xref: /linux/arch/x86/kernel/cpu/common.c (revision ce63b2c89cc02d8acf7472272016ecd979fb08d5)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52 
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56 
57 #include "cpu.h"
58 
59 u32 elf_hwcap2 __read_mostly;
60 
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65 
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68 
69 /* correctly size the local cpu masks */
70 void __init setup_cpu_local_masks(void)
71 {
72 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
73 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
74 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
75 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
76 }
77 
78 static void default_init(struct cpuinfo_x86 *c)
79 {
80 #ifdef CONFIG_X86_64
81 	cpu_detect_cache_sizes(c);
82 #else
83 	/* Not much we can do here... */
84 	/* Check if at least it has cpuid */
85 	if (c->cpuid_level == -1) {
86 		/* No cpuid. It must be an ancient CPU */
87 		if (c->x86 == 4)
88 			strcpy(c->x86_model_id, "486");
89 		else if (c->x86 == 3)
90 			strcpy(c->x86_model_id, "386");
91 	}
92 #endif
93 }
94 
95 static const struct cpu_dev default_cpu = {
96 	.c_init		= default_init,
97 	.c_vendor	= "Unknown",
98 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
99 };
100 
101 static const struct cpu_dev *this_cpu = &default_cpu;
102 
103 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
104 #ifdef CONFIG_X86_64
105 	/*
106 	 * We need valid kernel segments for data and code in long mode too
107 	 * IRET will check the segment types  kkeil 2000/10/28
108 	 * Also sysret mandates a special GDT layout
109 	 *
110 	 * TLS descriptors are currently at a different place compared to i386.
111 	 * Hopefully nobody expects them at a fixed place (Wine?)
112 	 */
113 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
114 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
115 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
116 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
117 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
118 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
119 #else
120 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
121 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
122 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
123 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
124 	/*
125 	 * Segments used for calling PnP BIOS have byte granularity.
126 	 * They code segments and data segments have fixed 64k limits,
127 	 * the transfer segment sizes are set at run time.
128 	 */
129 	/* 32-bit code */
130 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 	/* 16-bit code */
132 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 	/* 16-bit data */
134 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
135 	/* 16-bit data */
136 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
137 	/* 16-bit data */
138 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
139 	/*
140 	 * The APM segments have byte granularity and their bases
141 	 * are set at run time.  All have 64k limits.
142 	 */
143 	/* 32-bit code */
144 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
145 	/* 16-bit code */
146 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
147 	/* data */
148 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
149 
150 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
151 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
152 	GDT_STACK_CANARY_INIT
153 #endif
154 } };
155 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
156 
157 static int __init x86_mpx_setup(char *s)
158 {
159 	/* require an exact match without trailing characters */
160 	if (strlen(s))
161 		return 0;
162 
163 	/* do not emit a message if the feature is not present */
164 	if (!boot_cpu_has(X86_FEATURE_MPX))
165 		return 1;
166 
167 	setup_clear_cpu_cap(X86_FEATURE_MPX);
168 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
169 	return 1;
170 }
171 __setup("nompx", x86_mpx_setup);
172 
173 #ifdef CONFIG_X86_64
174 static int __init x86_nopcid_setup(char *s)
175 {
176 	/* nopcid doesn't accept parameters */
177 	if (s)
178 		return -EINVAL;
179 
180 	/* do not emit a message if the feature is not present */
181 	if (!boot_cpu_has(X86_FEATURE_PCID))
182 		return 0;
183 
184 	setup_clear_cpu_cap(X86_FEATURE_PCID);
185 	pr_info("nopcid: PCID feature disabled\n");
186 	return 0;
187 }
188 early_param("nopcid", x86_nopcid_setup);
189 #endif
190 
191 static int __init x86_noinvpcid_setup(char *s)
192 {
193 	/* noinvpcid doesn't accept parameters */
194 	if (s)
195 		return -EINVAL;
196 
197 	/* do not emit a message if the feature is not present */
198 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
199 		return 0;
200 
201 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
202 	pr_info("noinvpcid: INVPCID feature disabled\n");
203 	return 0;
204 }
205 early_param("noinvpcid", x86_noinvpcid_setup);
206 
207 #ifdef CONFIG_X86_32
208 static int cachesize_override = -1;
209 static int disable_x86_serial_nr = 1;
210 
211 static int __init cachesize_setup(char *str)
212 {
213 	get_option(&str, &cachesize_override);
214 	return 1;
215 }
216 __setup("cachesize=", cachesize_setup);
217 
218 static int __init x86_sep_setup(char *s)
219 {
220 	setup_clear_cpu_cap(X86_FEATURE_SEP);
221 	return 1;
222 }
223 __setup("nosep", x86_sep_setup);
224 
225 /* Standard macro to see if a specific flag is changeable */
226 static inline int flag_is_changeable_p(u32 flag)
227 {
228 	u32 f1, f2;
229 
230 	/*
231 	 * Cyrix and IDT cpus allow disabling of CPUID
232 	 * so the code below may return different results
233 	 * when it is executed before and after enabling
234 	 * the CPUID. Add "volatile" to not allow gcc to
235 	 * optimize the subsequent calls to this function.
236 	 */
237 	asm volatile ("pushfl		\n\t"
238 		      "pushfl		\n\t"
239 		      "popl %0		\n\t"
240 		      "movl %0, %1	\n\t"
241 		      "xorl %2, %0	\n\t"
242 		      "pushl %0		\n\t"
243 		      "popfl		\n\t"
244 		      "pushfl		\n\t"
245 		      "popl %0		\n\t"
246 		      "popfl		\n\t"
247 
248 		      : "=&r" (f1), "=&r" (f2)
249 		      : "ir" (flag));
250 
251 	return ((f1^f2) & flag) != 0;
252 }
253 
254 /* Probe for the CPUID instruction */
255 int have_cpuid_p(void)
256 {
257 	return flag_is_changeable_p(X86_EFLAGS_ID);
258 }
259 
260 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
261 {
262 	unsigned long lo, hi;
263 
264 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
265 		return;
266 
267 	/* Disable processor serial number: */
268 
269 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270 	lo |= 0x200000;
271 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272 
273 	pr_notice("CPU serial number disabled.\n");
274 	clear_cpu_cap(c, X86_FEATURE_PN);
275 
276 	/* Disabling the serial number may affect the cpuid level */
277 	c->cpuid_level = cpuid_eax(0);
278 }
279 
280 static int __init x86_serial_nr_setup(char *s)
281 {
282 	disable_x86_serial_nr = 0;
283 	return 1;
284 }
285 __setup("serialnumber", x86_serial_nr_setup);
286 #else
287 static inline int flag_is_changeable_p(u32 flag)
288 {
289 	return 1;
290 }
291 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
292 {
293 }
294 #endif
295 
296 static __init int setup_disable_smep(char *arg)
297 {
298 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
299 	/* Check for things that depend on SMEP being enabled: */
300 	check_mpx_erratum(&boot_cpu_data);
301 	return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304 
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 	if (cpu_has(c, X86_FEATURE_SMEP))
308 		cr4_set_bits(X86_CR4_SMEP);
309 }
310 
311 static __init int setup_disable_smap(char *arg)
312 {
313 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 	return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317 
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 	unsigned long eflags = native_save_fl();
321 
322 	/* This should have been cleared long ago */
323 	BUG_ON(eflags & X86_EFLAGS_AC);
324 
325 	if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 		cr4_set_bits(X86_CR4_SMAP);
328 #else
329 		cr4_clear_bits(X86_CR4_SMAP);
330 #endif
331 	}
332 }
333 
334 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
335 {
336 	/* Check the boot processor, plus build option for UMIP. */
337 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
338 		goto out;
339 
340 	/* Check the current processor's cpuid bits. */
341 	if (!cpu_has(c, X86_FEATURE_UMIP))
342 		goto out;
343 
344 	cr4_set_bits(X86_CR4_UMIP);
345 
346 	pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
347 
348 	return;
349 
350 out:
351 	/*
352 	 * Make sure UMIP is disabled in case it was enabled in a
353 	 * previous boot (e.g., via kexec).
354 	 */
355 	cr4_clear_bits(X86_CR4_UMIP);
356 }
357 
358 /*
359  * Protection Keys are not available in 32-bit mode.
360  */
361 static bool pku_disabled;
362 
363 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
364 {
365 	/* check the boot processor, plus compile options for PKU: */
366 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
367 		return;
368 	/* checks the actual processor's cpuid bits: */
369 	if (!cpu_has(c, X86_FEATURE_PKU))
370 		return;
371 	if (pku_disabled)
372 		return;
373 
374 	cr4_set_bits(X86_CR4_PKE);
375 	/*
376 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
377 	 * cpuid bit to be set.  We need to ensure that we
378 	 * update that bit in this CPU's "cpu_info".
379 	 */
380 	get_cpu_cap(c);
381 }
382 
383 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
384 static __init int setup_disable_pku(char *arg)
385 {
386 	/*
387 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
388 	 * runtime checks are against OSPKE so clearing the
389 	 * bit does nothing.
390 	 *
391 	 * This way, we will see "pku" in cpuinfo, but not
392 	 * "ospke", which is exactly what we want.  It shows
393 	 * that the CPU has PKU, but the OS has not enabled it.
394 	 * This happens to be exactly how a system would look
395 	 * if we disabled the config option.
396 	 */
397 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
398 	pku_disabled = true;
399 	return 1;
400 }
401 __setup("nopku", setup_disable_pku);
402 #endif /* CONFIG_X86_64 */
403 
404 /*
405  * Some CPU features depend on higher CPUID levels, which may not always
406  * be available due to CPUID level capping or broken virtualization
407  * software.  Add those features to this table to auto-disable them.
408  */
409 struct cpuid_dependent_feature {
410 	u32 feature;
411 	u32 level;
412 };
413 
414 static const struct cpuid_dependent_feature
415 cpuid_dependent_features[] = {
416 	{ X86_FEATURE_MWAIT,		0x00000005 },
417 	{ X86_FEATURE_DCA,		0x00000009 },
418 	{ X86_FEATURE_XSAVE,		0x0000000d },
419 	{ 0, 0 }
420 };
421 
422 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
423 {
424 	const struct cpuid_dependent_feature *df;
425 
426 	for (df = cpuid_dependent_features; df->feature; df++) {
427 
428 		if (!cpu_has(c, df->feature))
429 			continue;
430 		/*
431 		 * Note: cpuid_level is set to -1 if unavailable, but
432 		 * extended_extended_level is set to 0 if unavailable
433 		 * and the legitimate extended levels are all negative
434 		 * when signed; hence the weird messing around with
435 		 * signs here...
436 		 */
437 		if (!((s32)df->level < 0 ?
438 		     (u32)df->level > (u32)c->extended_cpuid_level :
439 		     (s32)df->level > (s32)c->cpuid_level))
440 			continue;
441 
442 		clear_cpu_cap(c, df->feature);
443 		if (!warn)
444 			continue;
445 
446 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
447 			x86_cap_flag(df->feature), df->level);
448 	}
449 }
450 
451 /*
452  * Naming convention should be: <Name> [(<Codename>)]
453  * This table only is used unless init_<vendor>() below doesn't set it;
454  * in particular, if CPUID levels 0x80000002..4 are supported, this
455  * isn't used
456  */
457 
458 /* Look up CPU names by table lookup. */
459 static const char *table_lookup_model(struct cpuinfo_x86 *c)
460 {
461 #ifdef CONFIG_X86_32
462 	const struct legacy_cpu_model_info *info;
463 
464 	if (c->x86_model >= 16)
465 		return NULL;	/* Range check */
466 
467 	if (!this_cpu)
468 		return NULL;
469 
470 	info = this_cpu->legacy_models;
471 
472 	while (info->family) {
473 		if (info->family == c->x86)
474 			return info->model_names[c->x86_model];
475 		info++;
476 	}
477 #endif
478 	return NULL;		/* Not found */
479 }
480 
481 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
482 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
483 
484 void load_percpu_segment(int cpu)
485 {
486 #ifdef CONFIG_X86_32
487 	loadsegment(fs, __KERNEL_PERCPU);
488 #else
489 	__loadsegment_simple(gs, 0);
490 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
491 #endif
492 	load_stack_canary_segment();
493 }
494 
495 #ifdef CONFIG_X86_32
496 /* The 32-bit entry code needs to find cpu_entry_area. */
497 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
498 #endif
499 
500 #ifdef CONFIG_X86_64
501 /*
502  * Special IST stacks which the CPU switches to when it calls
503  * an IST-marked descriptor entry. Up to 7 stacks (hardware
504  * limit), all of them are 4K, except the debug stack which
505  * is 8K.
506  */
507 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
508 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
509 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
510 };
511 #endif
512 
513 /* Load the original GDT from the per-cpu structure */
514 void load_direct_gdt(int cpu)
515 {
516 	struct desc_ptr gdt_descr;
517 
518 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
519 	gdt_descr.size = GDT_SIZE - 1;
520 	load_gdt(&gdt_descr);
521 }
522 EXPORT_SYMBOL_GPL(load_direct_gdt);
523 
524 /* Load a fixmap remapping of the per-cpu GDT */
525 void load_fixmap_gdt(int cpu)
526 {
527 	struct desc_ptr gdt_descr;
528 
529 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
530 	gdt_descr.size = GDT_SIZE - 1;
531 	load_gdt(&gdt_descr);
532 }
533 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
534 
535 /*
536  * Current gdt points %fs at the "master" per-cpu area: after this,
537  * it's on the real one.
538  */
539 void switch_to_new_gdt(int cpu)
540 {
541 	/* Load the original GDT */
542 	load_direct_gdt(cpu);
543 	/* Reload the per-cpu base */
544 	load_percpu_segment(cpu);
545 }
546 
547 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
548 
549 static void get_model_name(struct cpuinfo_x86 *c)
550 {
551 	unsigned int *v;
552 	char *p, *q, *s;
553 
554 	if (c->extended_cpuid_level < 0x80000004)
555 		return;
556 
557 	v = (unsigned int *)c->x86_model_id;
558 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
559 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
560 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
561 	c->x86_model_id[48] = 0;
562 
563 	/* Trim whitespace */
564 	p = q = s = &c->x86_model_id[0];
565 
566 	while (*p == ' ')
567 		p++;
568 
569 	while (*p) {
570 		/* Note the last non-whitespace index */
571 		if (!isspace(*p))
572 			s = q;
573 
574 		*q++ = *p++;
575 	}
576 
577 	*(s + 1) = '\0';
578 }
579 
580 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
581 {
582 	unsigned int n, dummy, ebx, ecx, edx, l2size;
583 
584 	n = c->extended_cpuid_level;
585 
586 	if (n >= 0x80000005) {
587 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
588 		c->x86_cache_size = (ecx>>24) + (edx>>24);
589 #ifdef CONFIG_X86_64
590 		/* On K8 L1 TLB is inclusive, so don't count it */
591 		c->x86_tlbsize = 0;
592 #endif
593 	}
594 
595 	if (n < 0x80000006)	/* Some chips just has a large L1. */
596 		return;
597 
598 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
599 	l2size = ecx >> 16;
600 
601 #ifdef CONFIG_X86_64
602 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
603 #else
604 	/* do processor-specific cache resizing */
605 	if (this_cpu->legacy_cache_size)
606 		l2size = this_cpu->legacy_cache_size(c, l2size);
607 
608 	/* Allow user to override all this if necessary. */
609 	if (cachesize_override != -1)
610 		l2size = cachesize_override;
611 
612 	if (l2size == 0)
613 		return;		/* Again, no L2 cache is possible */
614 #endif
615 
616 	c->x86_cache_size = l2size;
617 }
618 
619 u16 __read_mostly tlb_lli_4k[NR_INFO];
620 u16 __read_mostly tlb_lli_2m[NR_INFO];
621 u16 __read_mostly tlb_lli_4m[NR_INFO];
622 u16 __read_mostly tlb_lld_4k[NR_INFO];
623 u16 __read_mostly tlb_lld_2m[NR_INFO];
624 u16 __read_mostly tlb_lld_4m[NR_INFO];
625 u16 __read_mostly tlb_lld_1g[NR_INFO];
626 
627 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
628 {
629 	if (this_cpu->c_detect_tlb)
630 		this_cpu->c_detect_tlb(c);
631 
632 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
633 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
634 		tlb_lli_4m[ENTRIES]);
635 
636 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
637 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
638 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
639 }
640 
641 void detect_ht(struct cpuinfo_x86 *c)
642 {
643 #ifdef CONFIG_SMP
644 	u32 eax, ebx, ecx, edx;
645 	int index_msb, core_bits;
646 	static bool printed;
647 
648 	if (!cpu_has(c, X86_FEATURE_HT))
649 		return;
650 
651 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
652 		goto out;
653 
654 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
655 		return;
656 
657 	cpuid(1, &eax, &ebx, &ecx, &edx);
658 
659 	smp_num_siblings = (ebx & 0xff0000) >> 16;
660 
661 	if (smp_num_siblings == 1) {
662 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
663 		goto out;
664 	}
665 
666 	if (smp_num_siblings <= 1)
667 		goto out;
668 
669 	index_msb = get_count_order(smp_num_siblings);
670 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
671 
672 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
673 
674 	index_msb = get_count_order(smp_num_siblings);
675 
676 	core_bits = get_count_order(c->x86_max_cores);
677 
678 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
679 				       ((1 << core_bits) - 1);
680 
681 out:
682 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
683 		pr_info("CPU: Physical Processor ID: %d\n",
684 			c->phys_proc_id);
685 		pr_info("CPU: Processor Core ID: %d\n",
686 			c->cpu_core_id);
687 		printed = 1;
688 	}
689 #endif
690 }
691 
692 static void get_cpu_vendor(struct cpuinfo_x86 *c)
693 {
694 	char *v = c->x86_vendor_id;
695 	int i;
696 
697 	for (i = 0; i < X86_VENDOR_NUM; i++) {
698 		if (!cpu_devs[i])
699 			break;
700 
701 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
702 		    (cpu_devs[i]->c_ident[1] &&
703 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
704 
705 			this_cpu = cpu_devs[i];
706 			c->x86_vendor = this_cpu->c_x86_vendor;
707 			return;
708 		}
709 	}
710 
711 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
712 		    "CPU: Your system may be unstable.\n", v);
713 
714 	c->x86_vendor = X86_VENDOR_UNKNOWN;
715 	this_cpu = &default_cpu;
716 }
717 
718 void cpu_detect(struct cpuinfo_x86 *c)
719 {
720 	/* Get vendor name */
721 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
722 	      (unsigned int *)&c->x86_vendor_id[0],
723 	      (unsigned int *)&c->x86_vendor_id[8],
724 	      (unsigned int *)&c->x86_vendor_id[4]);
725 
726 	c->x86 = 4;
727 	/* Intel-defined flags: level 0x00000001 */
728 	if (c->cpuid_level >= 0x00000001) {
729 		u32 junk, tfms, cap0, misc;
730 
731 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
732 		c->x86		= x86_family(tfms);
733 		c->x86_model	= x86_model(tfms);
734 		c->x86_stepping	= x86_stepping(tfms);
735 
736 		if (cap0 & (1<<19)) {
737 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
738 			c->x86_cache_alignment = c->x86_clflush_size;
739 		}
740 	}
741 }
742 
743 static void apply_forced_caps(struct cpuinfo_x86 *c)
744 {
745 	int i;
746 
747 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
748 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
749 		c->x86_capability[i] |= cpu_caps_set[i];
750 	}
751 }
752 
753 static void init_speculation_control(struct cpuinfo_x86 *c)
754 {
755 	/*
756 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
757 	 * and they also have a different bit for STIBP support. Also,
758 	 * a hypervisor might have set the individual AMD bits even on
759 	 * Intel CPUs, for finer-grained selection of what's available.
760 	 */
761 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
762 		set_cpu_cap(c, X86_FEATURE_IBRS);
763 		set_cpu_cap(c, X86_FEATURE_IBPB);
764 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
765 	}
766 
767 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
768 		set_cpu_cap(c, X86_FEATURE_STIBP);
769 
770 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
771 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
772 		set_cpu_cap(c, X86_FEATURE_SSBD);
773 
774 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
775 		set_cpu_cap(c, X86_FEATURE_IBRS);
776 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
777 	}
778 
779 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
780 		set_cpu_cap(c, X86_FEATURE_IBPB);
781 
782 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
783 		set_cpu_cap(c, X86_FEATURE_STIBP);
784 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
785 	}
786 }
787 
788 void get_cpu_cap(struct cpuinfo_x86 *c)
789 {
790 	u32 eax, ebx, ecx, edx;
791 
792 	/* Intel-defined flags: level 0x00000001 */
793 	if (c->cpuid_level >= 0x00000001) {
794 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
795 
796 		c->x86_capability[CPUID_1_ECX] = ecx;
797 		c->x86_capability[CPUID_1_EDX] = edx;
798 	}
799 
800 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
801 	if (c->cpuid_level >= 0x00000006)
802 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
803 
804 	/* Additional Intel-defined flags: level 0x00000007 */
805 	if (c->cpuid_level >= 0x00000007) {
806 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
807 		c->x86_capability[CPUID_7_0_EBX] = ebx;
808 		c->x86_capability[CPUID_7_ECX] = ecx;
809 		c->x86_capability[CPUID_7_EDX] = edx;
810 	}
811 
812 	/* Extended state features: level 0x0000000d */
813 	if (c->cpuid_level >= 0x0000000d) {
814 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
815 
816 		c->x86_capability[CPUID_D_1_EAX] = eax;
817 	}
818 
819 	/* Additional Intel-defined flags: level 0x0000000F */
820 	if (c->cpuid_level >= 0x0000000F) {
821 
822 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
823 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
824 		c->x86_capability[CPUID_F_0_EDX] = edx;
825 
826 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
827 			/* will be overridden if occupancy monitoring exists */
828 			c->x86_cache_max_rmid = ebx;
829 
830 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
831 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
832 			c->x86_capability[CPUID_F_1_EDX] = edx;
833 
834 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
835 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
836 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
837 				c->x86_cache_max_rmid = ecx;
838 				c->x86_cache_occ_scale = ebx;
839 			}
840 		} else {
841 			c->x86_cache_max_rmid = -1;
842 			c->x86_cache_occ_scale = -1;
843 		}
844 	}
845 
846 	/* AMD-defined flags: level 0x80000001 */
847 	eax = cpuid_eax(0x80000000);
848 	c->extended_cpuid_level = eax;
849 
850 	if ((eax & 0xffff0000) == 0x80000000) {
851 		if (eax >= 0x80000001) {
852 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
853 
854 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
855 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
856 		}
857 	}
858 
859 	if (c->extended_cpuid_level >= 0x80000007) {
860 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
861 
862 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
863 		c->x86_power = edx;
864 	}
865 
866 	if (c->extended_cpuid_level >= 0x80000008) {
867 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
868 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
869 	}
870 
871 	if (c->extended_cpuid_level >= 0x8000000a)
872 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
873 
874 	init_scattered_cpuid_features(c);
875 	init_speculation_control(c);
876 
877 	/*
878 	 * Clear/Set all flags overridden by options, after probe.
879 	 * This needs to happen each time we re-probe, which may happen
880 	 * several times during CPU initialization.
881 	 */
882 	apply_forced_caps(c);
883 }
884 
885 static void get_cpu_address_sizes(struct cpuinfo_x86 *c)
886 {
887 	u32 eax, ebx, ecx, edx;
888 
889 	if (c->extended_cpuid_level >= 0x80000008) {
890 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
891 
892 		c->x86_virt_bits = (eax >> 8) & 0xff;
893 		c->x86_phys_bits = eax & 0xff;
894 	}
895 #ifdef CONFIG_X86_32
896 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
897 		c->x86_phys_bits = 36;
898 #endif
899 }
900 
901 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
902 {
903 #ifdef CONFIG_X86_32
904 	int i;
905 
906 	/*
907 	 * First of all, decide if this is a 486 or higher
908 	 * It's a 486 if we can modify the AC flag
909 	 */
910 	if (flag_is_changeable_p(X86_EFLAGS_AC))
911 		c->x86 = 4;
912 	else
913 		c->x86 = 3;
914 
915 	for (i = 0; i < X86_VENDOR_NUM; i++)
916 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
917 			c->x86_vendor_id[0] = 0;
918 			cpu_devs[i]->c_identify(c);
919 			if (c->x86_vendor_id[0]) {
920 				get_cpu_vendor(c);
921 				break;
922 			}
923 		}
924 #endif
925 }
926 
927 static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
928 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CEDARVIEW,	X86_FEATURE_ANY },
929 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CLOVERVIEW,	X86_FEATURE_ANY },
930 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_LINCROFT,	X86_FEATURE_ANY },
931 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PENWELL,	X86_FEATURE_ANY },
932 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PINEVIEW,	X86_FEATURE_ANY },
933 	{ X86_VENDOR_CENTAUR,	5 },
934 	{ X86_VENDOR_INTEL,	5 },
935 	{ X86_VENDOR_NSC,	5 },
936 	{ X86_VENDOR_ANY,	4 },
937 	{}
938 };
939 
940 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
941 	{ X86_VENDOR_AMD },
942 	{}
943 };
944 
945 /* Only list CPUs which speculate but are non susceptible to SSB */
946 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
947 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_SILVERMONT1	},
948 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_AIRMONT		},
949 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_SILVERMONT2	},
950 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_ATOM_MERRIFIELD	},
951 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_CORE_YONAH		},
952 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_XEON_PHI_KNL		},
953 	{ X86_VENDOR_INTEL,	6,	INTEL_FAM6_XEON_PHI_KNM		},
954 	{ X86_VENDOR_AMD,	0x12,					},
955 	{ X86_VENDOR_AMD,	0x11,					},
956 	{ X86_VENDOR_AMD,	0x10,					},
957 	{ X86_VENDOR_AMD,	0xf,					},
958 	{}
959 };
960 
961 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
962 {
963 	u64 ia32_cap = 0;
964 
965 	if (x86_match_cpu(cpu_no_speculation))
966 		return;
967 
968 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
969 	setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
970 
971 	if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
972 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
973 
974 	if (!x86_match_cpu(cpu_no_spec_store_bypass) &&
975 	   !(ia32_cap & ARCH_CAP_SSB_NO))
976 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
977 
978 	if (x86_match_cpu(cpu_no_meltdown))
979 		return;
980 
981 	/* Rogue Data Cache Load? No! */
982 	if (ia32_cap & ARCH_CAP_RDCL_NO)
983 		return;
984 
985 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
986 }
987 
988 /*
989  * Do minimum CPU detection early.
990  * Fields really needed: vendor, cpuid_level, family, model, mask,
991  * cache alignment.
992  * The others are not touched to avoid unwanted side effects.
993  *
994  * WARNING: this function is only called on the boot CPU.  Don't add code
995  * here that is supposed to run on all CPUs.
996  */
997 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
998 {
999 #ifdef CONFIG_X86_64
1000 	c->x86_clflush_size = 64;
1001 	c->x86_phys_bits = 36;
1002 	c->x86_virt_bits = 48;
1003 #else
1004 	c->x86_clflush_size = 32;
1005 	c->x86_phys_bits = 32;
1006 	c->x86_virt_bits = 32;
1007 #endif
1008 	c->x86_cache_alignment = c->x86_clflush_size;
1009 
1010 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1011 	c->extended_cpuid_level = 0;
1012 
1013 	/* cyrix could have cpuid enabled via c_identify()*/
1014 	if (have_cpuid_p()) {
1015 		cpu_detect(c);
1016 		get_cpu_vendor(c);
1017 		get_cpu_cap(c);
1018 		get_cpu_address_sizes(c);
1019 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1020 
1021 		if (this_cpu->c_early_init)
1022 			this_cpu->c_early_init(c);
1023 
1024 		c->cpu_index = 0;
1025 		filter_cpuid_features(c, false);
1026 
1027 		if (this_cpu->c_bsp_init)
1028 			this_cpu->c_bsp_init(c);
1029 	} else {
1030 		identify_cpu_without_cpuid(c);
1031 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1032 	}
1033 
1034 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1035 
1036 	cpu_set_bug_bits(c);
1037 
1038 	fpu__init_system(c);
1039 
1040 #ifdef CONFIG_X86_32
1041 	/*
1042 	 * Regardless of whether PCID is enumerated, the SDM says
1043 	 * that it can't be enabled in 32-bit mode.
1044 	 */
1045 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1046 #endif
1047 }
1048 
1049 void __init early_cpu_init(void)
1050 {
1051 	const struct cpu_dev *const *cdev;
1052 	int count = 0;
1053 
1054 #ifdef CONFIG_PROCESSOR_SELECT
1055 	pr_info("KERNEL supported cpus:\n");
1056 #endif
1057 
1058 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1059 		const struct cpu_dev *cpudev = *cdev;
1060 
1061 		if (count >= X86_VENDOR_NUM)
1062 			break;
1063 		cpu_devs[count] = cpudev;
1064 		count++;
1065 
1066 #ifdef CONFIG_PROCESSOR_SELECT
1067 		{
1068 			unsigned int j;
1069 
1070 			for (j = 0; j < 2; j++) {
1071 				if (!cpudev->c_ident[j])
1072 					continue;
1073 				pr_info("  %s %s\n", cpudev->c_vendor,
1074 					cpudev->c_ident[j]);
1075 			}
1076 		}
1077 #endif
1078 	}
1079 	early_identify_cpu(&boot_cpu_data);
1080 }
1081 
1082 /*
1083  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1084  * unfortunately, that's not true in practice because of early VIA
1085  * chips and (more importantly) broken virtualizers that are not easy
1086  * to detect. In the latter case it doesn't even *fail* reliably, so
1087  * probing for it doesn't even work. Disable it completely on 32-bit
1088  * unless we can find a reliable way to detect all the broken cases.
1089  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1090  */
1091 static void detect_nopl(struct cpuinfo_x86 *c)
1092 {
1093 #ifdef CONFIG_X86_32
1094 	clear_cpu_cap(c, X86_FEATURE_NOPL);
1095 #else
1096 	set_cpu_cap(c, X86_FEATURE_NOPL);
1097 #endif
1098 }
1099 
1100 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1101 {
1102 #ifdef CONFIG_X86_64
1103 	/*
1104 	 * Empirically, writing zero to a segment selector on AMD does
1105 	 * not clear the base, whereas writing zero to a segment
1106 	 * selector on Intel does clear the base.  Intel's behavior
1107 	 * allows slightly faster context switches in the common case
1108 	 * where GS is unused by the prev and next threads.
1109 	 *
1110 	 * Since neither vendor documents this anywhere that I can see,
1111 	 * detect it directly instead of hardcoding the choice by
1112 	 * vendor.
1113 	 *
1114 	 * I've designated AMD's behavior as the "bug" because it's
1115 	 * counterintuitive and less friendly.
1116 	 */
1117 
1118 	unsigned long old_base, tmp;
1119 	rdmsrl(MSR_FS_BASE, old_base);
1120 	wrmsrl(MSR_FS_BASE, 1);
1121 	loadsegment(fs, 0);
1122 	rdmsrl(MSR_FS_BASE, tmp);
1123 	if (tmp != 0)
1124 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1125 	wrmsrl(MSR_FS_BASE, old_base);
1126 #endif
1127 }
1128 
1129 static void generic_identify(struct cpuinfo_x86 *c)
1130 {
1131 	c->extended_cpuid_level = 0;
1132 
1133 	if (!have_cpuid_p())
1134 		identify_cpu_without_cpuid(c);
1135 
1136 	/* cyrix could have cpuid enabled via c_identify()*/
1137 	if (!have_cpuid_p())
1138 		return;
1139 
1140 	cpu_detect(c);
1141 
1142 	get_cpu_vendor(c);
1143 
1144 	get_cpu_cap(c);
1145 
1146 	get_cpu_address_sizes(c);
1147 
1148 	if (c->cpuid_level >= 0x00000001) {
1149 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1150 #ifdef CONFIG_X86_32
1151 # ifdef CONFIG_SMP
1152 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1153 # else
1154 		c->apicid = c->initial_apicid;
1155 # endif
1156 #endif
1157 		c->phys_proc_id = c->initial_apicid;
1158 	}
1159 
1160 	get_model_name(c); /* Default name */
1161 
1162 	detect_nopl(c);
1163 
1164 	detect_null_seg_behavior(c);
1165 
1166 	/*
1167 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1168 	 * systems that run Linux at CPL > 0 may or may not have the
1169 	 * issue, but, even if they have the issue, there's absolutely
1170 	 * nothing we can do about it because we can't use the real IRET
1171 	 * instruction.
1172 	 *
1173 	 * NB: For the time being, only 32-bit kernels support
1174 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1175 	 * whether to apply espfix using paravirt hooks.  If any
1176 	 * non-paravirt system ever shows up that does *not* have the
1177 	 * ESPFIX issue, we can change this.
1178 	 */
1179 #ifdef CONFIG_X86_32
1180 # ifdef CONFIG_PARAVIRT
1181 	do {
1182 		extern void native_iret(void);
1183 		if (pv_cpu_ops.iret == native_iret)
1184 			set_cpu_bug(c, X86_BUG_ESPFIX);
1185 	} while (0);
1186 # else
1187 	set_cpu_bug(c, X86_BUG_ESPFIX);
1188 # endif
1189 #endif
1190 }
1191 
1192 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1193 {
1194 	/*
1195 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1196 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1197 	 * in case CQM bits really aren't there in this CPU.
1198 	 */
1199 	if (c != &boot_cpu_data) {
1200 		boot_cpu_data.x86_cache_max_rmid =
1201 			min(boot_cpu_data.x86_cache_max_rmid,
1202 			    c->x86_cache_max_rmid);
1203 	}
1204 }
1205 
1206 /*
1207  * Validate that ACPI/mptables have the same information about the
1208  * effective APIC id and update the package map.
1209  */
1210 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1211 {
1212 #ifdef CONFIG_SMP
1213 	unsigned int apicid, cpu = smp_processor_id();
1214 
1215 	apicid = apic->cpu_present_to_apicid(cpu);
1216 
1217 	if (apicid != c->apicid) {
1218 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1219 		       cpu, apicid, c->initial_apicid);
1220 	}
1221 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1222 #else
1223 	c->logical_proc_id = 0;
1224 #endif
1225 }
1226 
1227 /*
1228  * This does the hard work of actually picking apart the CPU stuff...
1229  */
1230 static void identify_cpu(struct cpuinfo_x86 *c)
1231 {
1232 	int i;
1233 
1234 	c->loops_per_jiffy = loops_per_jiffy;
1235 	c->x86_cache_size = 0;
1236 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1237 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1238 	c->x86_vendor_id[0] = '\0'; /* Unset */
1239 	c->x86_model_id[0] = '\0';  /* Unset */
1240 	c->x86_max_cores = 1;
1241 	c->x86_coreid_bits = 0;
1242 	c->cu_id = 0xff;
1243 #ifdef CONFIG_X86_64
1244 	c->x86_clflush_size = 64;
1245 	c->x86_phys_bits = 36;
1246 	c->x86_virt_bits = 48;
1247 #else
1248 	c->cpuid_level = -1;	/* CPUID not detected */
1249 	c->x86_clflush_size = 32;
1250 	c->x86_phys_bits = 32;
1251 	c->x86_virt_bits = 32;
1252 #endif
1253 	c->x86_cache_alignment = c->x86_clflush_size;
1254 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1255 
1256 	generic_identify(c);
1257 
1258 	if (this_cpu->c_identify)
1259 		this_cpu->c_identify(c);
1260 
1261 	/* Clear/Set all flags overridden by options, after probe */
1262 	apply_forced_caps(c);
1263 
1264 #ifdef CONFIG_X86_64
1265 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1266 #endif
1267 
1268 	/*
1269 	 * Vendor-specific initialization.  In this section we
1270 	 * canonicalize the feature flags, meaning if there are
1271 	 * features a certain CPU supports which CPUID doesn't
1272 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1273 	 * we handle them here.
1274 	 *
1275 	 * At the end of this section, c->x86_capability better
1276 	 * indicate the features this CPU genuinely supports!
1277 	 */
1278 	if (this_cpu->c_init)
1279 		this_cpu->c_init(c);
1280 
1281 	/* Disable the PN if appropriate */
1282 	squash_the_stupid_serial_number(c);
1283 
1284 	/* Set up SMEP/SMAP/UMIP */
1285 	setup_smep(c);
1286 	setup_smap(c);
1287 	setup_umip(c);
1288 
1289 	/*
1290 	 * The vendor-specific functions might have changed features.
1291 	 * Now we do "generic changes."
1292 	 */
1293 
1294 	/* Filter out anything that depends on CPUID levels we don't have */
1295 	filter_cpuid_features(c, true);
1296 
1297 	/* If the model name is still unset, do table lookup. */
1298 	if (!c->x86_model_id[0]) {
1299 		const char *p;
1300 		p = table_lookup_model(c);
1301 		if (p)
1302 			strcpy(c->x86_model_id, p);
1303 		else
1304 			/* Last resort... */
1305 			sprintf(c->x86_model_id, "%02x/%02x",
1306 				c->x86, c->x86_model);
1307 	}
1308 
1309 #ifdef CONFIG_X86_64
1310 	detect_ht(c);
1311 #endif
1312 
1313 	x86_init_rdrand(c);
1314 	x86_init_cache_qos(c);
1315 	setup_pku(c);
1316 
1317 	/*
1318 	 * Clear/Set all flags overridden by options, need do it
1319 	 * before following smp all cpus cap AND.
1320 	 */
1321 	apply_forced_caps(c);
1322 
1323 	/*
1324 	 * On SMP, boot_cpu_data holds the common feature set between
1325 	 * all CPUs; so make sure that we indicate which features are
1326 	 * common between the CPUs.  The first time this routine gets
1327 	 * executed, c == &boot_cpu_data.
1328 	 */
1329 	if (c != &boot_cpu_data) {
1330 		/* AND the already accumulated flags with these */
1331 		for (i = 0; i < NCAPINTS; i++)
1332 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1333 
1334 		/* OR, i.e. replicate the bug flags */
1335 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1336 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1337 	}
1338 
1339 	/* Init Machine Check Exception if available. */
1340 	mcheck_cpu_init(c);
1341 
1342 	select_idle_routine(c);
1343 
1344 #ifdef CONFIG_NUMA
1345 	numa_add_cpu(smp_processor_id());
1346 #endif
1347 }
1348 
1349 /*
1350  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1351  * on 32-bit kernels:
1352  */
1353 #ifdef CONFIG_X86_32
1354 void enable_sep_cpu(void)
1355 {
1356 	struct tss_struct *tss;
1357 	int cpu;
1358 
1359 	if (!boot_cpu_has(X86_FEATURE_SEP))
1360 		return;
1361 
1362 	cpu = get_cpu();
1363 	tss = &per_cpu(cpu_tss_rw, cpu);
1364 
1365 	/*
1366 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1367 	 * see the big comment in struct x86_hw_tss's definition.
1368 	 */
1369 
1370 	tss->x86_tss.ss1 = __KERNEL_CS;
1371 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1372 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1373 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1374 
1375 	put_cpu();
1376 }
1377 #endif
1378 
1379 void __init identify_boot_cpu(void)
1380 {
1381 	identify_cpu(&boot_cpu_data);
1382 #ifdef CONFIG_X86_32
1383 	sysenter_setup();
1384 	enable_sep_cpu();
1385 #endif
1386 	cpu_detect_tlb(&boot_cpu_data);
1387 }
1388 
1389 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1390 {
1391 	BUG_ON(c == &boot_cpu_data);
1392 	identify_cpu(c);
1393 #ifdef CONFIG_X86_32
1394 	enable_sep_cpu();
1395 #endif
1396 	mtrr_ap_init();
1397 	validate_apic_and_package_id(c);
1398 	x86_spec_ctrl_setup_ap();
1399 }
1400 
1401 static __init int setup_noclflush(char *arg)
1402 {
1403 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1404 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1405 	return 1;
1406 }
1407 __setup("noclflush", setup_noclflush);
1408 
1409 void print_cpu_info(struct cpuinfo_x86 *c)
1410 {
1411 	const char *vendor = NULL;
1412 
1413 	if (c->x86_vendor < X86_VENDOR_NUM) {
1414 		vendor = this_cpu->c_vendor;
1415 	} else {
1416 		if (c->cpuid_level >= 0)
1417 			vendor = c->x86_vendor_id;
1418 	}
1419 
1420 	if (vendor && !strstr(c->x86_model_id, vendor))
1421 		pr_cont("%s ", vendor);
1422 
1423 	if (c->x86_model_id[0])
1424 		pr_cont("%s", c->x86_model_id);
1425 	else
1426 		pr_cont("%d86", c->x86);
1427 
1428 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1429 
1430 	if (c->x86_stepping || c->cpuid_level >= 0)
1431 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1432 	else
1433 		pr_cont(")\n");
1434 }
1435 
1436 /*
1437  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1438  * But we need to keep a dummy __setup around otherwise it would
1439  * show up as an environment variable for init.
1440  */
1441 static __init int setup_clearcpuid(char *arg)
1442 {
1443 	return 1;
1444 }
1445 __setup("clearcpuid=", setup_clearcpuid);
1446 
1447 #ifdef CONFIG_X86_64
1448 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1449 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1450 EXPORT_PER_CPU_SYMBOL_GPL(irq_stack_union);
1451 
1452 /*
1453  * The following percpu variables are hot.  Align current_task to
1454  * cacheline size such that they fall in the same cacheline.
1455  */
1456 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1457 	&init_task;
1458 EXPORT_PER_CPU_SYMBOL(current_task);
1459 
1460 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1461 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1462 
1463 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1464 
1465 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1466 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1467 
1468 /* May not be marked __init: used by software suspend */
1469 void syscall_init(void)
1470 {
1471 	extern char _entry_trampoline[];
1472 	extern char entry_SYSCALL_64_trampoline[];
1473 
1474 	int cpu = smp_processor_id();
1475 	unsigned long SYSCALL64_entry_trampoline =
1476 		(unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1477 		(entry_SYSCALL_64_trampoline - _entry_trampoline);
1478 
1479 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1480 	if (static_cpu_has(X86_FEATURE_PTI))
1481 		wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1482 	else
1483 		wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1484 
1485 #ifdef CONFIG_IA32_EMULATION
1486 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1487 	/*
1488 	 * This only works on Intel CPUs.
1489 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1490 	 * This does not cause SYSENTER to jump to the wrong location, because
1491 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1492 	 */
1493 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1494 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1495 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1496 #else
1497 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1498 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1499 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1500 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1501 #endif
1502 
1503 	/* Flags to clear on syscall */
1504 	wrmsrl(MSR_SYSCALL_MASK,
1505 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1506 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1507 }
1508 
1509 /*
1510  * Copies of the original ist values from the tss are only accessed during
1511  * debugging, no special alignment required.
1512  */
1513 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1514 
1515 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1516 DEFINE_PER_CPU(int, debug_stack_usage);
1517 
1518 int is_debug_stack(unsigned long addr)
1519 {
1520 	return __this_cpu_read(debug_stack_usage) ||
1521 		(addr <= __this_cpu_read(debug_stack_addr) &&
1522 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1523 }
1524 NOKPROBE_SYMBOL(is_debug_stack);
1525 
1526 DEFINE_PER_CPU(u32, debug_idt_ctr);
1527 
1528 void debug_stack_set_zero(void)
1529 {
1530 	this_cpu_inc(debug_idt_ctr);
1531 	load_current_idt();
1532 }
1533 NOKPROBE_SYMBOL(debug_stack_set_zero);
1534 
1535 void debug_stack_reset(void)
1536 {
1537 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1538 		return;
1539 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1540 		load_current_idt();
1541 }
1542 NOKPROBE_SYMBOL(debug_stack_reset);
1543 
1544 #else	/* CONFIG_X86_64 */
1545 
1546 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1547 EXPORT_PER_CPU_SYMBOL(current_task);
1548 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1549 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1550 
1551 /*
1552  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1553  * the top of the kernel stack.  Use an extra percpu variable to track the
1554  * top of the kernel stack directly.
1555  */
1556 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1557 	(unsigned long)&init_thread_union + THREAD_SIZE;
1558 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1559 
1560 #ifdef CONFIG_CC_STACKPROTECTOR
1561 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1562 #endif
1563 
1564 #endif	/* CONFIG_X86_64 */
1565 
1566 /*
1567  * Clear all 6 debug registers:
1568  */
1569 static void clear_all_debug_regs(void)
1570 {
1571 	int i;
1572 
1573 	for (i = 0; i < 8; i++) {
1574 		/* Ignore db4, db5 */
1575 		if ((i == 4) || (i == 5))
1576 			continue;
1577 
1578 		set_debugreg(0, i);
1579 	}
1580 }
1581 
1582 #ifdef CONFIG_KGDB
1583 /*
1584  * Restore debug regs if using kgdbwait and you have a kernel debugger
1585  * connection established.
1586  */
1587 static void dbg_restore_debug_regs(void)
1588 {
1589 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1590 		arch_kgdb_ops.correct_hw_break();
1591 }
1592 #else /* ! CONFIG_KGDB */
1593 #define dbg_restore_debug_regs()
1594 #endif /* ! CONFIG_KGDB */
1595 
1596 static void wait_for_master_cpu(int cpu)
1597 {
1598 #ifdef CONFIG_SMP
1599 	/*
1600 	 * wait for ACK from master CPU before continuing
1601 	 * with AP initialization
1602 	 */
1603 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1604 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1605 		cpu_relax();
1606 #endif
1607 }
1608 
1609 /*
1610  * cpu_init() initializes state that is per-CPU. Some data is already
1611  * initialized (naturally) in the bootstrap process, such as the GDT
1612  * and IDT. We reload them nevertheless, this function acts as a
1613  * 'CPU state barrier', nothing should get across.
1614  * A lot of state is already set up in PDA init for 64 bit
1615  */
1616 #ifdef CONFIG_X86_64
1617 
1618 void cpu_init(void)
1619 {
1620 	struct orig_ist *oist;
1621 	struct task_struct *me;
1622 	struct tss_struct *t;
1623 	unsigned long v;
1624 	int cpu = raw_smp_processor_id();
1625 	int i;
1626 
1627 	wait_for_master_cpu(cpu);
1628 
1629 	/*
1630 	 * Initialize the CR4 shadow before doing anything that could
1631 	 * try to read it.
1632 	 */
1633 	cr4_init_shadow();
1634 
1635 	if (cpu)
1636 		load_ucode_ap();
1637 
1638 	t = &per_cpu(cpu_tss_rw, cpu);
1639 	oist = &per_cpu(orig_ist, cpu);
1640 
1641 #ifdef CONFIG_NUMA
1642 	if (this_cpu_read(numa_node) == 0 &&
1643 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1644 		set_numa_node(early_cpu_to_node(cpu));
1645 #endif
1646 
1647 	me = current;
1648 
1649 	pr_debug("Initializing CPU#%d\n", cpu);
1650 
1651 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1652 
1653 	/*
1654 	 * Initialize the per-CPU GDT with the boot GDT,
1655 	 * and set up the GDT descriptor:
1656 	 */
1657 
1658 	switch_to_new_gdt(cpu);
1659 	loadsegment(fs, 0);
1660 
1661 	load_current_idt();
1662 
1663 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1664 	syscall_init();
1665 
1666 	wrmsrl(MSR_FS_BASE, 0);
1667 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1668 	barrier();
1669 
1670 	x86_configure_nx();
1671 	x2apic_setup();
1672 
1673 	/*
1674 	 * set up and load the per-CPU TSS
1675 	 */
1676 	if (!oist->ist[0]) {
1677 		char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1678 
1679 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1680 			estacks += exception_stack_sizes[v];
1681 			oist->ist[v] = t->x86_tss.ist[v] =
1682 					(unsigned long)estacks;
1683 			if (v == DEBUG_STACK-1)
1684 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1685 		}
1686 	}
1687 
1688 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1689 
1690 	/*
1691 	 * <= is required because the CPU will access up to
1692 	 * 8 bits beyond the end of the IO permission bitmap.
1693 	 */
1694 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1695 		t->io_bitmap[i] = ~0UL;
1696 
1697 	mmgrab(&init_mm);
1698 	me->active_mm = &init_mm;
1699 	BUG_ON(me->mm);
1700 	initialize_tlbstate_and_flush();
1701 	enter_lazy_tlb(&init_mm, me);
1702 
1703 	/*
1704 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1705 	 * regardless of what task is running.
1706 	 */
1707 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1708 	load_TR_desc();
1709 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1710 
1711 	load_mm_ldt(&init_mm);
1712 
1713 	clear_all_debug_regs();
1714 	dbg_restore_debug_regs();
1715 
1716 	fpu__init_cpu();
1717 
1718 	if (is_uv_system())
1719 		uv_cpu_init();
1720 
1721 	load_fixmap_gdt(cpu);
1722 }
1723 
1724 #else
1725 
1726 void cpu_init(void)
1727 {
1728 	int cpu = smp_processor_id();
1729 	struct task_struct *curr = current;
1730 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1731 
1732 	wait_for_master_cpu(cpu);
1733 
1734 	/*
1735 	 * Initialize the CR4 shadow before doing anything that could
1736 	 * try to read it.
1737 	 */
1738 	cr4_init_shadow();
1739 
1740 	show_ucode_info_early();
1741 
1742 	pr_info("Initializing CPU#%d\n", cpu);
1743 
1744 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1745 	    boot_cpu_has(X86_FEATURE_TSC) ||
1746 	    boot_cpu_has(X86_FEATURE_DE))
1747 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1748 
1749 	load_current_idt();
1750 	switch_to_new_gdt(cpu);
1751 
1752 	/*
1753 	 * Set up and load the per-CPU TSS and LDT
1754 	 */
1755 	mmgrab(&init_mm);
1756 	curr->active_mm = &init_mm;
1757 	BUG_ON(curr->mm);
1758 	initialize_tlbstate_and_flush();
1759 	enter_lazy_tlb(&init_mm, curr);
1760 
1761 	/*
1762 	 * Initialize the TSS.  Don't bother initializing sp0, as the initial
1763 	 * task never enters user mode.
1764 	 */
1765 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1766 	load_TR_desc();
1767 
1768 	load_mm_ldt(&init_mm);
1769 
1770 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1771 
1772 #ifdef CONFIG_DOUBLEFAULT
1773 	/* Set up doublefault TSS pointer in the GDT */
1774 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1775 #endif
1776 
1777 	clear_all_debug_regs();
1778 	dbg_restore_debug_regs();
1779 
1780 	fpu__init_cpu();
1781 
1782 	load_fixmap_gdt(cpu);
1783 }
1784 #endif
1785 
1786 static void bsp_resume(void)
1787 {
1788 	if (this_cpu->c_bsp_resume)
1789 		this_cpu->c_bsp_resume(&boot_cpu_data);
1790 }
1791 
1792 static struct syscore_ops cpu_syscore_ops = {
1793 	.resume		= bsp_resume,
1794 };
1795 
1796 static int __init init_cpu_syscore(void)
1797 {
1798 	register_syscore_ops(&cpu_syscore_ops);
1799 	return 0;
1800 }
1801 core_initcall(init_cpu_syscore);
1802 
1803 /*
1804  * The microcode loader calls this upon late microcode load to recheck features,
1805  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1806  * hotplug lock.
1807  */
1808 void microcode_check(void)
1809 {
1810 	struct cpuinfo_x86 info;
1811 
1812 	perf_check_microcode();
1813 
1814 	/* Reload CPUID max function as it might've changed. */
1815 	info.cpuid_level = cpuid_eax(0);
1816 
1817 	/*
1818 	 * Copy all capability leafs to pick up the synthetic ones so that
1819 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1820 	 * get overwritten in get_cpu_cap().
1821 	 */
1822 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1823 
1824 	get_cpu_cap(&info);
1825 
1826 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1827 		return;
1828 
1829 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1830 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1831 }
1832