xref: /linux/arch/x86/kernel/cpu/common.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14 
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40 
41 #ifdef CONFIG_X86_LOCAL_APIC
42 #include <asm/uv/uv.h>
43 #endif
44 
45 #include "cpu.h"
46 
47 /* all of these masks are initialized in setup_cpu_local_masks() */
48 cpumask_var_t cpu_initialized_mask;
49 cpumask_var_t cpu_callout_mask;
50 cpumask_var_t cpu_callin_mask;
51 
52 /* representing cpus for which sibling maps can be computed */
53 cpumask_var_t cpu_sibling_setup_mask;
54 
55 /* correctly size the local cpu masks */
56 void __init setup_cpu_local_masks(void)
57 {
58 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
59 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
60 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
61 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62 }
63 
64 static void __cpuinit default_init(struct cpuinfo_x86 *c)
65 {
66 #ifdef CONFIG_X86_64
67 	cpu_detect_cache_sizes(c);
68 #else
69 	/* Not much we can do here... */
70 	/* Check if at least it has cpuid */
71 	if (c->cpuid_level == -1) {
72 		/* No cpuid. It must be an ancient CPU */
73 		if (c->x86 == 4)
74 			strcpy(c->x86_model_id, "486");
75 		else if (c->x86 == 3)
76 			strcpy(c->x86_model_id, "386");
77 	}
78 #endif
79 }
80 
81 static const struct cpu_dev __cpuinitconst default_cpu = {
82 	.c_init		= default_init,
83 	.c_vendor	= "Unknown",
84 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
85 };
86 
87 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
88 
89 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
90 #ifdef CONFIG_X86_64
91 	/*
92 	 * We need valid kernel segments for data and code in long mode too
93 	 * IRET will check the segment types  kkeil 2000/10/28
94 	 * Also sysret mandates a special GDT layout
95 	 *
96 	 * TLS descriptors are currently at a different place compared to i386.
97 	 * Hopefully nobody expects them at a fixed place (Wine?)
98 	 */
99 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
100 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
101 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
102 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
103 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
104 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
105 #else
106 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
107 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
110 	/*
111 	 * Segments used for calling PnP BIOS have byte granularity.
112 	 * They code segments and data segments have fixed 64k limits,
113 	 * the transfer segment sizes are set at run time.
114 	 */
115 	/* 32-bit code */
116 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
117 	/* 16-bit code */
118 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
119 	/* 16-bit data */
120 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
121 	/* 16-bit data */
122 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
123 	/* 16-bit data */
124 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
125 	/*
126 	 * The APM segments have byte granularity and their bases
127 	 * are set at run time.  All have 64k limits.
128 	 */
129 	/* 32-bit code */
130 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 	/* 16-bit code */
132 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 	/* data */
134 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
135 
136 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
137 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
138 	GDT_STACK_CANARY_INIT
139 #endif
140 } };
141 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
142 
143 static int __init x86_xsave_setup(char *s)
144 {
145 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
146 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
147 	return 1;
148 }
149 __setup("noxsave", x86_xsave_setup);
150 
151 static int __init x86_xsaveopt_setup(char *s)
152 {
153 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
154 	return 1;
155 }
156 __setup("noxsaveopt", x86_xsaveopt_setup);
157 
158 #ifdef CONFIG_X86_32
159 static int cachesize_override __cpuinitdata = -1;
160 static int disable_x86_serial_nr __cpuinitdata = 1;
161 
162 static int __init cachesize_setup(char *str)
163 {
164 	get_option(&str, &cachesize_override);
165 	return 1;
166 }
167 __setup("cachesize=", cachesize_setup);
168 
169 static int __init x86_fxsr_setup(char *s)
170 {
171 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
172 	setup_clear_cpu_cap(X86_FEATURE_XMM);
173 	return 1;
174 }
175 __setup("nofxsr", x86_fxsr_setup);
176 
177 static int __init x86_sep_setup(char *s)
178 {
179 	setup_clear_cpu_cap(X86_FEATURE_SEP);
180 	return 1;
181 }
182 __setup("nosep", x86_sep_setup);
183 
184 /* Standard macro to see if a specific flag is changeable */
185 static inline int flag_is_changeable_p(u32 flag)
186 {
187 	u32 f1, f2;
188 
189 	/*
190 	 * Cyrix and IDT cpus allow disabling of CPUID
191 	 * so the code below may return different results
192 	 * when it is executed before and after enabling
193 	 * the CPUID. Add "volatile" to not allow gcc to
194 	 * optimize the subsequent calls to this function.
195 	 */
196 	asm volatile ("pushfl		\n\t"
197 		      "pushfl		\n\t"
198 		      "popl %0		\n\t"
199 		      "movl %0, %1	\n\t"
200 		      "xorl %2, %0	\n\t"
201 		      "pushl %0		\n\t"
202 		      "popfl		\n\t"
203 		      "pushfl		\n\t"
204 		      "popl %0		\n\t"
205 		      "popfl		\n\t"
206 
207 		      : "=&r" (f1), "=&r" (f2)
208 		      : "ir" (flag));
209 
210 	return ((f1^f2) & flag) != 0;
211 }
212 
213 /* Probe for the CPUID instruction */
214 static int __cpuinit have_cpuid_p(void)
215 {
216 	return flag_is_changeable_p(X86_EFLAGS_ID);
217 }
218 
219 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
220 {
221 	unsigned long lo, hi;
222 
223 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
224 		return;
225 
226 	/* Disable processor serial number: */
227 
228 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
229 	lo |= 0x200000;
230 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
231 
232 	printk(KERN_NOTICE "CPU serial number disabled.\n");
233 	clear_cpu_cap(c, X86_FEATURE_PN);
234 
235 	/* Disabling the serial number may affect the cpuid level */
236 	c->cpuid_level = cpuid_eax(0);
237 }
238 
239 static int __init x86_serial_nr_setup(char *s)
240 {
241 	disable_x86_serial_nr = 0;
242 	return 1;
243 }
244 __setup("serialnumber", x86_serial_nr_setup);
245 #else
246 static inline int flag_is_changeable_p(u32 flag)
247 {
248 	return 1;
249 }
250 /* Probe for the CPUID instruction */
251 static inline int have_cpuid_p(void)
252 {
253 	return 1;
254 }
255 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
256 {
257 }
258 #endif
259 
260 static int disable_smep __cpuinitdata;
261 static __init int setup_disable_smep(char *arg)
262 {
263 	disable_smep = 1;
264 	return 1;
265 }
266 __setup("nosmep", setup_disable_smep);
267 
268 static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
269 {
270 	if (cpu_has(c, X86_FEATURE_SMEP)) {
271 		if (unlikely(disable_smep)) {
272 			setup_clear_cpu_cap(X86_FEATURE_SMEP);
273 			clear_in_cr4(X86_CR4_SMEP);
274 		} else
275 			set_in_cr4(X86_CR4_SMEP);
276 	}
277 }
278 
279 /*
280  * Some CPU features depend on higher CPUID levels, which may not always
281  * be available due to CPUID level capping or broken virtualization
282  * software.  Add those features to this table to auto-disable them.
283  */
284 struct cpuid_dependent_feature {
285 	u32 feature;
286 	u32 level;
287 };
288 
289 static const struct cpuid_dependent_feature __cpuinitconst
290 cpuid_dependent_features[] = {
291 	{ X86_FEATURE_MWAIT,		0x00000005 },
292 	{ X86_FEATURE_DCA,		0x00000009 },
293 	{ X86_FEATURE_XSAVE,		0x0000000d },
294 	{ 0, 0 }
295 };
296 
297 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
298 {
299 	const struct cpuid_dependent_feature *df;
300 
301 	for (df = cpuid_dependent_features; df->feature; df++) {
302 
303 		if (!cpu_has(c, df->feature))
304 			continue;
305 		/*
306 		 * Note: cpuid_level is set to -1 if unavailable, but
307 		 * extended_extended_level is set to 0 if unavailable
308 		 * and the legitimate extended levels are all negative
309 		 * when signed; hence the weird messing around with
310 		 * signs here...
311 		 */
312 		if (!((s32)df->level < 0 ?
313 		     (u32)df->level > (u32)c->extended_cpuid_level :
314 		     (s32)df->level > (s32)c->cpuid_level))
315 			continue;
316 
317 		clear_cpu_cap(c, df->feature);
318 		if (!warn)
319 			continue;
320 
321 		printk(KERN_WARNING
322 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
323 				x86_cap_flags[df->feature], df->level);
324 	}
325 }
326 
327 /*
328  * Naming convention should be: <Name> [(<Codename>)]
329  * This table only is used unless init_<vendor>() below doesn't set it;
330  * in particular, if CPUID levels 0x80000002..4 are supported, this
331  * isn't used
332  */
333 
334 /* Look up CPU names by table lookup. */
335 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
336 {
337 	const struct cpu_model_info *info;
338 
339 	if (c->x86_model >= 16)
340 		return NULL;	/* Range check */
341 
342 	if (!this_cpu)
343 		return NULL;
344 
345 	info = this_cpu->c_models;
346 
347 	while (info && info->family) {
348 		if (info->family == c->x86)
349 			return info->model_names[c->x86_model];
350 		info++;
351 	}
352 	return NULL;		/* Not found */
353 }
354 
355 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
356 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
357 
358 void load_percpu_segment(int cpu)
359 {
360 #ifdef CONFIG_X86_32
361 	loadsegment(fs, __KERNEL_PERCPU);
362 #else
363 	loadsegment(gs, 0);
364 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
365 #endif
366 	load_stack_canary_segment();
367 }
368 
369 /*
370  * Current gdt points %fs at the "master" per-cpu area: after this,
371  * it's on the real one.
372  */
373 void switch_to_new_gdt(int cpu)
374 {
375 	struct desc_ptr gdt_descr;
376 
377 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
378 	gdt_descr.size = GDT_SIZE - 1;
379 	load_gdt(&gdt_descr);
380 	/* Reload the per-cpu base */
381 
382 	load_percpu_segment(cpu);
383 }
384 
385 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
386 
387 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
388 {
389 	unsigned int *v;
390 	char *p, *q;
391 
392 	if (c->extended_cpuid_level < 0x80000004)
393 		return;
394 
395 	v = (unsigned int *)c->x86_model_id;
396 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
397 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
398 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
399 	c->x86_model_id[48] = 0;
400 
401 	/*
402 	 * Intel chips right-justify this string for some dumb reason;
403 	 * undo that brain damage:
404 	 */
405 	p = q = &c->x86_model_id[0];
406 	while (*p == ' ')
407 		p++;
408 	if (p != q) {
409 		while (*p)
410 			*q++ = *p++;
411 		while (q <= &c->x86_model_id[48])
412 			*q++ = '\0';	/* Zero-pad the rest */
413 	}
414 }
415 
416 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
417 {
418 	unsigned int n, dummy, ebx, ecx, edx, l2size;
419 
420 	n = c->extended_cpuid_level;
421 
422 	if (n >= 0x80000005) {
423 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
424 		c->x86_cache_size = (ecx>>24) + (edx>>24);
425 #ifdef CONFIG_X86_64
426 		/* On K8 L1 TLB is inclusive, so don't count it */
427 		c->x86_tlbsize = 0;
428 #endif
429 	}
430 
431 	if (n < 0x80000006)	/* Some chips just has a large L1. */
432 		return;
433 
434 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
435 	l2size = ecx >> 16;
436 
437 #ifdef CONFIG_X86_64
438 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
439 #else
440 	/* do processor-specific cache resizing */
441 	if (this_cpu->c_size_cache)
442 		l2size = this_cpu->c_size_cache(c, l2size);
443 
444 	/* Allow user to override all this if necessary. */
445 	if (cachesize_override != -1)
446 		l2size = cachesize_override;
447 
448 	if (l2size == 0)
449 		return;		/* Again, no L2 cache is possible */
450 #endif
451 
452 	c->x86_cache_size = l2size;
453 }
454 
455 u16 __read_mostly tlb_lli_4k[NR_INFO];
456 u16 __read_mostly tlb_lli_2m[NR_INFO];
457 u16 __read_mostly tlb_lli_4m[NR_INFO];
458 u16 __read_mostly tlb_lld_4k[NR_INFO];
459 u16 __read_mostly tlb_lld_2m[NR_INFO];
460 u16 __read_mostly tlb_lld_4m[NR_INFO];
461 
462 /*
463  * tlb_flushall_shift shows the balance point in replacing cr3 write
464  * with multiple 'invlpg'. It will do this replacement when
465  *   flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
466  * If tlb_flushall_shift is -1, means the replacement will be disabled.
467  */
468 s8  __read_mostly tlb_flushall_shift = -1;
469 
470 void __cpuinit cpu_detect_tlb(struct cpuinfo_x86 *c)
471 {
472 	if (this_cpu->c_detect_tlb)
473 		this_cpu->c_detect_tlb(c);
474 
475 	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
476 		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n"	     \
477 		"tlb_flushall_shift is 0x%x\n",
478 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
479 		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
480 		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
481 		tlb_flushall_shift);
482 }
483 
484 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
485 {
486 #ifdef CONFIG_X86_HT
487 	u32 eax, ebx, ecx, edx;
488 	int index_msb, core_bits;
489 	static bool printed;
490 
491 	if (!cpu_has(c, X86_FEATURE_HT))
492 		return;
493 
494 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
495 		goto out;
496 
497 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
498 		return;
499 
500 	cpuid(1, &eax, &ebx, &ecx, &edx);
501 
502 	smp_num_siblings = (ebx & 0xff0000) >> 16;
503 
504 	if (smp_num_siblings == 1) {
505 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
506 		goto out;
507 	}
508 
509 	if (smp_num_siblings <= 1)
510 		goto out;
511 
512 	index_msb = get_count_order(smp_num_siblings);
513 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
514 
515 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
516 
517 	index_msb = get_count_order(smp_num_siblings);
518 
519 	core_bits = get_count_order(c->x86_max_cores);
520 
521 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
522 				       ((1 << core_bits) - 1);
523 
524 out:
525 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
526 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
527 		       c->phys_proc_id);
528 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
529 		       c->cpu_core_id);
530 		printed = 1;
531 	}
532 #endif
533 }
534 
535 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
536 {
537 	char *v = c->x86_vendor_id;
538 	int i;
539 
540 	for (i = 0; i < X86_VENDOR_NUM; i++) {
541 		if (!cpu_devs[i])
542 			break;
543 
544 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
545 		    (cpu_devs[i]->c_ident[1] &&
546 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
547 
548 			this_cpu = cpu_devs[i];
549 			c->x86_vendor = this_cpu->c_x86_vendor;
550 			return;
551 		}
552 	}
553 
554 	printk_once(KERN_ERR
555 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
556 			"CPU: Your system may be unstable.\n", v);
557 
558 	c->x86_vendor = X86_VENDOR_UNKNOWN;
559 	this_cpu = &default_cpu;
560 }
561 
562 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
563 {
564 	/* Get vendor name */
565 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
566 	      (unsigned int *)&c->x86_vendor_id[0],
567 	      (unsigned int *)&c->x86_vendor_id[8],
568 	      (unsigned int *)&c->x86_vendor_id[4]);
569 
570 	c->x86 = 4;
571 	/* Intel-defined flags: level 0x00000001 */
572 	if (c->cpuid_level >= 0x00000001) {
573 		u32 junk, tfms, cap0, misc;
574 
575 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
576 		c->x86 = (tfms >> 8) & 0xf;
577 		c->x86_model = (tfms >> 4) & 0xf;
578 		c->x86_mask = tfms & 0xf;
579 
580 		if (c->x86 == 0xf)
581 			c->x86 += (tfms >> 20) & 0xff;
582 		if (c->x86 >= 0x6)
583 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
584 
585 		if (cap0 & (1<<19)) {
586 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
587 			c->x86_cache_alignment = c->x86_clflush_size;
588 		}
589 	}
590 }
591 
592 void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
593 {
594 	u32 tfms, xlvl;
595 	u32 ebx;
596 
597 	/* Intel-defined flags: level 0x00000001 */
598 	if (c->cpuid_level >= 0x00000001) {
599 		u32 capability, excap;
600 
601 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
602 		c->x86_capability[0] = capability;
603 		c->x86_capability[4] = excap;
604 	}
605 
606 	/* Additional Intel-defined flags: level 0x00000007 */
607 	if (c->cpuid_level >= 0x00000007) {
608 		u32 eax, ebx, ecx, edx;
609 
610 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
611 
612 		c->x86_capability[9] = ebx;
613 	}
614 
615 	/* AMD-defined flags: level 0x80000001 */
616 	xlvl = cpuid_eax(0x80000000);
617 	c->extended_cpuid_level = xlvl;
618 
619 	if ((xlvl & 0xffff0000) == 0x80000000) {
620 		if (xlvl >= 0x80000001) {
621 			c->x86_capability[1] = cpuid_edx(0x80000001);
622 			c->x86_capability[6] = cpuid_ecx(0x80000001);
623 		}
624 	}
625 
626 	if (c->extended_cpuid_level >= 0x80000008) {
627 		u32 eax = cpuid_eax(0x80000008);
628 
629 		c->x86_virt_bits = (eax >> 8) & 0xff;
630 		c->x86_phys_bits = eax & 0xff;
631 	}
632 #ifdef CONFIG_X86_32
633 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
634 		c->x86_phys_bits = 36;
635 #endif
636 
637 	if (c->extended_cpuid_level >= 0x80000007)
638 		c->x86_power = cpuid_edx(0x80000007);
639 
640 	init_scattered_cpuid_features(c);
641 }
642 
643 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
644 {
645 #ifdef CONFIG_X86_32
646 	int i;
647 
648 	/*
649 	 * First of all, decide if this is a 486 or higher
650 	 * It's a 486 if we can modify the AC flag
651 	 */
652 	if (flag_is_changeable_p(X86_EFLAGS_AC))
653 		c->x86 = 4;
654 	else
655 		c->x86 = 3;
656 
657 	for (i = 0; i < X86_VENDOR_NUM; i++)
658 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
659 			c->x86_vendor_id[0] = 0;
660 			cpu_devs[i]->c_identify(c);
661 			if (c->x86_vendor_id[0]) {
662 				get_cpu_vendor(c);
663 				break;
664 			}
665 		}
666 #endif
667 }
668 
669 /*
670  * Do minimum CPU detection early.
671  * Fields really needed: vendor, cpuid_level, family, model, mask,
672  * cache alignment.
673  * The others are not touched to avoid unwanted side effects.
674  *
675  * WARNING: this function is only called on the BP.  Don't add code here
676  * that is supposed to run on all CPUs.
677  */
678 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
679 {
680 #ifdef CONFIG_X86_64
681 	c->x86_clflush_size = 64;
682 	c->x86_phys_bits = 36;
683 	c->x86_virt_bits = 48;
684 #else
685 	c->x86_clflush_size = 32;
686 	c->x86_phys_bits = 32;
687 	c->x86_virt_bits = 32;
688 #endif
689 	c->x86_cache_alignment = c->x86_clflush_size;
690 
691 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
692 	c->extended_cpuid_level = 0;
693 
694 	if (!have_cpuid_p())
695 		identify_cpu_without_cpuid(c);
696 
697 	/* cyrix could have cpuid enabled via c_identify()*/
698 	if (!have_cpuid_p())
699 		return;
700 
701 	cpu_detect(c);
702 
703 	get_cpu_vendor(c);
704 
705 	get_cpu_cap(c);
706 
707 	if (this_cpu->c_early_init)
708 		this_cpu->c_early_init(c);
709 
710 	c->cpu_index = 0;
711 	filter_cpuid_features(c, false);
712 
713 	setup_smep(c);
714 
715 	if (this_cpu->c_bsp_init)
716 		this_cpu->c_bsp_init(c);
717 }
718 
719 void __init early_cpu_init(void)
720 {
721 	const struct cpu_dev *const *cdev;
722 	int count = 0;
723 
724 #ifdef CONFIG_PROCESSOR_SELECT
725 	printk(KERN_INFO "KERNEL supported cpus:\n");
726 #endif
727 
728 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
729 		const struct cpu_dev *cpudev = *cdev;
730 
731 		if (count >= X86_VENDOR_NUM)
732 			break;
733 		cpu_devs[count] = cpudev;
734 		count++;
735 
736 #ifdef CONFIG_PROCESSOR_SELECT
737 		{
738 			unsigned int j;
739 
740 			for (j = 0; j < 2; j++) {
741 				if (!cpudev->c_ident[j])
742 					continue;
743 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
744 					cpudev->c_ident[j]);
745 			}
746 		}
747 #endif
748 	}
749 	early_identify_cpu(&boot_cpu_data);
750 }
751 
752 /*
753  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
754  * unfortunately, that's not true in practice because of early VIA
755  * chips and (more importantly) broken virtualizers that are not easy
756  * to detect. In the latter case it doesn't even *fail* reliably, so
757  * probing for it doesn't even work. Disable it completely on 32-bit
758  * unless we can find a reliable way to detect all the broken cases.
759  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
760  */
761 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
762 {
763 #ifdef CONFIG_X86_32
764 	clear_cpu_cap(c, X86_FEATURE_NOPL);
765 #else
766 	set_cpu_cap(c, X86_FEATURE_NOPL);
767 #endif
768 }
769 
770 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
771 {
772 	c->extended_cpuid_level = 0;
773 
774 	if (!have_cpuid_p())
775 		identify_cpu_without_cpuid(c);
776 
777 	/* cyrix could have cpuid enabled via c_identify()*/
778 	if (!have_cpuid_p())
779 		return;
780 
781 	cpu_detect(c);
782 
783 	get_cpu_vendor(c);
784 
785 	get_cpu_cap(c);
786 
787 	if (c->cpuid_level >= 0x00000001) {
788 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
789 #ifdef CONFIG_X86_32
790 # ifdef CONFIG_X86_HT
791 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
792 # else
793 		c->apicid = c->initial_apicid;
794 # endif
795 #endif
796 		c->phys_proc_id = c->initial_apicid;
797 	}
798 
799 	setup_smep(c);
800 
801 	get_model_name(c); /* Default name */
802 
803 	detect_nopl(c);
804 }
805 
806 /*
807  * This does the hard work of actually picking apart the CPU stuff...
808  */
809 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
810 {
811 	int i;
812 
813 	c->loops_per_jiffy = loops_per_jiffy;
814 	c->x86_cache_size = -1;
815 	c->x86_vendor = X86_VENDOR_UNKNOWN;
816 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
817 	c->x86_vendor_id[0] = '\0'; /* Unset */
818 	c->x86_model_id[0] = '\0';  /* Unset */
819 	c->x86_max_cores = 1;
820 	c->x86_coreid_bits = 0;
821 #ifdef CONFIG_X86_64
822 	c->x86_clflush_size = 64;
823 	c->x86_phys_bits = 36;
824 	c->x86_virt_bits = 48;
825 #else
826 	c->cpuid_level = -1;	/* CPUID not detected */
827 	c->x86_clflush_size = 32;
828 	c->x86_phys_bits = 32;
829 	c->x86_virt_bits = 32;
830 #endif
831 	c->x86_cache_alignment = c->x86_clflush_size;
832 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
833 
834 	generic_identify(c);
835 
836 	if (this_cpu->c_identify)
837 		this_cpu->c_identify(c);
838 
839 	/* Clear/Set all flags overriden by options, after probe */
840 	for (i = 0; i < NCAPINTS; i++) {
841 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
842 		c->x86_capability[i] |= cpu_caps_set[i];
843 	}
844 
845 #ifdef CONFIG_X86_64
846 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
847 #endif
848 
849 	/*
850 	 * Vendor-specific initialization.  In this section we
851 	 * canonicalize the feature flags, meaning if there are
852 	 * features a certain CPU supports which CPUID doesn't
853 	 * tell us, CPUID claiming incorrect flags, or other bugs,
854 	 * we handle them here.
855 	 *
856 	 * At the end of this section, c->x86_capability better
857 	 * indicate the features this CPU genuinely supports!
858 	 */
859 	if (this_cpu->c_init)
860 		this_cpu->c_init(c);
861 
862 	/* Disable the PN if appropriate */
863 	squash_the_stupid_serial_number(c);
864 
865 	/*
866 	 * The vendor-specific functions might have changed features.
867 	 * Now we do "generic changes."
868 	 */
869 
870 	/* Filter out anything that depends on CPUID levels we don't have */
871 	filter_cpuid_features(c, true);
872 
873 	/* If the model name is still unset, do table lookup. */
874 	if (!c->x86_model_id[0]) {
875 		const char *p;
876 		p = table_lookup_model(c);
877 		if (p)
878 			strcpy(c->x86_model_id, p);
879 		else
880 			/* Last resort... */
881 			sprintf(c->x86_model_id, "%02x/%02x",
882 				c->x86, c->x86_model);
883 	}
884 
885 #ifdef CONFIG_X86_64
886 	detect_ht(c);
887 #endif
888 
889 	init_hypervisor(c);
890 	x86_init_rdrand(c);
891 
892 	/*
893 	 * Clear/Set all flags overriden by options, need do it
894 	 * before following smp all cpus cap AND.
895 	 */
896 	for (i = 0; i < NCAPINTS; i++) {
897 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
898 		c->x86_capability[i] |= cpu_caps_set[i];
899 	}
900 
901 	/*
902 	 * On SMP, boot_cpu_data holds the common feature set between
903 	 * all CPUs; so make sure that we indicate which features are
904 	 * common between the CPUs.  The first time this routine gets
905 	 * executed, c == &boot_cpu_data.
906 	 */
907 	if (c != &boot_cpu_data) {
908 		/* AND the already accumulated flags with these */
909 		for (i = 0; i < NCAPINTS; i++)
910 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
911 	}
912 
913 	/* Init Machine Check Exception if available. */
914 	mcheck_cpu_init(c);
915 
916 	select_idle_routine(c);
917 
918 #ifdef CONFIG_NUMA
919 	numa_add_cpu(smp_processor_id());
920 #endif
921 }
922 
923 #ifdef CONFIG_X86_64
924 static void vgetcpu_set_mode(void)
925 {
926 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
927 		vgetcpu_mode = VGETCPU_RDTSCP;
928 	else
929 		vgetcpu_mode = VGETCPU_LSL;
930 }
931 #endif
932 
933 void __init identify_boot_cpu(void)
934 {
935 	identify_cpu(&boot_cpu_data);
936 	init_amd_e400_c1e_mask();
937 #ifdef CONFIG_X86_32
938 	sysenter_setup();
939 	enable_sep_cpu();
940 #else
941 	vgetcpu_set_mode();
942 #endif
943 	if (boot_cpu_data.cpuid_level >= 2)
944 		cpu_detect_tlb(&boot_cpu_data);
945 }
946 
947 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
948 {
949 	BUG_ON(c == &boot_cpu_data);
950 	identify_cpu(c);
951 #ifdef CONFIG_X86_32
952 	enable_sep_cpu();
953 #endif
954 	mtrr_ap_init();
955 }
956 
957 struct msr_range {
958 	unsigned	min;
959 	unsigned	max;
960 };
961 
962 static const struct msr_range msr_range_array[] __cpuinitconst = {
963 	{ 0x00000000, 0x00000418},
964 	{ 0xc0000000, 0xc000040b},
965 	{ 0xc0010000, 0xc0010142},
966 	{ 0xc0011000, 0xc001103b},
967 };
968 
969 static void __cpuinit __print_cpu_msr(void)
970 {
971 	unsigned index_min, index_max;
972 	unsigned index;
973 	u64 val;
974 	int i;
975 
976 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
977 		index_min = msr_range_array[i].min;
978 		index_max = msr_range_array[i].max;
979 
980 		for (index = index_min; index < index_max; index++) {
981 			if (rdmsrl_safe(index, &val))
982 				continue;
983 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
984 		}
985 	}
986 }
987 
988 static int show_msr __cpuinitdata;
989 
990 static __init int setup_show_msr(char *arg)
991 {
992 	int num;
993 
994 	get_option(&arg, &num);
995 
996 	if (num > 0)
997 		show_msr = num;
998 	return 1;
999 }
1000 __setup("show_msr=", setup_show_msr);
1001 
1002 static __init int setup_noclflush(char *arg)
1003 {
1004 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
1005 	return 1;
1006 }
1007 __setup("noclflush", setup_noclflush);
1008 
1009 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1010 {
1011 	const char *vendor = NULL;
1012 
1013 	if (c->x86_vendor < X86_VENDOR_NUM) {
1014 		vendor = this_cpu->c_vendor;
1015 	} else {
1016 		if (c->cpuid_level >= 0)
1017 			vendor = c->x86_vendor_id;
1018 	}
1019 
1020 	if (vendor && !strstr(c->x86_model_id, vendor))
1021 		printk(KERN_CONT "%s ", vendor);
1022 
1023 	if (c->x86_model_id[0])
1024 		printk(KERN_CONT "%s", c->x86_model_id);
1025 	else
1026 		printk(KERN_CONT "%d86", c->x86);
1027 
1028 	if (c->x86_mask || c->cpuid_level >= 0)
1029 		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1030 	else
1031 		printk(KERN_CONT "\n");
1032 
1033 	print_cpu_msr(c);
1034 }
1035 
1036 void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1037 {
1038 	if (c->cpu_index < show_msr)
1039 		__print_cpu_msr();
1040 }
1041 
1042 static __init int setup_disablecpuid(char *arg)
1043 {
1044 	int bit;
1045 
1046 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1047 		setup_clear_cpu_cap(bit);
1048 	else
1049 		return 0;
1050 
1051 	return 1;
1052 }
1053 __setup("clearcpuid=", setup_disablecpuid);
1054 
1055 #ifdef CONFIG_X86_64
1056 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1057 struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1058 				    (unsigned long) nmi_idt_table };
1059 
1060 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1061 		     irq_stack_union) __aligned(PAGE_SIZE);
1062 
1063 /*
1064  * The following four percpu variables are hot.  Align current_task to
1065  * cacheline size such that all four fall in the same cacheline.
1066  */
1067 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1068 	&init_task;
1069 EXPORT_PER_CPU_SYMBOL(current_task);
1070 
1071 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1072 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1073 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1074 
1075 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1076 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1077 
1078 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1079 
1080 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1081 
1082 /*
1083  * Special IST stacks which the CPU switches to when it calls
1084  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1085  * limit), all of them are 4K, except the debug stack which
1086  * is 8K.
1087  */
1088 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1089 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1090 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1091 };
1092 
1093 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1094 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1095 
1096 /* May not be marked __init: used by software suspend */
1097 void syscall_init(void)
1098 {
1099 	/*
1100 	 * LSTAR and STAR live in a bit strange symbiosis.
1101 	 * They both write to the same internal register. STAR allows to
1102 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1103 	 */
1104 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1105 	wrmsrl(MSR_LSTAR, system_call);
1106 	wrmsrl(MSR_CSTAR, ignore_sysret);
1107 
1108 #ifdef CONFIG_IA32_EMULATION
1109 	syscall32_cpu_init();
1110 #endif
1111 
1112 	/* Flags to clear on syscall */
1113 	wrmsrl(MSR_SYSCALL_MASK,
1114 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1115 }
1116 
1117 unsigned long kernel_eflags;
1118 
1119 /*
1120  * Copies of the original ist values from the tss are only accessed during
1121  * debugging, no special alignment required.
1122  */
1123 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1124 
1125 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1126 DEFINE_PER_CPU(int, debug_stack_usage);
1127 
1128 int is_debug_stack(unsigned long addr)
1129 {
1130 	return __get_cpu_var(debug_stack_usage) ||
1131 		(addr <= __get_cpu_var(debug_stack_addr) &&
1132 		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1133 }
1134 
1135 static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
1136 
1137 void debug_stack_set_zero(void)
1138 {
1139 	this_cpu_inc(debug_stack_use_ctr);
1140 	load_idt((const struct desc_ptr *)&nmi_idt_descr);
1141 }
1142 
1143 void debug_stack_reset(void)
1144 {
1145 	if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
1146 		return;
1147 	if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
1148 		load_idt((const struct desc_ptr *)&idt_descr);
1149 }
1150 
1151 #else	/* CONFIG_X86_64 */
1152 
1153 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1154 EXPORT_PER_CPU_SYMBOL(current_task);
1155 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1156 
1157 #ifdef CONFIG_CC_STACKPROTECTOR
1158 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1159 #endif
1160 
1161 /* Make sure %fs and %gs are initialized properly in idle threads */
1162 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1163 {
1164 	memset(regs, 0, sizeof(struct pt_regs));
1165 	regs->fs = __KERNEL_PERCPU;
1166 	regs->gs = __KERNEL_STACK_CANARY;
1167 
1168 	return regs;
1169 }
1170 #endif	/* CONFIG_X86_64 */
1171 
1172 /*
1173  * Clear all 6 debug registers:
1174  */
1175 static void clear_all_debug_regs(void)
1176 {
1177 	int i;
1178 
1179 	for (i = 0; i < 8; i++) {
1180 		/* Ignore db4, db5 */
1181 		if ((i == 4) || (i == 5))
1182 			continue;
1183 
1184 		set_debugreg(0, i);
1185 	}
1186 }
1187 
1188 #ifdef CONFIG_KGDB
1189 /*
1190  * Restore debug regs if using kgdbwait and you have a kernel debugger
1191  * connection established.
1192  */
1193 static void dbg_restore_debug_regs(void)
1194 {
1195 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1196 		arch_kgdb_ops.correct_hw_break();
1197 }
1198 #else /* ! CONFIG_KGDB */
1199 #define dbg_restore_debug_regs()
1200 #endif /* ! CONFIG_KGDB */
1201 
1202 /*
1203  * cpu_init() initializes state that is per-CPU. Some data is already
1204  * initialized (naturally) in the bootstrap process, such as the GDT
1205  * and IDT. We reload them nevertheless, this function acts as a
1206  * 'CPU state barrier', nothing should get across.
1207  * A lot of state is already set up in PDA init for 64 bit
1208  */
1209 #ifdef CONFIG_X86_64
1210 
1211 void __cpuinit cpu_init(void)
1212 {
1213 	struct orig_ist *oist;
1214 	struct task_struct *me;
1215 	struct tss_struct *t;
1216 	unsigned long v;
1217 	int cpu;
1218 	int i;
1219 
1220 	cpu = stack_smp_processor_id();
1221 	t = &per_cpu(init_tss, cpu);
1222 	oist = &per_cpu(orig_ist, cpu);
1223 
1224 #ifdef CONFIG_NUMA
1225 	if (cpu != 0 && this_cpu_read(numa_node) == 0 &&
1226 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1227 		set_numa_node(early_cpu_to_node(cpu));
1228 #endif
1229 
1230 	me = current;
1231 
1232 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1233 		panic("CPU#%d already initialized!\n", cpu);
1234 
1235 	pr_debug("Initializing CPU#%d\n", cpu);
1236 
1237 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1238 
1239 	/*
1240 	 * Initialize the per-CPU GDT with the boot GDT,
1241 	 * and set up the GDT descriptor:
1242 	 */
1243 
1244 	switch_to_new_gdt(cpu);
1245 	loadsegment(fs, 0);
1246 
1247 	load_idt((const struct desc_ptr *)&idt_descr);
1248 
1249 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1250 	syscall_init();
1251 
1252 	wrmsrl(MSR_FS_BASE, 0);
1253 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1254 	barrier();
1255 
1256 	x86_configure_nx();
1257 	if (cpu != 0)
1258 		enable_x2apic();
1259 
1260 	/*
1261 	 * set up and load the per-CPU TSS
1262 	 */
1263 	if (!oist->ist[0]) {
1264 		char *estacks = per_cpu(exception_stacks, cpu);
1265 
1266 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1267 			estacks += exception_stack_sizes[v];
1268 			oist->ist[v] = t->x86_tss.ist[v] =
1269 					(unsigned long)estacks;
1270 			if (v == DEBUG_STACK-1)
1271 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1272 		}
1273 	}
1274 
1275 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1276 
1277 	/*
1278 	 * <= is required because the CPU will access up to
1279 	 * 8 bits beyond the end of the IO permission bitmap.
1280 	 */
1281 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1282 		t->io_bitmap[i] = ~0UL;
1283 
1284 	atomic_inc(&init_mm.mm_count);
1285 	me->active_mm = &init_mm;
1286 	BUG_ON(me->mm);
1287 	enter_lazy_tlb(&init_mm, me);
1288 
1289 	load_sp0(t, &current->thread);
1290 	set_tss_desc(cpu, t);
1291 	load_TR_desc();
1292 	load_LDT(&init_mm.context);
1293 
1294 	clear_all_debug_regs();
1295 	dbg_restore_debug_regs();
1296 
1297 	fpu_init();
1298 	xsave_init();
1299 
1300 	raw_local_save_flags(kernel_eflags);
1301 
1302 	if (is_uv_system())
1303 		uv_cpu_init();
1304 }
1305 
1306 #else
1307 
1308 void __cpuinit cpu_init(void)
1309 {
1310 	int cpu = smp_processor_id();
1311 	struct task_struct *curr = current;
1312 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1313 	struct thread_struct *thread = &curr->thread;
1314 
1315 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1316 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1317 		for (;;)
1318 			local_irq_enable();
1319 	}
1320 
1321 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1322 
1323 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1324 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1325 
1326 	load_idt(&idt_descr);
1327 	switch_to_new_gdt(cpu);
1328 
1329 	/*
1330 	 * Set up and load the per-CPU TSS and LDT
1331 	 */
1332 	atomic_inc(&init_mm.mm_count);
1333 	curr->active_mm = &init_mm;
1334 	BUG_ON(curr->mm);
1335 	enter_lazy_tlb(&init_mm, curr);
1336 
1337 	load_sp0(t, thread);
1338 	set_tss_desc(cpu, t);
1339 	load_TR_desc();
1340 	load_LDT(&init_mm.context);
1341 
1342 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1343 
1344 #ifdef CONFIG_DOUBLEFAULT
1345 	/* Set up doublefault TSS pointer in the GDT */
1346 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1347 #endif
1348 
1349 	clear_all_debug_regs();
1350 	dbg_restore_debug_regs();
1351 
1352 	fpu_init();
1353 	xsave_init();
1354 }
1355 #endif
1356