xref: /linux/arch/x86/kernel/cpu/common.c (revision e3234e547a4db0572e271e490d044bdb4cb7233b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/ia32.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69 
70 #include "cpu.h"
71 
72 u32 elf_hwcap2 __read_mostly;
73 
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77 
78 static struct ppin_info {
79 	int	feature;
80 	int	msr_ppin_ctl;
81 	int	msr_ppin;
82 } ppin_info[] = {
83 	[X86_VENDOR_INTEL] = {
84 		.feature = X86_FEATURE_INTEL_PPIN,
85 		.msr_ppin_ctl = MSR_PPIN_CTL,
86 		.msr_ppin = MSR_PPIN
87 	},
88 	[X86_VENDOR_AMD] = {
89 		.feature = X86_FEATURE_AMD_PPIN,
90 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
91 		.msr_ppin = MSR_AMD_PPIN
92 	},
93 };
94 
95 static const struct x86_cpu_id ppin_cpuids[] = {
96 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
97 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
98 
99 	/* Legacy models without CPUID enumeration */
100 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
101 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
102 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
103 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
104 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
105 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
107 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
108 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
110 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
111 
112 	{}
113 };
114 
115 static void ppin_init(struct cpuinfo_x86 *c)
116 {
117 	const struct x86_cpu_id *id;
118 	unsigned long long val;
119 	struct ppin_info *info;
120 
121 	id = x86_match_cpu(ppin_cpuids);
122 	if (!id)
123 		return;
124 
125 	/*
126 	 * Testing the presence of the MSR is not enough. Need to check
127 	 * that the PPIN_CTL allows reading of the PPIN.
128 	 */
129 	info = (struct ppin_info *)id->driver_data;
130 
131 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
132 		goto clear_ppin;
133 
134 	if ((val & 3UL) == 1UL) {
135 		/* PPIN locked in disabled mode */
136 		goto clear_ppin;
137 	}
138 
139 	/* If PPIN is disabled, try to enable */
140 	if (!(val & 2UL)) {
141 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
142 		rdmsrl_safe(info->msr_ppin_ctl, &val);
143 	}
144 
145 	/* Is the enable bit set? */
146 	if (val & 2UL) {
147 		c->ppin = __rdmsr(info->msr_ppin);
148 		set_cpu_cap(c, info->feature);
149 		return;
150 	}
151 
152 clear_ppin:
153 	clear_cpu_cap(c, info->feature);
154 }
155 
156 static void default_init(struct cpuinfo_x86 *c)
157 {
158 #ifdef CONFIG_X86_64
159 	cpu_detect_cache_sizes(c);
160 #else
161 	/* Not much we can do here... */
162 	/* Check if at least it has cpuid */
163 	if (c->cpuid_level == -1) {
164 		/* No cpuid. It must be an ancient CPU */
165 		if (c->x86 == 4)
166 			strcpy(c->x86_model_id, "486");
167 		else if (c->x86 == 3)
168 			strcpy(c->x86_model_id, "386");
169 	}
170 #endif
171 }
172 
173 static const struct cpu_dev default_cpu = {
174 	.c_init		= default_init,
175 	.c_vendor	= "Unknown",
176 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
177 };
178 
179 static const struct cpu_dev *this_cpu = &default_cpu;
180 
181 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
182 #ifdef CONFIG_X86_64
183 	/*
184 	 * We need valid kernel segments for data and code in long mode too
185 	 * IRET will check the segment types  kkeil 2000/10/28
186 	 * Also sysret mandates a special GDT layout
187 	 *
188 	 * TLS descriptors are currently at a different place compared to i386.
189 	 * Hopefully nobody expects them at a fixed place (Wine?)
190 	 */
191 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
192 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
193 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
194 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
195 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
196 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
197 #else
198 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
199 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
200 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
201 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
202 	/*
203 	 * Segments used for calling PnP BIOS have byte granularity.
204 	 * They code segments and data segments have fixed 64k limits,
205 	 * the transfer segment sizes are set at run time.
206 	 */
207 	/* 32-bit code */
208 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
209 	/* 16-bit code */
210 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
211 	/* 16-bit data */
212 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
213 	/* 16-bit data */
214 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
215 	/* 16-bit data */
216 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
217 	/*
218 	 * The APM segments have byte granularity and their bases
219 	 * are set at run time.  All have 64k limits.
220 	 */
221 	/* 32-bit code */
222 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
223 	/* 16-bit code */
224 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
225 	/* data */
226 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
227 
228 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
229 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
230 #endif
231 } };
232 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
233 
234 #ifdef CONFIG_X86_64
235 static int __init x86_nopcid_setup(char *s)
236 {
237 	/* nopcid doesn't accept parameters */
238 	if (s)
239 		return -EINVAL;
240 
241 	/* do not emit a message if the feature is not present */
242 	if (!boot_cpu_has(X86_FEATURE_PCID))
243 		return 0;
244 
245 	setup_clear_cpu_cap(X86_FEATURE_PCID);
246 	pr_info("nopcid: PCID feature disabled\n");
247 	return 0;
248 }
249 early_param("nopcid", x86_nopcid_setup);
250 #endif
251 
252 static int __init x86_noinvpcid_setup(char *s)
253 {
254 	/* noinvpcid doesn't accept parameters */
255 	if (s)
256 		return -EINVAL;
257 
258 	/* do not emit a message if the feature is not present */
259 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
260 		return 0;
261 
262 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
263 	pr_info("noinvpcid: INVPCID feature disabled\n");
264 	return 0;
265 }
266 early_param("noinvpcid", x86_noinvpcid_setup);
267 
268 #ifdef CONFIG_X86_32
269 static int cachesize_override = -1;
270 static int disable_x86_serial_nr = 1;
271 
272 static int __init cachesize_setup(char *str)
273 {
274 	get_option(&str, &cachesize_override);
275 	return 1;
276 }
277 __setup("cachesize=", cachesize_setup);
278 
279 /* Standard macro to see if a specific flag is changeable */
280 static inline int flag_is_changeable_p(u32 flag)
281 {
282 	u32 f1, f2;
283 
284 	/*
285 	 * Cyrix and IDT cpus allow disabling of CPUID
286 	 * so the code below may return different results
287 	 * when it is executed before and after enabling
288 	 * the CPUID. Add "volatile" to not allow gcc to
289 	 * optimize the subsequent calls to this function.
290 	 */
291 	asm volatile ("pushfl		\n\t"
292 		      "pushfl		\n\t"
293 		      "popl %0		\n\t"
294 		      "movl %0, %1	\n\t"
295 		      "xorl %2, %0	\n\t"
296 		      "pushl %0		\n\t"
297 		      "popfl		\n\t"
298 		      "pushfl		\n\t"
299 		      "popl %0		\n\t"
300 		      "popfl		\n\t"
301 
302 		      : "=&r" (f1), "=&r" (f2)
303 		      : "ir" (flag));
304 
305 	return ((f1^f2) & flag) != 0;
306 }
307 
308 /* Probe for the CPUID instruction */
309 int have_cpuid_p(void)
310 {
311 	return flag_is_changeable_p(X86_EFLAGS_ID);
312 }
313 
314 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
315 {
316 	unsigned long lo, hi;
317 
318 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
319 		return;
320 
321 	/* Disable processor serial number: */
322 
323 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
324 	lo |= 0x200000;
325 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
326 
327 	pr_notice("CPU serial number disabled.\n");
328 	clear_cpu_cap(c, X86_FEATURE_PN);
329 
330 	/* Disabling the serial number may affect the cpuid level */
331 	c->cpuid_level = cpuid_eax(0);
332 }
333 
334 static int __init x86_serial_nr_setup(char *s)
335 {
336 	disable_x86_serial_nr = 0;
337 	return 1;
338 }
339 __setup("serialnumber", x86_serial_nr_setup);
340 #else
341 static inline int flag_is_changeable_p(u32 flag)
342 {
343 	return 1;
344 }
345 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
346 {
347 }
348 #endif
349 
350 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
351 {
352 	if (cpu_has(c, X86_FEATURE_SMEP))
353 		cr4_set_bits(X86_CR4_SMEP);
354 }
355 
356 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
357 {
358 	unsigned long eflags = native_save_fl();
359 
360 	/* This should have been cleared long ago */
361 	BUG_ON(eflags & X86_EFLAGS_AC);
362 
363 	if (cpu_has(c, X86_FEATURE_SMAP))
364 		cr4_set_bits(X86_CR4_SMAP);
365 }
366 
367 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
368 {
369 	/* Check the boot processor, plus build option for UMIP. */
370 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
371 		goto out;
372 
373 	/* Check the current processor's cpuid bits. */
374 	if (!cpu_has(c, X86_FEATURE_UMIP))
375 		goto out;
376 
377 	cr4_set_bits(X86_CR4_UMIP);
378 
379 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
380 
381 	return;
382 
383 out:
384 	/*
385 	 * Make sure UMIP is disabled in case it was enabled in a
386 	 * previous boot (e.g., via kexec).
387 	 */
388 	cr4_clear_bits(X86_CR4_UMIP);
389 }
390 
391 /* These bits should not change their value after CPU init is finished. */
392 static const unsigned long cr4_pinned_mask =
393 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
394 	X86_CR4_FSGSBASE | X86_CR4_CET;
395 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
396 static unsigned long cr4_pinned_bits __ro_after_init;
397 
398 void native_write_cr0(unsigned long val)
399 {
400 	unsigned long bits_missing = 0;
401 
402 set_register:
403 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
404 
405 	if (static_branch_likely(&cr_pinning)) {
406 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
407 			bits_missing = X86_CR0_WP;
408 			val |= bits_missing;
409 			goto set_register;
410 		}
411 		/* Warn after we've set the missing bits. */
412 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
413 	}
414 }
415 EXPORT_SYMBOL(native_write_cr0);
416 
417 void __no_profile native_write_cr4(unsigned long val)
418 {
419 	unsigned long bits_changed = 0;
420 
421 set_register:
422 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
423 
424 	if (static_branch_likely(&cr_pinning)) {
425 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
426 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
427 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
428 			goto set_register;
429 		}
430 		/* Warn after we've corrected the changed bits. */
431 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
432 			  bits_changed);
433 	}
434 }
435 #if IS_MODULE(CONFIG_LKDTM)
436 EXPORT_SYMBOL_GPL(native_write_cr4);
437 #endif
438 
439 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
440 {
441 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
442 
443 	lockdep_assert_irqs_disabled();
444 
445 	newval = (cr4 & ~clear) | set;
446 	if (newval != cr4) {
447 		this_cpu_write(cpu_tlbstate.cr4, newval);
448 		__write_cr4(newval);
449 	}
450 }
451 EXPORT_SYMBOL(cr4_update_irqsoff);
452 
453 /* Read the CR4 shadow. */
454 unsigned long cr4_read_shadow(void)
455 {
456 	return this_cpu_read(cpu_tlbstate.cr4);
457 }
458 EXPORT_SYMBOL_GPL(cr4_read_shadow);
459 
460 void cr4_init(void)
461 {
462 	unsigned long cr4 = __read_cr4();
463 
464 	if (boot_cpu_has(X86_FEATURE_PCID))
465 		cr4 |= X86_CR4_PCIDE;
466 	if (static_branch_likely(&cr_pinning))
467 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
468 
469 	__write_cr4(cr4);
470 
471 	/* Initialize cr4 shadow for this CPU. */
472 	this_cpu_write(cpu_tlbstate.cr4, cr4);
473 }
474 
475 /*
476  * Once CPU feature detection is finished (and boot params have been
477  * parsed), record any of the sensitive CR bits that are set, and
478  * enable CR pinning.
479  */
480 static void __init setup_cr_pinning(void)
481 {
482 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
483 	static_key_enable(&cr_pinning.key);
484 }
485 
486 static __init int x86_nofsgsbase_setup(char *arg)
487 {
488 	/* Require an exact match without trailing characters. */
489 	if (strlen(arg))
490 		return 0;
491 
492 	/* Do not emit a message if the feature is not present. */
493 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
494 		return 1;
495 
496 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
497 	pr_info("FSGSBASE disabled via kernel command line\n");
498 	return 1;
499 }
500 __setup("nofsgsbase", x86_nofsgsbase_setup);
501 
502 /*
503  * Protection Keys are not available in 32-bit mode.
504  */
505 static bool pku_disabled;
506 
507 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
508 {
509 	if (c == &boot_cpu_data) {
510 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
511 			return;
512 		/*
513 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
514 		 * bit to be set.  Enforce it.
515 		 */
516 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
517 
518 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
519 		return;
520 	}
521 
522 	cr4_set_bits(X86_CR4_PKE);
523 	/* Load the default PKRU value */
524 	pkru_write_default();
525 }
526 
527 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
528 static __init int setup_disable_pku(char *arg)
529 {
530 	/*
531 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
532 	 * runtime checks are against OSPKE so clearing the
533 	 * bit does nothing.
534 	 *
535 	 * This way, we will see "pku" in cpuinfo, but not
536 	 * "ospke", which is exactly what we want.  It shows
537 	 * that the CPU has PKU, but the OS has not enabled it.
538 	 * This happens to be exactly how a system would look
539 	 * if we disabled the config option.
540 	 */
541 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
542 	pku_disabled = true;
543 	return 1;
544 }
545 __setup("nopku", setup_disable_pku);
546 #endif
547 
548 #ifdef CONFIG_X86_KERNEL_IBT
549 
550 __noendbr u64 ibt_save(bool disable)
551 {
552 	u64 msr = 0;
553 
554 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
555 		rdmsrl(MSR_IA32_S_CET, msr);
556 		if (disable)
557 			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
558 	}
559 
560 	return msr;
561 }
562 
563 __noendbr void ibt_restore(u64 save)
564 {
565 	u64 msr;
566 
567 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
568 		rdmsrl(MSR_IA32_S_CET, msr);
569 		msr &= ~CET_ENDBR_EN;
570 		msr |= (save & CET_ENDBR_EN);
571 		wrmsrl(MSR_IA32_S_CET, msr);
572 	}
573 }
574 
575 #endif
576 
577 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
578 {
579 	bool user_shstk, kernel_ibt;
580 
581 	if (!IS_ENABLED(CONFIG_X86_CET))
582 		return;
583 
584 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
585 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
586 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
587 
588 	if (!kernel_ibt && !user_shstk)
589 		return;
590 
591 	if (user_shstk)
592 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
593 
594 	if (kernel_ibt)
595 		wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
596 	else
597 		wrmsrl(MSR_IA32_S_CET, 0);
598 
599 	cr4_set_bits(X86_CR4_CET);
600 
601 	if (kernel_ibt && ibt_selftest()) {
602 		pr_err("IBT selftest: Failed!\n");
603 		wrmsrl(MSR_IA32_S_CET, 0);
604 		setup_clear_cpu_cap(X86_FEATURE_IBT);
605 	}
606 }
607 
608 __noendbr void cet_disable(void)
609 {
610 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
611 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
612 		return;
613 
614 	wrmsrl(MSR_IA32_S_CET, 0);
615 	wrmsrl(MSR_IA32_U_CET, 0);
616 }
617 
618 /*
619  * Some CPU features depend on higher CPUID levels, which may not always
620  * be available due to CPUID level capping or broken virtualization
621  * software.  Add those features to this table to auto-disable them.
622  */
623 struct cpuid_dependent_feature {
624 	u32 feature;
625 	u32 level;
626 };
627 
628 static const struct cpuid_dependent_feature
629 cpuid_dependent_features[] = {
630 	{ X86_FEATURE_MWAIT,		0x00000005 },
631 	{ X86_FEATURE_DCA,		0x00000009 },
632 	{ X86_FEATURE_XSAVE,		0x0000000d },
633 	{ 0, 0 }
634 };
635 
636 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
637 {
638 	const struct cpuid_dependent_feature *df;
639 
640 	for (df = cpuid_dependent_features; df->feature; df++) {
641 
642 		if (!cpu_has(c, df->feature))
643 			continue;
644 		/*
645 		 * Note: cpuid_level is set to -1 if unavailable, but
646 		 * extended_extended_level is set to 0 if unavailable
647 		 * and the legitimate extended levels are all negative
648 		 * when signed; hence the weird messing around with
649 		 * signs here...
650 		 */
651 		if (!((s32)df->level < 0 ?
652 		     (u32)df->level > (u32)c->extended_cpuid_level :
653 		     (s32)df->level > (s32)c->cpuid_level))
654 			continue;
655 
656 		clear_cpu_cap(c, df->feature);
657 		if (!warn)
658 			continue;
659 
660 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
661 			x86_cap_flag(df->feature), df->level);
662 	}
663 }
664 
665 /*
666  * Naming convention should be: <Name> [(<Codename>)]
667  * This table only is used unless init_<vendor>() below doesn't set it;
668  * in particular, if CPUID levels 0x80000002..4 are supported, this
669  * isn't used
670  */
671 
672 /* Look up CPU names by table lookup. */
673 static const char *table_lookup_model(struct cpuinfo_x86 *c)
674 {
675 #ifdef CONFIG_X86_32
676 	const struct legacy_cpu_model_info *info;
677 
678 	if (c->x86_model >= 16)
679 		return NULL;	/* Range check */
680 
681 	if (!this_cpu)
682 		return NULL;
683 
684 	info = this_cpu->legacy_models;
685 
686 	while (info->family) {
687 		if (info->family == c->x86)
688 			return info->model_names[c->x86_model];
689 		info++;
690 	}
691 #endif
692 	return NULL;		/* Not found */
693 }
694 
695 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
696 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
697 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
698 
699 #ifdef CONFIG_X86_32
700 /* The 32-bit entry code needs to find cpu_entry_area. */
701 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
702 #endif
703 
704 /* Load the original GDT from the per-cpu structure */
705 void load_direct_gdt(int cpu)
706 {
707 	struct desc_ptr gdt_descr;
708 
709 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
710 	gdt_descr.size = GDT_SIZE - 1;
711 	load_gdt(&gdt_descr);
712 }
713 EXPORT_SYMBOL_GPL(load_direct_gdt);
714 
715 /* Load a fixmap remapping of the per-cpu GDT */
716 void load_fixmap_gdt(int cpu)
717 {
718 	struct desc_ptr gdt_descr;
719 
720 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
721 	gdt_descr.size = GDT_SIZE - 1;
722 	load_gdt(&gdt_descr);
723 }
724 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
725 
726 /**
727  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
728  * @cpu:	The CPU number for which this is invoked
729  *
730  * Invoked during early boot to switch from early GDT and early per CPU to
731  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
732  * switch is implicit by loading the direct GDT. On 64bit this requires
733  * to update GSBASE.
734  */
735 void __init switch_gdt_and_percpu_base(int cpu)
736 {
737 	load_direct_gdt(cpu);
738 
739 #ifdef CONFIG_X86_64
740 	/*
741 	 * No need to load %gs. It is already correct.
742 	 *
743 	 * Writing %gs on 64bit would zero GSBASE which would make any per
744 	 * CPU operation up to the point of the wrmsrl() fault.
745 	 *
746 	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
747 	 * early mapping is still valid. That means the GSBASE update will
748 	 * lose any prior per CPU data which was not copied over in
749 	 * setup_per_cpu_areas().
750 	 *
751 	 * This works even with stackprotector enabled because the
752 	 * per CPU stack canary is 0 in both per CPU areas.
753 	 */
754 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
755 #else
756 	/*
757 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
758 	 * it is required to load FS again so that the 'hidden' part is
759 	 * updated from the new GDT. Up to this point the early per CPU
760 	 * translation is active. Any content of the early per CPU data
761 	 * which was not copied over in setup_per_cpu_areas() is lost.
762 	 */
763 	loadsegment(fs, __KERNEL_PERCPU);
764 #endif
765 }
766 
767 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
768 
769 static void get_model_name(struct cpuinfo_x86 *c)
770 {
771 	unsigned int *v;
772 	char *p, *q, *s;
773 
774 	if (c->extended_cpuid_level < 0x80000004)
775 		return;
776 
777 	v = (unsigned int *)c->x86_model_id;
778 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
779 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
780 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
781 	c->x86_model_id[48] = 0;
782 
783 	/* Trim whitespace */
784 	p = q = s = &c->x86_model_id[0];
785 
786 	while (*p == ' ')
787 		p++;
788 
789 	while (*p) {
790 		/* Note the last non-whitespace index */
791 		if (!isspace(*p))
792 			s = q;
793 
794 		*q++ = *p++;
795 	}
796 
797 	*(s + 1) = '\0';
798 }
799 
800 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
801 {
802 	unsigned int eax, ebx, ecx, edx;
803 
804 	c->x86_max_cores = 1;
805 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
806 		return;
807 
808 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
809 	if (eax & 0x1f)
810 		c->x86_max_cores = (eax >> 26) + 1;
811 }
812 
813 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
814 {
815 	unsigned int n, dummy, ebx, ecx, edx, l2size;
816 
817 	n = c->extended_cpuid_level;
818 
819 	if (n >= 0x80000005) {
820 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
821 		c->x86_cache_size = (ecx>>24) + (edx>>24);
822 #ifdef CONFIG_X86_64
823 		/* On K8 L1 TLB is inclusive, so don't count it */
824 		c->x86_tlbsize = 0;
825 #endif
826 	}
827 
828 	if (n < 0x80000006)	/* Some chips just has a large L1. */
829 		return;
830 
831 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
832 	l2size = ecx >> 16;
833 
834 #ifdef CONFIG_X86_64
835 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
836 #else
837 	/* do processor-specific cache resizing */
838 	if (this_cpu->legacy_cache_size)
839 		l2size = this_cpu->legacy_cache_size(c, l2size);
840 
841 	/* Allow user to override all this if necessary. */
842 	if (cachesize_override != -1)
843 		l2size = cachesize_override;
844 
845 	if (l2size == 0)
846 		return;		/* Again, no L2 cache is possible */
847 #endif
848 
849 	c->x86_cache_size = l2size;
850 }
851 
852 u16 __read_mostly tlb_lli_4k[NR_INFO];
853 u16 __read_mostly tlb_lli_2m[NR_INFO];
854 u16 __read_mostly tlb_lli_4m[NR_INFO];
855 u16 __read_mostly tlb_lld_4k[NR_INFO];
856 u16 __read_mostly tlb_lld_2m[NR_INFO];
857 u16 __read_mostly tlb_lld_4m[NR_INFO];
858 u16 __read_mostly tlb_lld_1g[NR_INFO];
859 
860 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
861 {
862 	if (this_cpu->c_detect_tlb)
863 		this_cpu->c_detect_tlb(c);
864 
865 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
866 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
867 		tlb_lli_4m[ENTRIES]);
868 
869 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
870 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
871 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
872 }
873 
874 int detect_ht_early(struct cpuinfo_x86 *c)
875 {
876 #ifdef CONFIG_SMP
877 	u32 eax, ebx, ecx, edx;
878 
879 	if (!cpu_has(c, X86_FEATURE_HT))
880 		return -1;
881 
882 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
883 		return -1;
884 
885 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
886 		return -1;
887 
888 	cpuid(1, &eax, &ebx, &ecx, &edx);
889 
890 	smp_num_siblings = (ebx & 0xff0000) >> 16;
891 	if (smp_num_siblings == 1)
892 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
893 #endif
894 	return 0;
895 }
896 
897 void detect_ht(struct cpuinfo_x86 *c)
898 {
899 #ifdef CONFIG_SMP
900 	int index_msb, core_bits;
901 
902 	if (detect_ht_early(c) < 0)
903 		return;
904 
905 	index_msb = get_count_order(smp_num_siblings);
906 	c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
907 
908 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
909 
910 	index_msb = get_count_order(smp_num_siblings);
911 
912 	core_bits = get_count_order(c->x86_max_cores);
913 
914 	c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
915 		((1 << core_bits) - 1);
916 #endif
917 }
918 
919 static void get_cpu_vendor(struct cpuinfo_x86 *c)
920 {
921 	char *v = c->x86_vendor_id;
922 	int i;
923 
924 	for (i = 0; i < X86_VENDOR_NUM; i++) {
925 		if (!cpu_devs[i])
926 			break;
927 
928 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
929 		    (cpu_devs[i]->c_ident[1] &&
930 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
931 
932 			this_cpu = cpu_devs[i];
933 			c->x86_vendor = this_cpu->c_x86_vendor;
934 			return;
935 		}
936 	}
937 
938 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
939 		    "CPU: Your system may be unstable.\n", v);
940 
941 	c->x86_vendor = X86_VENDOR_UNKNOWN;
942 	this_cpu = &default_cpu;
943 }
944 
945 void cpu_detect(struct cpuinfo_x86 *c)
946 {
947 	/* Get vendor name */
948 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
949 	      (unsigned int *)&c->x86_vendor_id[0],
950 	      (unsigned int *)&c->x86_vendor_id[8],
951 	      (unsigned int *)&c->x86_vendor_id[4]);
952 
953 	c->x86 = 4;
954 	/* Intel-defined flags: level 0x00000001 */
955 	if (c->cpuid_level >= 0x00000001) {
956 		u32 junk, tfms, cap0, misc;
957 
958 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
959 		c->x86		= x86_family(tfms);
960 		c->x86_model	= x86_model(tfms);
961 		c->x86_stepping	= x86_stepping(tfms);
962 
963 		if (cap0 & (1<<19)) {
964 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
965 			c->x86_cache_alignment = c->x86_clflush_size;
966 		}
967 	}
968 }
969 
970 static void apply_forced_caps(struct cpuinfo_x86 *c)
971 {
972 	int i;
973 
974 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
975 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
976 		c->x86_capability[i] |= cpu_caps_set[i];
977 	}
978 }
979 
980 static void init_speculation_control(struct cpuinfo_x86 *c)
981 {
982 	/*
983 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
984 	 * and they also have a different bit for STIBP support. Also,
985 	 * a hypervisor might have set the individual AMD bits even on
986 	 * Intel CPUs, for finer-grained selection of what's available.
987 	 */
988 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
989 		set_cpu_cap(c, X86_FEATURE_IBRS);
990 		set_cpu_cap(c, X86_FEATURE_IBPB);
991 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
992 	}
993 
994 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
995 		set_cpu_cap(c, X86_FEATURE_STIBP);
996 
997 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
998 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
999 		set_cpu_cap(c, X86_FEATURE_SSBD);
1000 
1001 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1002 		set_cpu_cap(c, X86_FEATURE_IBRS);
1003 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1004 	}
1005 
1006 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1007 		set_cpu_cap(c, X86_FEATURE_IBPB);
1008 
1009 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1010 		set_cpu_cap(c, X86_FEATURE_STIBP);
1011 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1012 	}
1013 
1014 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1015 		set_cpu_cap(c, X86_FEATURE_SSBD);
1016 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1017 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1018 	}
1019 }
1020 
1021 void get_cpu_cap(struct cpuinfo_x86 *c)
1022 {
1023 	u32 eax, ebx, ecx, edx;
1024 
1025 	/* Intel-defined flags: level 0x00000001 */
1026 	if (c->cpuid_level >= 0x00000001) {
1027 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1028 
1029 		c->x86_capability[CPUID_1_ECX] = ecx;
1030 		c->x86_capability[CPUID_1_EDX] = edx;
1031 	}
1032 
1033 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1034 	if (c->cpuid_level >= 0x00000006)
1035 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1036 
1037 	/* Additional Intel-defined flags: level 0x00000007 */
1038 	if (c->cpuid_level >= 0x00000007) {
1039 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1040 		c->x86_capability[CPUID_7_0_EBX] = ebx;
1041 		c->x86_capability[CPUID_7_ECX] = ecx;
1042 		c->x86_capability[CPUID_7_EDX] = edx;
1043 
1044 		/* Check valid sub-leaf index before accessing it */
1045 		if (eax >= 1) {
1046 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1047 			c->x86_capability[CPUID_7_1_EAX] = eax;
1048 		}
1049 	}
1050 
1051 	/* Extended state features: level 0x0000000d */
1052 	if (c->cpuid_level >= 0x0000000d) {
1053 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1054 
1055 		c->x86_capability[CPUID_D_1_EAX] = eax;
1056 	}
1057 
1058 	/* AMD-defined flags: level 0x80000001 */
1059 	eax = cpuid_eax(0x80000000);
1060 	c->extended_cpuid_level = eax;
1061 
1062 	if ((eax & 0xffff0000) == 0x80000000) {
1063 		if (eax >= 0x80000001) {
1064 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1065 
1066 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1067 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1068 		}
1069 	}
1070 
1071 	if (c->extended_cpuid_level >= 0x80000007) {
1072 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1073 
1074 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1075 		c->x86_power = edx;
1076 	}
1077 
1078 	if (c->extended_cpuid_level >= 0x80000008) {
1079 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1080 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1081 	}
1082 
1083 	if (c->extended_cpuid_level >= 0x8000000a)
1084 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1085 
1086 	if (c->extended_cpuid_level >= 0x8000001f)
1087 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1088 
1089 	if (c->extended_cpuid_level >= 0x80000021)
1090 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1091 
1092 	init_scattered_cpuid_features(c);
1093 	init_speculation_control(c);
1094 
1095 	/*
1096 	 * Clear/Set all flags overridden by options, after probe.
1097 	 * This needs to happen each time we re-probe, which may happen
1098 	 * several times during CPU initialization.
1099 	 */
1100 	apply_forced_caps(c);
1101 }
1102 
1103 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1104 {
1105 	u32 eax, ebx, ecx, edx;
1106 	bool vp_bits_from_cpuid = true;
1107 
1108 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1109 	    (c->extended_cpuid_level < 0x80000008))
1110 		vp_bits_from_cpuid = false;
1111 
1112 	if (vp_bits_from_cpuid) {
1113 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1114 
1115 		c->x86_virt_bits = (eax >> 8) & 0xff;
1116 		c->x86_phys_bits = eax & 0xff;
1117 	} else {
1118 		if (IS_ENABLED(CONFIG_X86_64)) {
1119 			c->x86_clflush_size = 64;
1120 			c->x86_phys_bits = 36;
1121 			c->x86_virt_bits = 48;
1122 		} else {
1123 			c->x86_clflush_size = 32;
1124 			c->x86_virt_bits = 32;
1125 			c->x86_phys_bits = 32;
1126 
1127 			if (cpu_has(c, X86_FEATURE_PAE) ||
1128 			    cpu_has(c, X86_FEATURE_PSE36))
1129 				c->x86_phys_bits = 36;
1130 		}
1131 	}
1132 	c->x86_cache_bits = c->x86_phys_bits;
1133 	c->x86_cache_alignment = c->x86_clflush_size;
1134 }
1135 
1136 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1137 {
1138 #ifdef CONFIG_X86_32
1139 	int i;
1140 
1141 	/*
1142 	 * First of all, decide if this is a 486 or higher
1143 	 * It's a 486 if we can modify the AC flag
1144 	 */
1145 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1146 		c->x86 = 4;
1147 	else
1148 		c->x86 = 3;
1149 
1150 	for (i = 0; i < X86_VENDOR_NUM; i++)
1151 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1152 			c->x86_vendor_id[0] = 0;
1153 			cpu_devs[i]->c_identify(c);
1154 			if (c->x86_vendor_id[0]) {
1155 				get_cpu_vendor(c);
1156 				break;
1157 			}
1158 		}
1159 #endif
1160 }
1161 
1162 #define NO_SPECULATION		BIT(0)
1163 #define NO_MELTDOWN		BIT(1)
1164 #define NO_SSB			BIT(2)
1165 #define NO_L1TF			BIT(3)
1166 #define NO_MDS			BIT(4)
1167 #define MSBDS_ONLY		BIT(5)
1168 #define NO_SWAPGS		BIT(6)
1169 #define NO_ITLB_MULTIHIT	BIT(7)
1170 #define NO_SPECTRE_V2		BIT(8)
1171 #define NO_MMIO			BIT(9)
1172 #define NO_EIBRS_PBRSB		BIT(10)
1173 
1174 #define VULNWL(vendor, family, model, whitelist)	\
1175 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1176 
1177 #define VULNWL_INTEL(model, whitelist)		\
1178 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1179 
1180 #define VULNWL_AMD(family, whitelist)		\
1181 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1182 
1183 #define VULNWL_HYGON(family, whitelist)		\
1184 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1185 
1186 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1187 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1188 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1189 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1190 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1191 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1192 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1193 
1194 	/* Intel Family 6 */
1195 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1196 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1197 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1198 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1199 
1200 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1201 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1202 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1203 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1204 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1205 
1206 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1210 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1211 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1212 
1213 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1214 
1215 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1216 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1217 
1218 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1219 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1220 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1221 
1222 	/*
1223 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1224 	 * being documented as such in the APM).  But according to AMD, %gs is
1225 	 * updated non-speculatively, and the issuing of %gs-relative memory
1226 	 * operands will be blocked until the %gs update completes, which is
1227 	 * good enough for our purposes.
1228 	 */
1229 
1230 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1231 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1232 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1233 
1234 	/* AMD Family 0xf - 0x12 */
1235 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1236 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1237 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1238 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1239 
1240 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1241 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1242 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1243 
1244 	/* Zhaoxin Family 7 */
1245 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1246 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1247 	{}
1248 };
1249 
1250 #define VULNBL(vendor, family, model, blacklist)	\
1251 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1252 
1253 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1254 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1255 					    INTEL_FAM6_##model, steppings, \
1256 					    X86_FEATURE_ANY, issues)
1257 
1258 #define VULNBL_AMD(family, blacklist)		\
1259 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1260 
1261 #define VULNBL_HYGON(family, blacklist)		\
1262 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1263 
1264 #define SRBDS		BIT(0)
1265 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1266 #define MMIO		BIT(1)
1267 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1268 #define MMIO_SBDS	BIT(2)
1269 /* CPU is affected by RETbleed, speculating where you would not expect it */
1270 #define RETBLEED	BIT(3)
1271 /* CPU is affected by SMT (cross-thread) return predictions */
1272 #define SMT_RSB		BIT(4)
1273 /* CPU is affected by SRSO */
1274 #define SRSO		BIT(5)
1275 /* CPU is affected by GDS */
1276 #define GDS		BIT(6)
1277 
1278 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1279 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1280 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1281 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1282 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1283 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1284 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1285 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1286 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1287 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1288 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1289 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1290 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1291 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1292 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1293 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1294 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1295 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1296 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1297 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1298 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1299 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1300 	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1301 	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1302 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1303 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1304 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1305 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1306 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1307 
1308 	VULNBL_AMD(0x15, RETBLEED),
1309 	VULNBL_AMD(0x16, RETBLEED),
1310 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1311 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1312 	VULNBL_AMD(0x19, SRSO),
1313 	{}
1314 };
1315 
1316 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1317 {
1318 	const struct x86_cpu_id *m = x86_match_cpu(table);
1319 
1320 	return m && !!(m->driver_data & which);
1321 }
1322 
1323 u64 x86_read_arch_cap_msr(void)
1324 {
1325 	u64 ia32_cap = 0;
1326 
1327 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1328 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1329 
1330 	return ia32_cap;
1331 }
1332 
1333 static bool arch_cap_mmio_immune(u64 ia32_cap)
1334 {
1335 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1336 		ia32_cap & ARCH_CAP_PSDP_NO &&
1337 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1338 }
1339 
1340 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1341 {
1342 	u64 ia32_cap = x86_read_arch_cap_msr();
1343 
1344 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1345 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1346 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1347 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1348 
1349 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1350 		return;
1351 
1352 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1353 
1354 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1355 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1356 
1357 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1358 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1359 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1360 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1361 
1362 	/*
1363 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1364 	 * flag and protect from vendor-specific bugs via the whitelist.
1365 	 */
1366 	if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1367 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1368 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1369 		    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1370 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1371 	}
1372 
1373 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1374 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1375 		setup_force_cpu_bug(X86_BUG_MDS);
1376 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1377 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1378 	}
1379 
1380 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1381 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1382 
1383 	/*
1384 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1385 	 *	- TSX is supported or
1386 	 *	- TSX_CTRL is present
1387 	 *
1388 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1389 	 * the kernel boot e.g. kexec.
1390 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1391 	 * update is not present or running as guest that don't get TSX_CTRL.
1392 	 */
1393 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1394 	    (cpu_has(c, X86_FEATURE_RTM) ||
1395 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1396 		setup_force_cpu_bug(X86_BUG_TAA);
1397 
1398 	/*
1399 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1400 	 * in the vulnerability blacklist.
1401 	 *
1402 	 * Some of the implications and mitigation of Shared Buffers Data
1403 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1404 	 * SRBDS.
1405 	 */
1406 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1407 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1408 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1409 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1410 
1411 	/*
1412 	 * Processor MMIO Stale Data bug enumeration
1413 	 *
1414 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1415 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1416 	 * not want the guest to enumerate the bug.
1417 	 *
1418 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1419 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1420 	 */
1421 	if (!arch_cap_mmio_immune(ia32_cap)) {
1422 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1423 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1424 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1425 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1426 	}
1427 
1428 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1429 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1430 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1431 	}
1432 
1433 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1434 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1435 
1436 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1437 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1438 			setup_force_cpu_bug(X86_BUG_SRSO);
1439 	}
1440 
1441 	/*
1442 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1443 	 * an affected processor, the VMM may have disabled the use of GATHER by
1444 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1445 	 * which means that AVX will be disabled.
1446 	 */
1447 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1448 	    boot_cpu_has(X86_FEATURE_AVX))
1449 		setup_force_cpu_bug(X86_BUG_GDS);
1450 
1451 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1452 		return;
1453 
1454 	/* Rogue Data Cache Load? No! */
1455 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1456 		return;
1457 
1458 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1459 
1460 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1461 		return;
1462 
1463 	setup_force_cpu_bug(X86_BUG_L1TF);
1464 }
1465 
1466 /*
1467  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1468  * unfortunately, that's not true in practice because of early VIA
1469  * chips and (more importantly) broken virtualizers that are not easy
1470  * to detect. In the latter case it doesn't even *fail* reliably, so
1471  * probing for it doesn't even work. Disable it completely on 32-bit
1472  * unless we can find a reliable way to detect all the broken cases.
1473  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1474  */
1475 static void detect_nopl(void)
1476 {
1477 #ifdef CONFIG_X86_32
1478 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1479 #else
1480 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1481 #endif
1482 }
1483 
1484 /*
1485  * We parse cpu parameters early because fpu__init_system() is executed
1486  * before parse_early_param().
1487  */
1488 static void __init cpu_parse_early_param(void)
1489 {
1490 	char arg[128];
1491 	char *argptr = arg, *opt;
1492 	int arglen, taint = 0;
1493 
1494 #ifdef CONFIG_X86_32
1495 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1496 #ifdef CONFIG_MATH_EMULATION
1497 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1498 #else
1499 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1500 #endif
1501 
1502 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1503 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1504 #endif
1505 
1506 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1507 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1508 
1509 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1510 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1511 
1512 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1513 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1514 
1515 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1516 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1517 
1518 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1519 	if (arglen <= 0)
1520 		return;
1521 
1522 	pr_info("Clearing CPUID bits:");
1523 
1524 	while (argptr) {
1525 		bool found __maybe_unused = false;
1526 		unsigned int bit;
1527 
1528 		opt = strsep(&argptr, ",");
1529 
1530 		/*
1531 		 * Handle naked numbers first for feature flags which don't
1532 		 * have names.
1533 		 */
1534 		if (!kstrtouint(opt, 10, &bit)) {
1535 			if (bit < NCAPINTS * 32) {
1536 
1537 				/* empty-string, i.e., ""-defined feature flags */
1538 				if (!x86_cap_flags[bit])
1539 					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1540 				else
1541 					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1542 
1543 				setup_clear_cpu_cap(bit);
1544 				taint++;
1545 			}
1546 			/*
1547 			 * The assumption is that there are no feature names with only
1548 			 * numbers in the name thus go to the next argument.
1549 			 */
1550 			continue;
1551 		}
1552 
1553 		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1554 			if (!x86_cap_flag(bit))
1555 				continue;
1556 
1557 			if (strcmp(x86_cap_flag(bit), opt))
1558 				continue;
1559 
1560 			pr_cont(" %s", opt);
1561 			setup_clear_cpu_cap(bit);
1562 			taint++;
1563 			found = true;
1564 			break;
1565 		}
1566 
1567 		if (!found)
1568 			pr_cont(" (unknown: %s)", opt);
1569 	}
1570 	pr_cont("\n");
1571 
1572 	if (taint)
1573 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1574 }
1575 
1576 /*
1577  * Do minimum CPU detection early.
1578  * Fields really needed: vendor, cpuid_level, family, model, mask,
1579  * cache alignment.
1580  * The others are not touched to avoid unwanted side effects.
1581  *
1582  * WARNING: this function is only called on the boot CPU.  Don't add code
1583  * here that is supposed to run on all CPUs.
1584  */
1585 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1586 {
1587 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1588 	c->extended_cpuid_level = 0;
1589 
1590 	if (!have_cpuid_p())
1591 		identify_cpu_without_cpuid(c);
1592 
1593 	/* cyrix could have cpuid enabled via c_identify()*/
1594 	if (have_cpuid_p()) {
1595 		cpu_detect(c);
1596 		get_cpu_vendor(c);
1597 		get_cpu_cap(c);
1598 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1599 		cpu_parse_early_param();
1600 
1601 		if (this_cpu->c_early_init)
1602 			this_cpu->c_early_init(c);
1603 
1604 		c->cpu_index = 0;
1605 		filter_cpuid_features(c, false);
1606 
1607 		if (this_cpu->c_bsp_init)
1608 			this_cpu->c_bsp_init(c);
1609 	} else {
1610 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1611 	}
1612 
1613 	get_cpu_address_sizes(c);
1614 
1615 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1616 
1617 	cpu_set_bug_bits(c);
1618 
1619 	sld_setup(c);
1620 
1621 #ifdef CONFIG_X86_32
1622 	/*
1623 	 * Regardless of whether PCID is enumerated, the SDM says
1624 	 * that it can't be enabled in 32-bit mode.
1625 	 */
1626 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1627 #endif
1628 
1629 	/*
1630 	 * Later in the boot process pgtable_l5_enabled() relies on
1631 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1632 	 * enabled by this point we need to clear the feature bit to avoid
1633 	 * false-positives at the later stage.
1634 	 *
1635 	 * pgtable_l5_enabled() can be false here for several reasons:
1636 	 *  - 5-level paging is disabled compile-time;
1637 	 *  - it's 32-bit kernel;
1638 	 *  - machine doesn't support 5-level paging;
1639 	 *  - user specified 'no5lvl' in kernel command line.
1640 	 */
1641 	if (!pgtable_l5_enabled())
1642 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1643 
1644 	detect_nopl();
1645 }
1646 
1647 void __init early_cpu_init(void)
1648 {
1649 	const struct cpu_dev *const *cdev;
1650 	int count = 0;
1651 
1652 #ifdef CONFIG_PROCESSOR_SELECT
1653 	pr_info("KERNEL supported cpus:\n");
1654 #endif
1655 
1656 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1657 		const struct cpu_dev *cpudev = *cdev;
1658 
1659 		if (count >= X86_VENDOR_NUM)
1660 			break;
1661 		cpu_devs[count] = cpudev;
1662 		count++;
1663 
1664 #ifdef CONFIG_PROCESSOR_SELECT
1665 		{
1666 			unsigned int j;
1667 
1668 			for (j = 0; j < 2; j++) {
1669 				if (!cpudev->c_ident[j])
1670 					continue;
1671 				pr_info("  %s %s\n", cpudev->c_vendor,
1672 					cpudev->c_ident[j]);
1673 			}
1674 		}
1675 #endif
1676 	}
1677 	early_identify_cpu(&boot_cpu_data);
1678 }
1679 
1680 static bool detect_null_seg_behavior(void)
1681 {
1682 	/*
1683 	 * Empirically, writing zero to a segment selector on AMD does
1684 	 * not clear the base, whereas writing zero to a segment
1685 	 * selector on Intel does clear the base.  Intel's behavior
1686 	 * allows slightly faster context switches in the common case
1687 	 * where GS is unused by the prev and next threads.
1688 	 *
1689 	 * Since neither vendor documents this anywhere that I can see,
1690 	 * detect it directly instead of hard-coding the choice by
1691 	 * vendor.
1692 	 *
1693 	 * I've designated AMD's behavior as the "bug" because it's
1694 	 * counterintuitive and less friendly.
1695 	 */
1696 
1697 	unsigned long old_base, tmp;
1698 	rdmsrl(MSR_FS_BASE, old_base);
1699 	wrmsrl(MSR_FS_BASE, 1);
1700 	loadsegment(fs, 0);
1701 	rdmsrl(MSR_FS_BASE, tmp);
1702 	wrmsrl(MSR_FS_BASE, old_base);
1703 	return tmp == 0;
1704 }
1705 
1706 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1707 {
1708 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1709 	if (!IS_ENABLED(CONFIG_X86_64))
1710 		return;
1711 
1712 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1713 		return;
1714 
1715 	/*
1716 	 * CPUID bit above wasn't set. If this kernel is still running
1717 	 * as a HV guest, then the HV has decided not to advertize
1718 	 * that CPUID bit for whatever reason.	For example, one
1719 	 * member of the migration pool might be vulnerable.  Which
1720 	 * means, the bug is present: set the BUG flag and return.
1721 	 */
1722 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1723 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1724 		return;
1725 	}
1726 
1727 	/*
1728 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1729 	 * 0x18 is the respective family for Hygon.
1730 	 */
1731 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1732 	    detect_null_seg_behavior())
1733 		return;
1734 
1735 	/* All the remaining ones are affected */
1736 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1737 }
1738 
1739 static void generic_identify(struct cpuinfo_x86 *c)
1740 {
1741 	c->extended_cpuid_level = 0;
1742 
1743 	if (!have_cpuid_p())
1744 		identify_cpu_without_cpuid(c);
1745 
1746 	/* cyrix could have cpuid enabled via c_identify()*/
1747 	if (!have_cpuid_p())
1748 		return;
1749 
1750 	cpu_detect(c);
1751 
1752 	get_cpu_vendor(c);
1753 
1754 	get_cpu_cap(c);
1755 
1756 	get_cpu_address_sizes(c);
1757 
1758 	if (c->cpuid_level >= 0x00000001) {
1759 		c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1760 #ifdef CONFIG_X86_32
1761 # ifdef CONFIG_SMP
1762 		c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1763 # else
1764 		c->topo.apicid = c->topo.initial_apicid;
1765 # endif
1766 #endif
1767 		c->topo.pkg_id = c->topo.initial_apicid;
1768 	}
1769 
1770 	get_model_name(c); /* Default name */
1771 
1772 	/*
1773 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1774 	 * systems that run Linux at CPL > 0 may or may not have the
1775 	 * issue, but, even if they have the issue, there's absolutely
1776 	 * nothing we can do about it because we can't use the real IRET
1777 	 * instruction.
1778 	 *
1779 	 * NB: For the time being, only 32-bit kernels support
1780 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1781 	 * whether to apply espfix using paravirt hooks.  If any
1782 	 * non-paravirt system ever shows up that does *not* have the
1783 	 * ESPFIX issue, we can change this.
1784 	 */
1785 #ifdef CONFIG_X86_32
1786 	set_cpu_bug(c, X86_BUG_ESPFIX);
1787 #endif
1788 }
1789 
1790 /*
1791  * Validate that ACPI/mptables have the same information about the
1792  * effective APIC id and update the package map.
1793  */
1794 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1795 {
1796 #ifdef CONFIG_SMP
1797 	unsigned int cpu = smp_processor_id();
1798 	u32 apicid;
1799 
1800 	apicid = apic->cpu_present_to_apicid(cpu);
1801 
1802 	if (apicid != c->topo.apicid) {
1803 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1804 		       cpu, apicid, c->topo.initial_apicid);
1805 	}
1806 	BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1807 	BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1808 #else
1809 	c->topo.logical_pkg_id = 0;
1810 #endif
1811 }
1812 
1813 /*
1814  * This does the hard work of actually picking apart the CPU stuff...
1815  */
1816 static void identify_cpu(struct cpuinfo_x86 *c)
1817 {
1818 	int i;
1819 
1820 	c->loops_per_jiffy = loops_per_jiffy;
1821 	c->x86_cache_size = 0;
1822 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1823 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1824 	c->x86_vendor_id[0] = '\0'; /* Unset */
1825 	c->x86_model_id[0] = '\0';  /* Unset */
1826 	c->x86_max_cores = 1;
1827 	c->x86_coreid_bits = 0;
1828 	c->topo.cu_id = 0xff;
1829 	c->topo.llc_id = BAD_APICID;
1830 	c->topo.l2c_id = BAD_APICID;
1831 #ifdef CONFIG_X86_64
1832 	c->x86_clflush_size = 64;
1833 	c->x86_phys_bits = 36;
1834 	c->x86_virt_bits = 48;
1835 #else
1836 	c->cpuid_level = -1;	/* CPUID not detected */
1837 	c->x86_clflush_size = 32;
1838 	c->x86_phys_bits = 32;
1839 	c->x86_virt_bits = 32;
1840 #endif
1841 	c->x86_cache_alignment = c->x86_clflush_size;
1842 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1843 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1844 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1845 #endif
1846 
1847 	generic_identify(c);
1848 
1849 	if (this_cpu->c_identify)
1850 		this_cpu->c_identify(c);
1851 
1852 	/* Clear/Set all flags overridden by options, after probe */
1853 	apply_forced_caps(c);
1854 
1855 #ifdef CONFIG_X86_64
1856 	c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1857 #endif
1858 
1859 	/*
1860 	 * Vendor-specific initialization.  In this section we
1861 	 * canonicalize the feature flags, meaning if there are
1862 	 * features a certain CPU supports which CPUID doesn't
1863 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1864 	 * we handle them here.
1865 	 *
1866 	 * At the end of this section, c->x86_capability better
1867 	 * indicate the features this CPU genuinely supports!
1868 	 */
1869 	if (this_cpu->c_init)
1870 		this_cpu->c_init(c);
1871 
1872 	/* Disable the PN if appropriate */
1873 	squash_the_stupid_serial_number(c);
1874 
1875 	/* Set up SMEP/SMAP/UMIP */
1876 	setup_smep(c);
1877 	setup_smap(c);
1878 	setup_umip(c);
1879 
1880 	/* Enable FSGSBASE instructions if available. */
1881 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1882 		cr4_set_bits(X86_CR4_FSGSBASE);
1883 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1884 	}
1885 
1886 	/*
1887 	 * The vendor-specific functions might have changed features.
1888 	 * Now we do "generic changes."
1889 	 */
1890 
1891 	/* Filter out anything that depends on CPUID levels we don't have */
1892 	filter_cpuid_features(c, true);
1893 
1894 	/* If the model name is still unset, do table lookup. */
1895 	if (!c->x86_model_id[0]) {
1896 		const char *p;
1897 		p = table_lookup_model(c);
1898 		if (p)
1899 			strcpy(c->x86_model_id, p);
1900 		else
1901 			/* Last resort... */
1902 			sprintf(c->x86_model_id, "%02x/%02x",
1903 				c->x86, c->x86_model);
1904 	}
1905 
1906 #ifdef CONFIG_X86_64
1907 	detect_ht(c);
1908 #endif
1909 
1910 	x86_init_rdrand(c);
1911 	setup_pku(c);
1912 	setup_cet(c);
1913 
1914 	/*
1915 	 * Clear/Set all flags overridden by options, need do it
1916 	 * before following smp all cpus cap AND.
1917 	 */
1918 	apply_forced_caps(c);
1919 
1920 	/*
1921 	 * On SMP, boot_cpu_data holds the common feature set between
1922 	 * all CPUs; so make sure that we indicate which features are
1923 	 * common between the CPUs.  The first time this routine gets
1924 	 * executed, c == &boot_cpu_data.
1925 	 */
1926 	if (c != &boot_cpu_data) {
1927 		/* AND the already accumulated flags with these */
1928 		for (i = 0; i < NCAPINTS; i++)
1929 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1930 
1931 		/* OR, i.e. replicate the bug flags */
1932 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1933 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1934 	}
1935 
1936 	ppin_init(c);
1937 
1938 	/* Init Machine Check Exception if available. */
1939 	mcheck_cpu_init(c);
1940 
1941 	select_idle_routine(c);
1942 
1943 #ifdef CONFIG_NUMA
1944 	numa_add_cpu(smp_processor_id());
1945 #endif
1946 }
1947 
1948 /*
1949  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1950  * on 32-bit kernels:
1951  */
1952 #ifdef CONFIG_X86_32
1953 void enable_sep_cpu(void)
1954 {
1955 	struct tss_struct *tss;
1956 	int cpu;
1957 
1958 	if (!boot_cpu_has(X86_FEATURE_SEP))
1959 		return;
1960 
1961 	cpu = get_cpu();
1962 	tss = &per_cpu(cpu_tss_rw, cpu);
1963 
1964 	/*
1965 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1966 	 * see the big comment in struct x86_hw_tss's definition.
1967 	 */
1968 
1969 	tss->x86_tss.ss1 = __KERNEL_CS;
1970 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1971 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1972 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1973 
1974 	put_cpu();
1975 }
1976 #endif
1977 
1978 static __init void identify_boot_cpu(void)
1979 {
1980 	identify_cpu(&boot_cpu_data);
1981 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1982 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1983 #ifdef CONFIG_X86_32
1984 	enable_sep_cpu();
1985 #endif
1986 	cpu_detect_tlb(&boot_cpu_data);
1987 	setup_cr_pinning();
1988 
1989 	tsx_init();
1990 	lkgs_init();
1991 }
1992 
1993 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1994 {
1995 	BUG_ON(c == &boot_cpu_data);
1996 	identify_cpu(c);
1997 #ifdef CONFIG_X86_32
1998 	enable_sep_cpu();
1999 #endif
2000 	validate_apic_and_package_id(c);
2001 	x86_spec_ctrl_setup_ap();
2002 	update_srbds_msr();
2003 	if (boot_cpu_has_bug(X86_BUG_GDS))
2004 		update_gds_msr();
2005 
2006 	tsx_ap_init();
2007 }
2008 
2009 void print_cpu_info(struct cpuinfo_x86 *c)
2010 {
2011 	const char *vendor = NULL;
2012 
2013 	if (c->x86_vendor < X86_VENDOR_NUM) {
2014 		vendor = this_cpu->c_vendor;
2015 	} else {
2016 		if (c->cpuid_level >= 0)
2017 			vendor = c->x86_vendor_id;
2018 	}
2019 
2020 	if (vendor && !strstr(c->x86_model_id, vendor))
2021 		pr_cont("%s ", vendor);
2022 
2023 	if (c->x86_model_id[0])
2024 		pr_cont("%s", c->x86_model_id);
2025 	else
2026 		pr_cont("%d86", c->x86);
2027 
2028 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2029 
2030 	if (c->x86_stepping || c->cpuid_level >= 0)
2031 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2032 	else
2033 		pr_cont(")\n");
2034 }
2035 
2036 /*
2037  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2038  * function prevents it from becoming an environment variable for init.
2039  */
2040 static __init int setup_clearcpuid(char *arg)
2041 {
2042 	return 1;
2043 }
2044 __setup("clearcpuid=", setup_clearcpuid);
2045 
2046 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2047 	.current_task	= &init_task,
2048 	.preempt_count	= INIT_PREEMPT_COUNT,
2049 	.top_of_stack	= TOP_OF_INIT_STACK,
2050 };
2051 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2052 
2053 #ifdef CONFIG_X86_64
2054 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2055 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2056 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2057 
2058 static void wrmsrl_cstar(unsigned long val)
2059 {
2060 	/*
2061 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2062 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2063 	 * guest. Avoid the pointless write on all Intel CPUs.
2064 	 */
2065 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2066 		wrmsrl(MSR_CSTAR, val);
2067 }
2068 
2069 /* May not be marked __init: used by software suspend */
2070 void syscall_init(void)
2071 {
2072 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2073 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2074 
2075 	if (ia32_enabled()) {
2076 		wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2077 		/*
2078 		 * This only works on Intel CPUs.
2079 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2080 		 * This does not cause SYSENTER to jump to the wrong location, because
2081 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2082 		 */
2083 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2084 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2085 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2086 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2087 	} else {
2088 		wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2089 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2090 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2091 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2092 	}
2093 
2094 	/*
2095 	 * Flags to clear on syscall; clear as much as possible
2096 	 * to minimize user space-kernel interference.
2097 	 */
2098 	wrmsrl(MSR_SYSCALL_MASK,
2099 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2100 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2101 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2102 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2103 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2104 }
2105 
2106 #else	/* CONFIG_X86_64 */
2107 
2108 #ifdef CONFIG_STACKPROTECTOR
2109 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2110 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2111 #endif
2112 
2113 #endif	/* CONFIG_X86_64 */
2114 
2115 /*
2116  * Clear all 6 debug registers:
2117  */
2118 static void clear_all_debug_regs(void)
2119 {
2120 	int i;
2121 
2122 	for (i = 0; i < 8; i++) {
2123 		/* Ignore db4, db5 */
2124 		if ((i == 4) || (i == 5))
2125 			continue;
2126 
2127 		set_debugreg(0, i);
2128 	}
2129 }
2130 
2131 #ifdef CONFIG_KGDB
2132 /*
2133  * Restore debug regs if using kgdbwait and you have a kernel debugger
2134  * connection established.
2135  */
2136 static void dbg_restore_debug_regs(void)
2137 {
2138 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2139 		arch_kgdb_ops.correct_hw_break();
2140 }
2141 #else /* ! CONFIG_KGDB */
2142 #define dbg_restore_debug_regs()
2143 #endif /* ! CONFIG_KGDB */
2144 
2145 static inline void setup_getcpu(int cpu)
2146 {
2147 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2148 	struct desc_struct d = { };
2149 
2150 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2151 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2152 
2153 	/* Store CPU and node number in limit. */
2154 	d.limit0 = cpudata;
2155 	d.limit1 = cpudata >> 16;
2156 
2157 	d.type = 5;		/* RO data, expand down, accessed */
2158 	d.dpl = 3;		/* Visible to user code */
2159 	d.s = 1;		/* Not a system segment */
2160 	d.p = 1;		/* Present */
2161 	d.d = 1;		/* 32-bit */
2162 
2163 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2164 }
2165 
2166 #ifdef CONFIG_X86_64
2167 static inline void tss_setup_ist(struct tss_struct *tss)
2168 {
2169 	/* Set up the per-CPU TSS IST stacks */
2170 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2171 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2172 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2173 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2174 	/* Only mapped when SEV-ES is active */
2175 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2176 }
2177 #else /* CONFIG_X86_64 */
2178 static inline void tss_setup_ist(struct tss_struct *tss) { }
2179 #endif /* !CONFIG_X86_64 */
2180 
2181 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2182 {
2183 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2184 
2185 #ifdef CONFIG_X86_IOPL_IOPERM
2186 	tss->io_bitmap.prev_max = 0;
2187 	tss->io_bitmap.prev_sequence = 0;
2188 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2189 	/*
2190 	 * Invalidate the extra array entry past the end of the all
2191 	 * permission bitmap as required by the hardware.
2192 	 */
2193 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2194 #endif
2195 }
2196 
2197 /*
2198  * Setup everything needed to handle exceptions from the IDT, including the IST
2199  * exceptions which use paranoid_entry().
2200  */
2201 void cpu_init_exception_handling(void)
2202 {
2203 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2204 	int cpu = raw_smp_processor_id();
2205 
2206 	/* paranoid_entry() gets the CPU number from the GDT */
2207 	setup_getcpu(cpu);
2208 
2209 	/* IST vectors need TSS to be set up. */
2210 	tss_setup_ist(tss);
2211 	tss_setup_io_bitmap(tss);
2212 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2213 
2214 	load_TR_desc();
2215 
2216 	/* GHCB needs to be setup to handle #VC. */
2217 	setup_ghcb();
2218 
2219 	/* Finally load the IDT */
2220 	load_current_idt();
2221 }
2222 
2223 /*
2224  * cpu_init() initializes state that is per-CPU. Some data is already
2225  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2226  * reload it nevertheless, this function acts as a 'CPU state barrier',
2227  * nothing should get across.
2228  */
2229 void cpu_init(void)
2230 {
2231 	struct task_struct *cur = current;
2232 	int cpu = raw_smp_processor_id();
2233 
2234 #ifdef CONFIG_NUMA
2235 	if (this_cpu_read(numa_node) == 0 &&
2236 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2237 		set_numa_node(early_cpu_to_node(cpu));
2238 #endif
2239 	pr_debug("Initializing CPU#%d\n", cpu);
2240 
2241 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2242 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2243 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2244 
2245 	if (IS_ENABLED(CONFIG_X86_64)) {
2246 		loadsegment(fs, 0);
2247 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2248 		syscall_init();
2249 
2250 		wrmsrl(MSR_FS_BASE, 0);
2251 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2252 		barrier();
2253 
2254 		x2apic_setup();
2255 	}
2256 
2257 	mmgrab(&init_mm);
2258 	cur->active_mm = &init_mm;
2259 	BUG_ON(cur->mm);
2260 	initialize_tlbstate_and_flush();
2261 	enter_lazy_tlb(&init_mm, cur);
2262 
2263 	/*
2264 	 * sp0 points to the entry trampoline stack regardless of what task
2265 	 * is running.
2266 	 */
2267 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2268 
2269 	load_mm_ldt(&init_mm);
2270 
2271 	clear_all_debug_regs();
2272 	dbg_restore_debug_regs();
2273 
2274 	doublefault_init_cpu_tss();
2275 
2276 	if (is_uv_system())
2277 		uv_cpu_init();
2278 
2279 	load_fixmap_gdt(cpu);
2280 }
2281 
2282 #ifdef CONFIG_MICROCODE_LATE_LOADING
2283 /**
2284  * store_cpu_caps() - Store a snapshot of CPU capabilities
2285  * @curr_info: Pointer where to store it
2286  *
2287  * Returns: None
2288  */
2289 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2290 {
2291 	/* Reload CPUID max function as it might've changed. */
2292 	curr_info->cpuid_level = cpuid_eax(0);
2293 
2294 	/* Copy all capability leafs and pick up the synthetic ones. */
2295 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2296 	       sizeof(curr_info->x86_capability));
2297 
2298 	/* Get the hardware CPUID leafs */
2299 	get_cpu_cap(curr_info);
2300 }
2301 
2302 /**
2303  * microcode_check() - Check if any CPU capabilities changed after an update.
2304  * @prev_info:	CPU capabilities stored before an update.
2305  *
2306  * The microcode loader calls this upon late microcode load to recheck features,
2307  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2308  *
2309  * Return: None
2310  */
2311 void microcode_check(struct cpuinfo_x86 *prev_info)
2312 {
2313 	struct cpuinfo_x86 curr_info;
2314 
2315 	perf_check_microcode();
2316 
2317 	amd_check_microcode();
2318 
2319 	store_cpu_caps(&curr_info);
2320 
2321 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2322 		    sizeof(prev_info->x86_capability)))
2323 		return;
2324 
2325 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2326 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2327 }
2328 #endif
2329 
2330 /*
2331  * Invoked from core CPU hotplug code after hotplug operations
2332  */
2333 void arch_smt_update(void)
2334 {
2335 	/* Handle the speculative execution misfeatures */
2336 	cpu_bugs_smt_update();
2337 	/* Check whether IPI broadcasting can be enabled */
2338 	apic_smt_update();
2339 }
2340 
2341 void __init arch_cpu_finalize_init(void)
2342 {
2343 	identify_boot_cpu();
2344 
2345 	/*
2346 	 * identify_boot_cpu() initialized SMT support information, let the
2347 	 * core code know.
2348 	 */
2349 	cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2350 
2351 	if (!IS_ENABLED(CONFIG_SMP)) {
2352 		pr_info("CPU: ");
2353 		print_cpu_info(&boot_cpu_data);
2354 	}
2355 
2356 	cpu_select_mitigations();
2357 
2358 	arch_smt_update();
2359 
2360 	if (IS_ENABLED(CONFIG_X86_32)) {
2361 		/*
2362 		 * Check whether this is a real i386 which is not longer
2363 		 * supported and fixup the utsname.
2364 		 */
2365 		if (boot_cpu_data.x86 < 4)
2366 			panic("Kernel requires i486+ for 'invlpg' and other features");
2367 
2368 		init_utsname()->machine[1] =
2369 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2370 	}
2371 
2372 	/*
2373 	 * Must be before alternatives because it might set or clear
2374 	 * feature bits.
2375 	 */
2376 	fpu__init_system();
2377 	fpu__init_cpu();
2378 
2379 	alternative_instructions();
2380 
2381 	if (IS_ENABLED(CONFIG_X86_64)) {
2382 		/*
2383 		 * Make sure the first 2MB area is not mapped by huge pages
2384 		 * There are typically fixed size MTRRs in there and overlapping
2385 		 * MTRRs into large pages causes slow downs.
2386 		 *
2387 		 * Right now we don't do that with gbpages because there seems
2388 		 * very little benefit for that case.
2389 		 */
2390 		if (!direct_gbpages)
2391 			set_memory_4k((unsigned long)__va(0), 1);
2392 	} else {
2393 		fpu__init_check_bugs();
2394 	}
2395 
2396 	/*
2397 	 * This needs to be called before any devices perform DMA
2398 	 * operations that might use the SWIOTLB bounce buffers. It will
2399 	 * mark the bounce buffers as decrypted so that their usage will
2400 	 * not cause "plain-text" data to be decrypted when accessed. It
2401 	 * must be called after late_time_init() so that Hyper-V x86/x64
2402 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2403 	 */
2404 	mem_encrypt_init();
2405 }
2406