xref: /linux/arch/x86/kernel/cpu/common.c (revision c0c9209ddd96bc4f1d70a8b9958710671e076080)
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/processor.h>
9 #include <asm/i387.h>
10 #include <asm/msr.h>
11 #include <asm/io.h>
12 #include <asm/mmu_context.h>
13 #include <asm/mtrr.h>
14 #include <asm/mce.h>
15 #include <asm/pat.h>
16 #include <asm/asm.h>
17 #ifdef CONFIG_X86_LOCAL_APIC
18 #include <asm/mpspec.h>
19 #include <asm/apic.h>
20 #include <mach_apic.h>
21 #endif
22 
23 #include "cpu.h"
24 
25 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
26 	[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
27 	[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
28 	[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
29 	[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
30 	/*
31 	 * Segments used for calling PnP BIOS have byte granularity.
32 	 * They code segments and data segments have fixed 64k limits,
33 	 * the transfer segment sizes are set at run time.
34 	 */
35 	/* 32-bit code */
36 	[GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
37 	/* 16-bit code */
38 	[GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
39 	/* 16-bit data */
40 	[GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
41 	/* 16-bit data */
42 	[GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
43 	/* 16-bit data */
44 	[GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
45 	/*
46 	 * The APM segments have byte granularity and their bases
47 	 * are set at run time.  All have 64k limits.
48 	 */
49 	/* 32-bit code */
50 	[GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
51 	/* 16-bit code */
52 	[GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
53 	/* data */
54 	[GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
55 
56 	[GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
57 	[GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
58 } };
59 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
60 
61 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
62 
63 static int cachesize_override __cpuinitdata = -1;
64 static int disable_x86_serial_nr __cpuinitdata = 1;
65 
66 struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
67 
68 static void __cpuinit default_init(struct cpuinfo_x86 *c)
69 {
70 	/* Not much we can do here... */
71 	/* Check if at least it has cpuid */
72 	if (c->cpuid_level == -1) {
73 		/* No cpuid. It must be an ancient CPU */
74 		if (c->x86 == 4)
75 			strcpy(c->x86_model_id, "486");
76 		else if (c->x86 == 3)
77 			strcpy(c->x86_model_id, "386");
78 	}
79 }
80 
81 static struct cpu_dev __cpuinitdata default_cpu = {
82 	.c_init	= default_init,
83 	.c_vendor = "Unknown",
84 };
85 static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
86 
87 static int __init cachesize_setup(char *str)
88 {
89 	get_option(&str, &cachesize_override);
90 	return 1;
91 }
92 __setup("cachesize=", cachesize_setup);
93 
94 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
95 {
96 	unsigned int *v;
97 	char *p, *q;
98 
99 	if (cpuid_eax(0x80000000) < 0x80000004)
100 		return 0;
101 
102 	v = (unsigned int *) c->x86_model_id;
103 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
104 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
105 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
106 	c->x86_model_id[48] = 0;
107 
108 	/* Intel chips right-justify this string for some dumb reason;
109 	   undo that brain damage */
110 	p = q = &c->x86_model_id[0];
111 	while (*p == ' ')
112 	     p++;
113 	if (p != q) {
114 	     while (*p)
115 		  *q++ = *p++;
116 	     while (q <= &c->x86_model_id[48])
117 		  *q++ = '\0';	/* Zero-pad the rest */
118 	}
119 
120 	return 1;
121 }
122 
123 
124 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
125 {
126 	unsigned int n, dummy, ecx, edx, l2size;
127 
128 	n = cpuid_eax(0x80000000);
129 
130 	if (n >= 0x80000005) {
131 		cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
132 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
133 			edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
134 		c->x86_cache_size = (ecx>>24)+(edx>>24);
135 	}
136 
137 	if (n < 0x80000006)	/* Some chips just has a large L1. */
138 		return;
139 
140 	ecx = cpuid_ecx(0x80000006);
141 	l2size = ecx >> 16;
142 
143 	/* do processor-specific cache resizing */
144 	if (this_cpu->c_size_cache)
145 		l2size = this_cpu->c_size_cache(c, l2size);
146 
147 	/* Allow user to override all this if necessary. */
148 	if (cachesize_override != -1)
149 		l2size = cachesize_override;
150 
151 	if (l2size == 0)
152 		return;		/* Again, no L2 cache is possible */
153 
154 	c->x86_cache_size = l2size;
155 
156 	printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
157 	       l2size, ecx & 0xFF);
158 }
159 
160 /*
161  * Naming convention should be: <Name> [(<Codename>)]
162  * This table only is used unless init_<vendor>() below doesn't set it;
163  * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
164  *
165  */
166 
167 /* Look up CPU names by table lookup. */
168 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
169 {
170 	struct cpu_model_info *info;
171 
172 	if (c->x86_model >= 16)
173 		return NULL;	/* Range check */
174 
175 	if (!this_cpu)
176 		return NULL;
177 
178 	info = this_cpu->c_models;
179 
180 	while (info && info->family) {
181 		if (info->family == c->x86)
182 			return info->model_names[c->x86_model];
183 		info++;
184 	}
185 	return NULL;		/* Not found */
186 }
187 
188 
189 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
190 {
191 	char *v = c->x86_vendor_id;
192 	int i;
193 	static int printed;
194 
195 	for (i = 0; i < X86_VENDOR_NUM; i++) {
196 		if (cpu_devs[i]) {
197 			if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
198 			    (cpu_devs[i]->c_ident[1] &&
199 			     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
200 				c->x86_vendor = i;
201 				if (!early)
202 					this_cpu = cpu_devs[i];
203 				return;
204 			}
205 		}
206 	}
207 	if (!printed) {
208 		printed++;
209 		printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
210 		printk(KERN_ERR "CPU: Your system may be unstable.\n");
211 	}
212 	c->x86_vendor = X86_VENDOR_UNKNOWN;
213 	this_cpu = &default_cpu;
214 }
215 
216 
217 static int __init x86_fxsr_setup(char *s)
218 {
219 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
220 	setup_clear_cpu_cap(X86_FEATURE_XMM);
221 	return 1;
222 }
223 __setup("nofxsr", x86_fxsr_setup);
224 
225 
226 static int __init x86_sep_setup(char *s)
227 {
228 	setup_clear_cpu_cap(X86_FEATURE_SEP);
229 	return 1;
230 }
231 __setup("nosep", x86_sep_setup);
232 
233 
234 /* Standard macro to see if a specific flag is changeable */
235 static inline int flag_is_changeable_p(u32 flag)
236 {
237 	u32 f1, f2;
238 
239 	asm("pushfl\n\t"
240 	    "pushfl\n\t"
241 	    "popl %0\n\t"
242 	    "movl %0,%1\n\t"
243 	    "xorl %2,%0\n\t"
244 	    "pushl %0\n\t"
245 	    "popfl\n\t"
246 	    "pushfl\n\t"
247 	    "popl %0\n\t"
248 	    "popfl\n\t"
249 	    : "=&r" (f1), "=&r" (f2)
250 	    : "ir" (flag));
251 
252 	return ((f1^f2) & flag) != 0;
253 }
254 
255 
256 /* Probe for the CPUID instruction */
257 static int __cpuinit have_cpuid_p(void)
258 {
259 	return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261 
262 void __init cpu_detect(struct cpuinfo_x86 *c)
263 {
264 	/* Get vendor name */
265 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
266 	      (unsigned int *)&c->x86_vendor_id[0],
267 	      (unsigned int *)&c->x86_vendor_id[8],
268 	      (unsigned int *)&c->x86_vendor_id[4]);
269 
270 	c->x86 = 4;
271 	if (c->cpuid_level >= 0x00000001) {
272 		u32 junk, tfms, cap0, misc;
273 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
274 		c->x86 = (tfms >> 8) & 15;
275 		c->x86_model = (tfms >> 4) & 15;
276 		if (c->x86 == 0xf)
277 			c->x86 += (tfms >> 20) & 0xff;
278 		if (c->x86 >= 0x6)
279 			c->x86_model += ((tfms >> 16) & 0xF) << 4;
280 		c->x86_mask = tfms & 15;
281 		if (cap0 & (1<<19)) {
282 			c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
283 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
284 		}
285 	}
286 }
287 static void __cpuinit early_get_cap(struct cpuinfo_x86 *c)
288 {
289 	u32 tfms, xlvl;
290 	unsigned int ebx;
291 
292 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
293 	if (have_cpuid_p()) {
294 		/* Intel-defined flags: level 0x00000001 */
295 		if (c->cpuid_level >= 0x00000001) {
296 			u32 capability, excap;
297 			cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
298 			c->x86_capability[0] = capability;
299 			c->x86_capability[4] = excap;
300 		}
301 
302 		/* AMD-defined flags: level 0x80000001 */
303 		xlvl = cpuid_eax(0x80000000);
304 		if ((xlvl & 0xffff0000) == 0x80000000) {
305 			if (xlvl >= 0x80000001) {
306 				c->x86_capability[1] = cpuid_edx(0x80000001);
307 				c->x86_capability[6] = cpuid_ecx(0x80000001);
308 			}
309 		}
310 
311 	}
312 
313 }
314 
315 /*
316  * Do minimum CPU detection early.
317  * Fields really needed: vendor, cpuid_level, family, model, mask,
318  * cache alignment.
319  * The others are not touched to avoid unwanted side effects.
320  *
321  * WARNING: this function is only called on the BP.  Don't add code here
322  * that is supposed to run on all CPUs.
323  */
324 static void __init early_cpu_detect(void)
325 {
326 	struct cpuinfo_x86 *c = &boot_cpu_data;
327 
328 	c->x86_cache_alignment = 32;
329 	c->x86_clflush_size = 32;
330 
331 	if (!have_cpuid_p())
332 		return;
333 
334 	cpu_detect(c);
335 
336 	get_cpu_vendor(c, 1);
337 
338 	early_get_cap(c);
339 
340 	if (c->x86_vendor != X86_VENDOR_UNKNOWN &&
341 	    cpu_devs[c->x86_vendor]->c_early_init)
342 		cpu_devs[c->x86_vendor]->c_early_init(c);
343 }
344 
345 /*
346  * The NOPL instruction is supposed to exist on all CPUs with
347  * family >= 6; unfortunately, that's not true in practice because
348  * of early VIA chips and (more importantly) broken virtualizers that
349  * are not easy to detect.  In the latter case it doesn't even *fail*
350  * reliably, so probing for it doesn't even work.  Disable it completely
351  * unless we can find a reliable way to detect all the broken cases.
352  */
353 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
354 {
355 	clear_cpu_cap(c, X86_FEATURE_NOPL);
356 }
357 
358 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
359 {
360 	u32 tfms, xlvl;
361 	unsigned int ebx;
362 
363 	if (have_cpuid_p()) {
364 		/* Get vendor name */
365 		cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
366 		      (unsigned int *)&c->x86_vendor_id[0],
367 		      (unsigned int *)&c->x86_vendor_id[8],
368 		      (unsigned int *)&c->x86_vendor_id[4]);
369 
370 		get_cpu_vendor(c, 0);
371 		/* Initialize the standard set of capabilities */
372 		/* Note that the vendor-specific code below might override */
373 		/* Intel-defined flags: level 0x00000001 */
374 		if (c->cpuid_level >= 0x00000001) {
375 			u32 capability, excap;
376 			cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
377 			c->x86_capability[0] = capability;
378 			c->x86_capability[4] = excap;
379 			c->x86 = (tfms >> 8) & 15;
380 			c->x86_model = (tfms >> 4) & 15;
381 			if (c->x86 == 0xf)
382 				c->x86 += (tfms >> 20) & 0xff;
383 			if (c->x86 >= 0x6)
384 				c->x86_model += ((tfms >> 16) & 0xF) << 4;
385 			c->x86_mask = tfms & 15;
386 			c->initial_apicid = (ebx >> 24) & 0xFF;
387 #ifdef CONFIG_X86_HT
388 			c->apicid = phys_pkg_id(c->initial_apicid, 0);
389 			c->phys_proc_id = c->initial_apicid;
390 #else
391 			c->apicid = c->initial_apicid;
392 #endif
393 			if (test_cpu_cap(c, X86_FEATURE_CLFLSH))
394 				c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
395 		} else {
396 			/* Have CPUID level 0 only - unheard of */
397 			c->x86 = 4;
398 		}
399 
400 		/* AMD-defined flags: level 0x80000001 */
401 		xlvl = cpuid_eax(0x80000000);
402 		if ((xlvl & 0xffff0000) == 0x80000000) {
403 			if (xlvl >= 0x80000001) {
404 				c->x86_capability[1] = cpuid_edx(0x80000001);
405 				c->x86_capability[6] = cpuid_ecx(0x80000001);
406 			}
407 			if (xlvl >= 0x80000004)
408 				get_model_name(c); /* Default name */
409 		}
410 
411 		init_scattered_cpuid_features(c);
412 		detect_nopl(c);
413 	}
414 }
415 
416 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
417 {
418 	if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
419 		/* Disable processor serial number */
420 		unsigned long lo, hi;
421 		rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
422 		lo |= 0x200000;
423 		wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
424 		printk(KERN_NOTICE "CPU serial number disabled.\n");
425 		clear_cpu_cap(c, X86_FEATURE_PN);
426 
427 		/* Disabling the serial number may affect the cpuid level */
428 		c->cpuid_level = cpuid_eax(0);
429 	}
430 }
431 
432 static int __init x86_serial_nr_setup(char *s)
433 {
434 	disable_x86_serial_nr = 0;
435 	return 1;
436 }
437 __setup("serialnumber", x86_serial_nr_setup);
438 
439 
440 
441 /*
442  * This does the hard work of actually picking apart the CPU stuff...
443  */
444 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
445 {
446 	int i;
447 
448 	c->loops_per_jiffy = loops_per_jiffy;
449 	c->x86_cache_size = -1;
450 	c->x86_vendor = X86_VENDOR_UNKNOWN;
451 	c->cpuid_level = -1;	/* CPUID not detected */
452 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
453 	c->x86_vendor_id[0] = '\0'; /* Unset */
454 	c->x86_model_id[0] = '\0';  /* Unset */
455 	c->x86_max_cores = 1;
456 	c->x86_clflush_size = 32;
457 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
458 
459 	if (!have_cpuid_p()) {
460 		/*
461 		 * First of all, decide if this is a 486 or higher
462 		 * It's a 486 if we can modify the AC flag
463 		 */
464 		if (flag_is_changeable_p(X86_EFLAGS_AC))
465 			c->x86 = 4;
466 		else
467 			c->x86 = 3;
468 	}
469 
470 	generic_identify(c);
471 
472 	if (this_cpu->c_identify)
473 		this_cpu->c_identify(c);
474 
475 	/*
476 	 * Vendor-specific initialization.  In this section we
477 	 * canonicalize the feature flags, meaning if there are
478 	 * features a certain CPU supports which CPUID doesn't
479 	 * tell us, CPUID claiming incorrect flags, or other bugs,
480 	 * we handle them here.
481 	 *
482 	 * At the end of this section, c->x86_capability better
483 	 * indicate the features this CPU genuinely supports!
484 	 */
485 	if (this_cpu->c_init)
486 		this_cpu->c_init(c);
487 
488 	/* Disable the PN if appropriate */
489 	squash_the_stupid_serial_number(c);
490 
491 	/*
492 	 * The vendor-specific functions might have changed features.  Now
493 	 * we do "generic changes."
494 	 */
495 
496 	/* If the model name is still unset, do table lookup. */
497 	if (!c->x86_model_id[0]) {
498 		char *p;
499 		p = table_lookup_model(c);
500 		if (p)
501 			strcpy(c->x86_model_id, p);
502 		else
503 			/* Last resort... */
504 			sprintf(c->x86_model_id, "%02x/%02x",
505 				c->x86, c->x86_model);
506 	}
507 
508 	/*
509 	 * On SMP, boot_cpu_data holds the common feature set between
510 	 * all CPUs; so make sure that we indicate which features are
511 	 * common between the CPUs.  The first time this routine gets
512 	 * executed, c == &boot_cpu_data.
513 	 */
514 	if (c != &boot_cpu_data) {
515 		/* AND the already accumulated flags with these */
516 		for (i = 0 ; i < NCAPINTS ; i++)
517 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
518 	}
519 
520 	/* Clear all flags overriden by options */
521 	for (i = 0; i < NCAPINTS; i++)
522 		c->x86_capability[i] &= ~cleared_cpu_caps[i];
523 
524 	/* Init Machine Check Exception if available. */
525 	mcheck_init(c);
526 
527 	select_idle_routine(c);
528 }
529 
530 void __init identify_boot_cpu(void)
531 {
532 	identify_cpu(&boot_cpu_data);
533 	sysenter_setup();
534 	enable_sep_cpu();
535 }
536 
537 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
538 {
539 	BUG_ON(c == &boot_cpu_data);
540 	identify_cpu(c);
541 	enable_sep_cpu();
542 	mtrr_ap_init();
543 }
544 
545 #ifdef CONFIG_X86_HT
546 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
547 {
548 	u32 	eax, ebx, ecx, edx;
549 	int 	index_msb, core_bits;
550 
551 	cpuid(1, &eax, &ebx, &ecx, &edx);
552 
553 	if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
554 		return;
555 
556 	smp_num_siblings = (ebx & 0xff0000) >> 16;
557 
558 	if (smp_num_siblings == 1) {
559 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
560 	} else if (smp_num_siblings > 1) {
561 
562 		if (smp_num_siblings > NR_CPUS) {
563 			printk(KERN_WARNING "CPU: Unsupported number of the "
564 					"siblings %d", smp_num_siblings);
565 			smp_num_siblings = 1;
566 			return;
567 		}
568 
569 		index_msb = get_count_order(smp_num_siblings);
570 		c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
571 
572 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
573 		       c->phys_proc_id);
574 
575 		smp_num_siblings = smp_num_siblings / c->x86_max_cores;
576 
577 		index_msb = get_count_order(smp_num_siblings) ;
578 
579 		core_bits = get_count_order(c->x86_max_cores);
580 
581 		c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
582 					       ((1 << core_bits) - 1);
583 
584 		if (c->x86_max_cores > 1)
585 			printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
586 			       c->cpu_core_id);
587 	}
588 }
589 #endif
590 
591 static __init int setup_noclflush(char *arg)
592 {
593 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
594 	return 1;
595 }
596 __setup("noclflush", setup_noclflush);
597 
598 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
599 {
600 	char *vendor = NULL;
601 
602 	if (c->x86_vendor < X86_VENDOR_NUM)
603 		vendor = this_cpu->c_vendor;
604 	else if (c->cpuid_level >= 0)
605 		vendor = c->x86_vendor_id;
606 
607 	if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
608 		printk("%s ", vendor);
609 
610 	if (!c->x86_model_id[0])
611 		printk("%d86", c->x86);
612 	else
613 		printk("%s", c->x86_model_id);
614 
615 	if (c->x86_mask || c->cpuid_level >= 0)
616 		printk(" stepping %02x\n", c->x86_mask);
617 	else
618 		printk("\n");
619 }
620 
621 static __init int setup_disablecpuid(char *arg)
622 {
623 	int bit;
624 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
625 		setup_clear_cpu_cap(bit);
626 	else
627 		return 0;
628 	return 1;
629 }
630 __setup("clearcpuid=", setup_disablecpuid);
631 
632 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
633 
634 void __init early_cpu_init(void)
635 {
636 	struct cpu_vendor_dev *cvdev;
637 
638 	for (cvdev = __x86cpuvendor_start ;
639 	     cvdev < __x86cpuvendor_end   ;
640 	     cvdev++)
641 		cpu_devs[cvdev->vendor] = cvdev->cpu_dev;
642 
643 	early_cpu_detect();
644 	validate_pat_support(&boot_cpu_data);
645 }
646 
647 /* Make sure %fs is initialized properly in idle threads */
648 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
649 {
650 	memset(regs, 0, sizeof(struct pt_regs));
651 	regs->fs = __KERNEL_PERCPU;
652 	return regs;
653 }
654 
655 /* Current gdt points %fs at the "master" per-cpu area: after this,
656  * it's on the real one. */
657 void switch_to_new_gdt(void)
658 {
659 	struct desc_ptr gdt_descr;
660 
661 	gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
662 	gdt_descr.size = GDT_SIZE - 1;
663 	load_gdt(&gdt_descr);
664 	asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
665 }
666 
667 /*
668  * cpu_init() initializes state that is per-CPU. Some data is already
669  * initialized (naturally) in the bootstrap process, such as the GDT
670  * and IDT. We reload them nevertheless, this function acts as a
671  * 'CPU state barrier', nothing should get across.
672  */
673 void __cpuinit cpu_init(void)
674 {
675 	int cpu = smp_processor_id();
676 	struct task_struct *curr = current;
677 	struct tss_struct *t = &per_cpu(init_tss, cpu);
678 	struct thread_struct *thread = &curr->thread;
679 
680 	if (cpu_test_and_set(cpu, cpu_initialized)) {
681 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
682 		for (;;) local_irq_enable();
683 	}
684 
685 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
686 
687 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
688 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
689 
690 	load_idt(&idt_descr);
691 	switch_to_new_gdt();
692 
693 	/*
694 	 * Set up and load the per-CPU TSS and LDT
695 	 */
696 	atomic_inc(&init_mm.mm_count);
697 	curr->active_mm = &init_mm;
698 	if (curr->mm)
699 		BUG();
700 	enter_lazy_tlb(&init_mm, curr);
701 
702 	load_sp0(t, thread);
703 	set_tss_desc(cpu, t);
704 	load_TR_desc();
705 	load_LDT(&init_mm.context);
706 
707 #ifdef CONFIG_DOUBLEFAULT
708 	/* Set up doublefault TSS pointer in the GDT */
709 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
710 #endif
711 
712 	/* Clear %gs. */
713 	asm volatile ("mov %0, %%gs" : : "r" (0));
714 
715 	/* Clear all 6 debug registers: */
716 	set_debugreg(0, 0);
717 	set_debugreg(0, 1);
718 	set_debugreg(0, 2);
719 	set_debugreg(0, 3);
720 	set_debugreg(0, 6);
721 	set_debugreg(0, 7);
722 
723 	/*
724 	 * Force FPU initialization:
725 	 */
726 	current_thread_info()->status = 0;
727 	clear_used_math();
728 	mxcsr_feature_mask_init();
729 }
730 
731 #ifdef CONFIG_HOTPLUG_CPU
732 void __cpuinit cpu_uninit(void)
733 {
734 	int cpu = raw_smp_processor_id();
735 	cpu_clear(cpu, cpu_initialized);
736 
737 	/* lazy TLB state */
738 	per_cpu(cpu_tlbstate, cpu).state = 0;
739 	per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
740 }
741 #endif
742