpu_data.x86_cache_max_rmid,
1305 			    c->x86_cache_max_rmid);
1306 	}
1307 }
1308 
1309 /*
1310  * Validate that ACPI/mptables have the same information about the
1311  * effective APIC id and update the package map.
1312  */
1313 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1314 {
1315 #ifdef CONFIG_SMP
1316 	unsigned int apicid, cpu = smp_processor_id();
1317 
1318 	apicid = apic->cpu_present_to_apicid(cpu);
1319 
1320 	if (apicid != c->apicid) {
1321 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1322 		       cpu, apicid, c->initial_apicid);
1323 	}
1324 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1325 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1326 #else
1327 	c->logical_proc_id = 0;
1328 #endif
1329 }
1330 
1331 /*
1332  * This does the hard work of actually picking apart the CPU stuff...
1333  */
1334 static void identify_cpu(struct cpuinfo_x86 *c)
1335 {
1336 	int i;
1337 
1338 	c->loops_per_jiffy = loops_per_jiffy;
1339 	c->x86_cache_size = 0;
1340 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1341 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1342 	c->x86_vendor_id[0] = '\0'; /* Unset */
1343 	c->x86_model_id[0] = '\0';  /* Unset */
1344 	c->x86_max_cores = 1;
1345 	c->x86_coreid_bits = 0;
1346 	c->cu_id = 0xff;
1347 #ifdef CONFIG_X86_64
1348 	c->x86_clflush_size = 64;
1349 	c->x86_phys_bits = 36;
1350 	c->x86_virt_bits = 48;
1351 #else
1352 	c->cpuid_level = -1;	/* CPUID not detected */
1353 	c->x86_clflush_size = 32;
1354 	c->x86_phys_bits = 32;
1355 	c->x86_virt_bits = 32;
1356 #endif
1357 	c->x86_cache_alignment = c->x86_clflush_size;
1358 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1359 
1360 	generic_identify(c);
1361 
1362 	if (this_cpu->c_identify)
1363 		this_cpu->c_identify(c);
1364 
1365 	/* Clear/Set all flags overridden by options, after probe */
1366 	apply_forced_caps(c);
1367 
1368 #ifdef CONFIG_X86_64
1369 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1370 #endif
1371 
1372 	/*
1373 	 * Vendor-specific initialization.  In this section we
1374 	 * canonicalize the feature flags, meaning if there are
1375 	 * features a certain CPU supports which CPUID doesn't
1376 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1377 	 * we handle them here.
1378 	 *
1379 	 * At the end of this section, c->x86_capability better
1380 	 * indicate the features this CPU genuinely supports!
1381 	 */
1382 	if (this_cpu->c_init)
1383 		this_cpu->c_init(c);
1384 
1385 	/* Disable the PN if appropriate */
1386 	squash_the_stupid_serial_number(c);
1387 
1388 	/* Set up SMEP/SMAP/UMIP */
1389 	setup_smep(c);
1390 	setup_smap(c);
1391 	setup_umip(c);
1392 
1393 	/*
1394 	 * The vendor-specific functions might have changed features.
1395 	 * Now we do "generic changes."
1396 	 */
1397 
1398 	/* Filter out anything that depends on CPUID levels we don't have */
1399 	filter_cpuid_features(c, true);
1400 
1401 	/* If the model name is still unset, do table lookup. */
1402 	if (!c->x86_model_id[0]) {
1403 		const char *p;
1404 		p = table_lookup_model(c);
1405 		if (p)
1406 			strcpy(c->x86_model_id, p);
1407 		else
1408 			/* Last resort... */
1409 			sprintf(c->x86_model_id, "%02x/%02x",
1410 				c->x86, c->x86_model);
1411 	}
1412 
1413 #ifdef CONFIG_X86_64
1414 	detect_ht(c);
1415 #endif
1416 
1417 	x86_init_rdrand(c);
1418 	x86_init_cache_qos(c);
1419 	setup_pku(c);
1420 
1421 	/*
1422 	 * Clear/Set all flags overridden by options, need do it
1423 	 * before following smp all cpus cap AND.
1424 	 */
1425 	apply_forced_caps(c);
1426 
1427 	/*
1428 	 * On SMP, boot_cpu_data holds the common feature set between
1429 	 * all CPUs; so make sure that we indicate which features are
1430 	 * common between the CPUs.  The first time this routine gets
1431 	 * executed, c == &boot_cpu_data.
1432 	 */
1433 	if (c != &boot_cpu_data) {
1434 		/* AND the already accumulated flags with these */
1435 		for (i = 0; i < NCAPINTS; i++)
1436 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1437 
1438 		/* OR, i.e. replicate the bug flags */
1439 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1440 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1441 	}
1442 
1443 	/* Init Machine Check Exception if available. */
1444 	mcheck_cpu_init(c);
1445 
1446 	select_idle_routine(c);
1447 
1448 #ifdef CONFIG_NUMA
1449 	numa_add_cpu(smp_processor_id());
1450 #endif
1451 }
1452 
1453 /*
1454  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1455  * on 32-bit kernels:
1456  */
1457 #ifdef CONFIG_X86_32
1458 void enable_sep_cpu(void)
1459 {
1460 	struct tss_struct *tss;
1461 	int cpu;
1462 
1463 	if (!boot_cpu_has(X86_FEATURE_SEP))
1464 		return;
1465 
1466 	cpu = get_cpu();
1467 	tss = &per_cpu(cpu_tss_rw, cpu);
1468 
1469 	/*
1470 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1471 	 * see the big comment in struct x86_hw_tss's definition.
1472 	 */
1473 
1474 	tss->x86_tss.ss1 = __KERNEL_CS;
1475 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1476 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1477 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1478 
1479 	put_cpu();
1480 }
1481 #endif
1482 
1483 void __init identify_boot_cpu(void)
1484 {
1485 	identify_cpu(&boot_cpu_data);
1486 #ifdef CONFIG_X86_32
1487 	sysenter_setup();
1488 	enable_sep_cpu();
1489 #endif
1490 	cpu_detect_tlb(&boot_cpu_data);
1491 	setup_cr_pinning();
1492 }
1493 
1494 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1495 {
1496 	BUG_ON(c == &boot_cpu_data);
1497 	identify_cpu(c);
1498 #ifdef CONFIG_X86_32
1499 	enable_sep_cpu();
1500 #endif
1501 	mtrr_ap_init();
1502 	validate_apic_and_package_id(c);
1503 	x86_spec_ctrl_setup_ap();
1504 }
1505 
1506 static __init int setup_noclflush(char *arg)
1507 {
1508 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1509 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1510 	return 1;
1511 }
1512 __setup("noclflush", setup_noclflush);
1513 
1514 void print_cpu_info(struct cpuinfo_x86 *c)
1515 {
1516 	const char *vendor = NULL;
1517 
1518 	if (c->x86_vendor < X86_VENDOR_NUM) {
1519 		vendor = this_cpu->c_vendor;
1520 	} else {
1521 		if (c->cpuid_level >= 0)
1522 			vendor = c->x86_vendor_id;
1523 	}
1524 
1525 	if (vendor && !strstr(c->x86_model_id, vendor))
1526 		pr_cont("%s ", vendor);
1527 
1528 	if (c->x86_model_id[0])
1529 		pr_cont("%s", c->x86_model_id);
1530 	else
1531 		pr_cont("%d86", c->x86);
1532 
1533 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1534 
1535 	if (c->x86_stepping || c->cpuid_level >= 0)
1536 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1537 	else
1538 		pr_cont(")\n");
1539 }
1540 
1541 /*
1542  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1543  * But we need to keep a dummy __setup around otherwise it would
1544  * show up as an environment variable for init.
1545  */
1546 static __init int setup_clearcpuid(char *arg)
1547 {
1548 	return 1;
1549 }
1550 __setup("clearcpuid=", setup_clearcpuid);
1551 
1552 #ifdef CONFIG_X86_64
1553 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1554 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1555 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1556 
1557 /*
1558  * The following percpu variables are hot.  Align current_task to
1559  * cacheline size such that they fall in the same cacheline.
1560  */
1561 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1562 	&init_task;
1563 EXPORT_PER_CPU_SYMBOL(current_task);
1564 
1565 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1566 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1567 
1568 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1569 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1570 
1571 /* May not be marked __init: used by software suspend */
1572 void syscall_init(void)
1573 {
1574 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1575 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1576 
1577 #ifdef CONFIG_IA32_EMULATION
1578 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1579 	/*
1580 	 * This only works on Intel CPUs.
1581 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1582 	 * This does not cause SYSENTER to jump to the wrong location, because
1583 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1584 	 */
1585 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1586 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1587 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1588 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1589 #else
1590 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1591 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1592 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1593 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1594 #endif
1595 
1596 	/* Flags to clear on syscall */
1597 	wrmsrl(MSR_SYSCALL_MASK,
1598 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1599 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1600 }
1601 
1602 DEFINE_PER_CPU(int, debug_stack_usage);
1603 DEFINE_PER_CPU(u32, debug_idt_ctr);
1604 
1605 void debug_stack_set_zero(void)
1606 {
1607 	this_cpu_inc(debug_idt_ctr);
1608 	load_current_idt();
1609 }
1610 NOKPROBE_SYMBOL(debug_stack_set_zero);
1611 
1612 void debug_stack_reset(void)
1613 {
1614 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1615 		return;
1616 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1617 		load_current_idt();
1618 }
1619 NOKPROBE_SYMBOL(debug_stack_reset);
1620 
1621 #else	/* CONFIG_X86_64 */
1622 
1623 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1624 EXPORT_PER_CPU_SYMBOL(current_task);
1625 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1626 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1627 
1628 /*
1629  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1630  * the top of the kernel stack.  Use an extra percpu variable to track the
1631  * top of the kernel stack directly.
1632  */
1633 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1634 	(unsigned long)&init_thread_union + THREAD_SIZE;
1635 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1636 
1637 #ifdef CONFIG_STACKPROTECTOR
1638 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1639 #endif
1640 
1641 #endif	/* CONFIG_X86_64 */
1642 
1643 /*
1644  * Clear all 6 debug registers:
1645  */
1646 static void clear_all_debug_regs(void)
1647 {
1648 	int i;
1649 
1650 	for (i = 0; i < 8; i++) {
1651 		/* Ignore db4, db5 */
1652 		if ((i == 4) || (i == 5))
1653 			continue;
1654 
1655 		set_debugreg(0, i);
1656 	}
1657 }
1658 
1659 #ifdef CONFIG_KGDB
1660 /*
1661  * Restore debug regs if using kgdbwait and you have a kernel debugger
1662  * connection established.
1663  */
1664 static void dbg_restore_debug_regs(void)
1665 {
1666 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1667 		arch_kgdb_ops.correct_hw_break();
1668 }
1669 #else /* ! CONFIG_KGDB */
1670 #define dbg_restore_debug_regs()
1671 #endif /* ! CONFIG_KGDB */
1672 
1673 static void wait_for_master_cpu(int cpu)
1674 {
1675 #ifdef CONFIG_SMP
1676 	/*
1677 	 * wait for ACK from master CPU before continuing
1678 	 * with AP initialization
1679 	 */
1680 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1681 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1682 		cpu_relax();
1683 #endif
1684 }
1685 
1686 #ifdef CONFIG_X86_64
1687 static void setup_getcpu(int cpu)
1688 {
1689 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1690 	struct desc_struct d = { };
1691 
1692 	if (boot_cpu_has(X86_FEATURE_RDTSCP))
1693 		write_rdtscp_aux(cpudata);
1694 
1695 	/* Store CPU and node number in limit. */
1696 	d.limit0 = cpudata;
1697 	d.limit1 = cpudata >> 16;
1698 
1699 	d.type = 5;		/* RO data, expand down, accessed */
1700 	d.dpl = 3;		/* Visible to user code */
1701 	d.s = 1;		/* Not a system segment */
1702 	d.p = 1;		/* Present */
1703 	d.d = 1;		/* 32-bit */
1704 
1705 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1706 }
1707 #endif
1708 
1709 /*
1710  * cpu_init() initializes state that is per-CPU. Some data is already
1711  * initialized (naturally) in the bootstrap process, such as the GDT
1712  * and IDT. We reload them nevertheless, this function acts as a
1713  * 'CPU state barrier', nothing should get across.
1714  */
1715 #ifdef CONFIG_X86_64
1716 
1717 void cpu_init(void)
1718 {
1719 	int cpu = raw_smp_processor_id();
1720 	struct task_struct *me;
1721 	struct tss_struct *t;
1722 	int i;
1723 
1724 	wait_for_master_cpu(cpu);
1725 
1726 	/*
1727 	 * Initialize the CR4 shadow before doing anything that could
1728 	 * try to read it.
1729 	 */
1730 	cr4_init_shadow();
1731 
1732 	if (cpu)
1733 		load_ucode_ap();
1734 
1735 	t = &per_cpu(cpu_tss_rw, cpu);
1736 
1737 #ifdef CONFIG_NUMA
1738 	if (this_cpu_read(numa_node) == 0 &&
1739 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1740 		set_numa_node(early_cpu_to_node(cpu));
1741 #endif
1742 	setup_getcpu(cpu);
1743 
1744 	me = current;
1745 
1746 	pr_debug("Initializing CPU#%d\n", cpu);
1747 
1748 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1749 
1750 	/*
1751 	 * Initialize the per-CPU GDT with the boot GDT,
1752 	 * and set up the GDT descriptor:
1753 	 */
1754 
1755 	switch_to_new_gdt(cpu);
1756 	loadsegment(fs, 0);
1757 
1758 	load_current_idt();
1759 
1760 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1761 	syscall_init();
1762 
1763 	wrmsrl(MSR_FS_BASE, 0);
1764 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1765 	barrier();
1766 
1767 	x86_configure_nx();
1768 	x2apic_setup();
1769 
1770 	/*
1771 	 * set up and load the per-CPU TSS
1772 	 */
1773 	if (!t->x86_tss.ist[0]) {
1774 		t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1775 		t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1776 		t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1777 		t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1778 	}
1779 
1780 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1781 
1782 	/*
1783 	 * <= is required because the CPU will access up to
1784 	 * 8 bits beyond the end of the IO permission bitmap.
1785 	 */
1786 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1787 		t->io_bitmap[i] = ~0UL;
1788 
1789 	mmgrab(&init_mm);
1790 	me->active_mm = &init_mm;
1791 	BUG_ON(me->mm);
1792 	initialize_tlbstate_and_flush();
1793 	enter_lazy_tlb(&init_mm, me);
1794 
1795 	/*
1796 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1797 	 * regardless of what task is running.
1798 	 */
1799 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1800 	load_TR_desc();
1801 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1802 
1803 	load_mm_ldt(&init_mm);
1804 
1805 	clear_all_debug_regs();
1806 	dbg_restore_debug_regs();
1807 
1808 	fpu__init_cpu();
1809 
1810 	if (is_uv_system())
1811 		uv_cpu_init();
1812 
1813 	load_fixmap_gdt(cpu);
1814 }
1815 
1816 #else
1817 
1818 void cpu_init(void)
1819 {
1820 	int cpu = smp_processor_id();
1821 	struct task_struct *curr = current;
1822 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1823 
1824 	wait_for_master_cpu(cpu);
1825 
1826 	/*
1827 	 * Initialize the CR4 shadow before doing anything that could
1828 	 * try to read it.
1829 	 */
1830 	cr4_init_shadow();
1831 
1832 	show_ucode_info_early();
1833 
1834 	pr_info("Initializing CPU#%d\n", cpu);
1835 
1836 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1837 	    boot_cpu_has(X86_FEATURE_TSC) ||
1838 	    boot_cpu_has(X86_FEATURE_DE))
1839 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1840 
1841 	load_current_idt();
1842 	switch_to_new_gdt(cpu);
1843 
1844 	/*
1845 	 * Set up and load the per-CPU TSS and LDT
1846 	 */
1847 	mmgrab(&init_mm);
1848 	curr->active_mm = &init_mm;
1849 	BUG_ON(curr->mm);
1850 	initialize_tlbstate_and_flush();
1851 	enter_lazy_tlb(&init_mm, curr);
1852 
1853 	/*
1854 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1855 	 * regardless of what task is running.
1856 	 */
1857 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1858 	load_TR_desc();
1859 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1860 
1861 	load_mm_ldt(&init_mm);
1862 
1863 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1864 
1865 #ifdef CONFIG_DOUBLEFAULT
1866 	/* Set up doublefault TSS pointer in the GDT */
1867 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1868 #endif
1869 
1870 	clear_all_debug_regs();
1871 	dbg_restore_debug_regs();
1872 
1873 	fpu__init_cpu();
1874 
1875 	load_fixmap_gdt(cpu);
1876 }
1877 #endif
1878 
1879 /*
1880  * The microcode loader calls this upon late microcode load to recheck features,
1881  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1882  * hotplug lock.
1883  */
1884 void microcode_check(void)
1885 {
1886 	struct cpuinfo_x86 info;
1887 
1888 	perf_check_microcode();
1889 
1890 	/* Reload CPUID max function as it might've changed. */
1891 	info.cpuid_level = cpuid_eax(0);
1892 
1893 	/*
1894 	 * Copy all capability leafs to pick up the synthetic ones so that
1895 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1896 	 * get overwritten in get_cpu_cap().
1897 	 */
1898 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1899 
1900 	get_cpu_cap(&info);
1901 
1902 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1903 		return;
1904 
1905 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1906 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1907 }
1908