xref: /linux/arch/x86/kernel/cpu/common.c (revision a544684b790f3e9f75173b3b42d7dad1c89dd237)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62 
63 #include "cpu.h"
64 
65 u32 elf_hwcap2 __read_mostly;
66 
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71 
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74 
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78 
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81 
82 u16 get_llc_id(unsigned int cpu)
83 {
84 	return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87 
88 /* L2 cache ID of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
90 
91 /* correctly size the local cpu masks */
92 void __init setup_cpu_local_masks(void)
93 {
94 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
95 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
96 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
97 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
98 }
99 
100 static void default_init(struct cpuinfo_x86 *c)
101 {
102 #ifdef CONFIG_X86_64
103 	cpu_detect_cache_sizes(c);
104 #else
105 	/* Not much we can do here... */
106 	/* Check if at least it has cpuid */
107 	if (c->cpuid_level == -1) {
108 		/* No cpuid. It must be an ancient CPU */
109 		if (c->x86 == 4)
110 			strcpy(c->x86_model_id, "486");
111 		else if (c->x86 == 3)
112 			strcpy(c->x86_model_id, "386");
113 	}
114 #endif
115 }
116 
117 static const struct cpu_dev default_cpu = {
118 	.c_init		= default_init,
119 	.c_vendor	= "Unknown",
120 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
121 };
122 
123 static const struct cpu_dev *this_cpu = &default_cpu;
124 
125 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
126 #ifdef CONFIG_X86_64
127 	/*
128 	 * We need valid kernel segments for data and code in long mode too
129 	 * IRET will check the segment types  kkeil 2000/10/28
130 	 * Also sysret mandates a special GDT layout
131 	 *
132 	 * TLS descriptors are currently at a different place compared to i386.
133 	 * Hopefully nobody expects them at a fixed place (Wine?)
134 	 */
135 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
136 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
137 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
138 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
139 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
140 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
141 #else
142 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
143 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
145 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
146 	/*
147 	 * Segments used for calling PnP BIOS have byte granularity.
148 	 * They code segments and data segments have fixed 64k limits,
149 	 * the transfer segment sizes are set at run time.
150 	 */
151 	/* 32-bit code */
152 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
153 	/* 16-bit code */
154 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
155 	/* 16-bit data */
156 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
157 	/* 16-bit data */
158 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
159 	/* 16-bit data */
160 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
161 	/*
162 	 * The APM segments have byte granularity and their bases
163 	 * are set at run time.  All have 64k limits.
164 	 */
165 	/* 32-bit code */
166 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
167 	/* 16-bit code */
168 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
169 	/* data */
170 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
171 
172 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
173 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
174 #endif
175 } };
176 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
177 
178 #ifdef CONFIG_X86_64
179 static int __init x86_nopcid_setup(char *s)
180 {
181 	/* nopcid doesn't accept parameters */
182 	if (s)
183 		return -EINVAL;
184 
185 	/* do not emit a message if the feature is not present */
186 	if (!boot_cpu_has(X86_FEATURE_PCID))
187 		return 0;
188 
189 	setup_clear_cpu_cap(X86_FEATURE_PCID);
190 	pr_info("nopcid: PCID feature disabled\n");
191 	return 0;
192 }
193 early_param("nopcid", x86_nopcid_setup);
194 #endif
195 
196 static int __init x86_noinvpcid_setup(char *s)
197 {
198 	/* noinvpcid doesn't accept parameters */
199 	if (s)
200 		return -EINVAL;
201 
202 	/* do not emit a message if the feature is not present */
203 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
204 		return 0;
205 
206 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
207 	pr_info("noinvpcid: INVPCID feature disabled\n");
208 	return 0;
209 }
210 early_param("noinvpcid", x86_noinvpcid_setup);
211 
212 #ifdef CONFIG_X86_32
213 static int cachesize_override = -1;
214 static int disable_x86_serial_nr = 1;
215 
216 static int __init cachesize_setup(char *str)
217 {
218 	get_option(&str, &cachesize_override);
219 	return 1;
220 }
221 __setup("cachesize=", cachesize_setup);
222 
223 static int __init x86_sep_setup(char *s)
224 {
225 	setup_clear_cpu_cap(X86_FEATURE_SEP);
226 	return 1;
227 }
228 __setup("nosep", x86_sep_setup);
229 
230 /* Standard macro to see if a specific flag is changeable */
231 static inline int flag_is_changeable_p(u32 flag)
232 {
233 	u32 f1, f2;
234 
235 	/*
236 	 * Cyrix and IDT cpus allow disabling of CPUID
237 	 * so the code below may return different results
238 	 * when it is executed before and after enabling
239 	 * the CPUID. Add "volatile" to not allow gcc to
240 	 * optimize the subsequent calls to this function.
241 	 */
242 	asm volatile ("pushfl		\n\t"
243 		      "pushfl		\n\t"
244 		      "popl %0		\n\t"
245 		      "movl %0, %1	\n\t"
246 		      "xorl %2, %0	\n\t"
247 		      "pushl %0		\n\t"
248 		      "popfl		\n\t"
249 		      "pushfl		\n\t"
250 		      "popl %0		\n\t"
251 		      "popfl		\n\t"
252 
253 		      : "=&r" (f1), "=&r" (f2)
254 		      : "ir" (flag));
255 
256 	return ((f1^f2) & flag) != 0;
257 }
258 
259 /* Probe for the CPUID instruction */
260 int have_cpuid_p(void)
261 {
262 	return flag_is_changeable_p(X86_EFLAGS_ID);
263 }
264 
265 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266 {
267 	unsigned long lo, hi;
268 
269 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
270 		return;
271 
272 	/* Disable processor serial number: */
273 
274 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
275 	lo |= 0x200000;
276 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 
278 	pr_notice("CPU serial number disabled.\n");
279 	clear_cpu_cap(c, X86_FEATURE_PN);
280 
281 	/* Disabling the serial number may affect the cpuid level */
282 	c->cpuid_level = cpuid_eax(0);
283 }
284 
285 static int __init x86_serial_nr_setup(char *s)
286 {
287 	disable_x86_serial_nr = 0;
288 	return 1;
289 }
290 __setup("serialnumber", x86_serial_nr_setup);
291 #else
292 static inline int flag_is_changeable_p(u32 flag)
293 {
294 	return 1;
295 }
296 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
297 {
298 }
299 #endif
300 
301 static __init int setup_disable_smep(char *arg)
302 {
303 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
304 	return 1;
305 }
306 __setup("nosmep", setup_disable_smep);
307 
308 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
309 {
310 	if (cpu_has(c, X86_FEATURE_SMEP))
311 		cr4_set_bits(X86_CR4_SMEP);
312 }
313 
314 static __init int setup_disable_smap(char *arg)
315 {
316 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
317 	return 1;
318 }
319 __setup("nosmap", setup_disable_smap);
320 
321 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
322 {
323 	unsigned long eflags = native_save_fl();
324 
325 	/* This should have been cleared long ago */
326 	BUG_ON(eflags & X86_EFLAGS_AC);
327 
328 	if (cpu_has(c, X86_FEATURE_SMAP)) {
329 #ifdef CONFIG_X86_SMAP
330 		cr4_set_bits(X86_CR4_SMAP);
331 #else
332 		clear_cpu_cap(c, X86_FEATURE_SMAP);
333 		cr4_clear_bits(X86_CR4_SMAP);
334 #endif
335 	}
336 }
337 
338 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
339 {
340 	/* Check the boot processor, plus build option for UMIP. */
341 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
342 		goto out;
343 
344 	/* Check the current processor's cpuid bits. */
345 	if (!cpu_has(c, X86_FEATURE_UMIP))
346 		goto out;
347 
348 	cr4_set_bits(X86_CR4_UMIP);
349 
350 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
351 
352 	return;
353 
354 out:
355 	/*
356 	 * Make sure UMIP is disabled in case it was enabled in a
357 	 * previous boot (e.g., via kexec).
358 	 */
359 	cr4_clear_bits(X86_CR4_UMIP);
360 }
361 
362 /* These bits should not change their value after CPU init is finished. */
363 static const unsigned long cr4_pinned_mask =
364 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
365 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
366 static unsigned long cr4_pinned_bits __ro_after_init;
367 
368 void native_write_cr0(unsigned long val)
369 {
370 	unsigned long bits_missing = 0;
371 
372 set_register:
373 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
374 
375 	if (static_branch_likely(&cr_pinning)) {
376 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
377 			bits_missing = X86_CR0_WP;
378 			val |= bits_missing;
379 			goto set_register;
380 		}
381 		/* Warn after we've set the missing bits. */
382 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
383 	}
384 }
385 EXPORT_SYMBOL(native_write_cr0);
386 
387 void __no_profile native_write_cr4(unsigned long val)
388 {
389 	unsigned long bits_changed = 0;
390 
391 set_register:
392 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
393 
394 	if (static_branch_likely(&cr_pinning)) {
395 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
396 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
397 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
398 			goto set_register;
399 		}
400 		/* Warn after we've corrected the changed bits. */
401 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
402 			  bits_changed);
403 	}
404 }
405 #if IS_MODULE(CONFIG_LKDTM)
406 EXPORT_SYMBOL_GPL(native_write_cr4);
407 #endif
408 
409 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
410 {
411 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
412 
413 	lockdep_assert_irqs_disabled();
414 
415 	newval = (cr4 & ~clear) | set;
416 	if (newval != cr4) {
417 		this_cpu_write(cpu_tlbstate.cr4, newval);
418 		__write_cr4(newval);
419 	}
420 }
421 EXPORT_SYMBOL(cr4_update_irqsoff);
422 
423 /* Read the CR4 shadow. */
424 unsigned long cr4_read_shadow(void)
425 {
426 	return this_cpu_read(cpu_tlbstate.cr4);
427 }
428 EXPORT_SYMBOL_GPL(cr4_read_shadow);
429 
430 void cr4_init(void)
431 {
432 	unsigned long cr4 = __read_cr4();
433 
434 	if (boot_cpu_has(X86_FEATURE_PCID))
435 		cr4 |= X86_CR4_PCIDE;
436 	if (static_branch_likely(&cr_pinning))
437 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
438 
439 	__write_cr4(cr4);
440 
441 	/* Initialize cr4 shadow for this CPU. */
442 	this_cpu_write(cpu_tlbstate.cr4, cr4);
443 }
444 
445 /*
446  * Once CPU feature detection is finished (and boot params have been
447  * parsed), record any of the sensitive CR bits that are set, and
448  * enable CR pinning.
449  */
450 static void __init setup_cr_pinning(void)
451 {
452 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
453 	static_key_enable(&cr_pinning.key);
454 }
455 
456 static __init int x86_nofsgsbase_setup(char *arg)
457 {
458 	/* Require an exact match without trailing characters. */
459 	if (strlen(arg))
460 		return 0;
461 
462 	/* Do not emit a message if the feature is not present. */
463 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
464 		return 1;
465 
466 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
467 	pr_info("FSGSBASE disabled via kernel command line\n");
468 	return 1;
469 }
470 __setup("nofsgsbase", x86_nofsgsbase_setup);
471 
472 /*
473  * Protection Keys are not available in 32-bit mode.
474  */
475 static bool pku_disabled;
476 
477 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
478 {
479 	if (c == &boot_cpu_data) {
480 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
481 			return;
482 		/*
483 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
484 		 * bit to be set.  Enforce it.
485 		 */
486 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
487 
488 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
489 		return;
490 	}
491 
492 	cr4_set_bits(X86_CR4_PKE);
493 	/* Load the default PKRU value */
494 	pkru_write_default();
495 }
496 
497 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
498 static __init int setup_disable_pku(char *arg)
499 {
500 	/*
501 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
502 	 * runtime checks are against OSPKE so clearing the
503 	 * bit does nothing.
504 	 *
505 	 * This way, we will see "pku" in cpuinfo, but not
506 	 * "ospke", which is exactly what we want.  It shows
507 	 * that the CPU has PKU, but the OS has not enabled it.
508 	 * This happens to be exactly how a system would look
509 	 * if we disabled the config option.
510 	 */
511 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
512 	pku_disabled = true;
513 	return 1;
514 }
515 __setup("nopku", setup_disable_pku);
516 #endif /* CONFIG_X86_64 */
517 
518 /*
519  * Some CPU features depend on higher CPUID levels, which may not always
520  * be available due to CPUID level capping or broken virtualization
521  * software.  Add those features to this table to auto-disable them.
522  */
523 struct cpuid_dependent_feature {
524 	u32 feature;
525 	u32 level;
526 };
527 
528 static const struct cpuid_dependent_feature
529 cpuid_dependent_features[] = {
530 	{ X86_FEATURE_MWAIT,		0x00000005 },
531 	{ X86_FEATURE_DCA,		0x00000009 },
532 	{ X86_FEATURE_XSAVE,		0x0000000d },
533 	{ 0, 0 }
534 };
535 
536 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
537 {
538 	const struct cpuid_dependent_feature *df;
539 
540 	for (df = cpuid_dependent_features; df->feature; df++) {
541 
542 		if (!cpu_has(c, df->feature))
543 			continue;
544 		/*
545 		 * Note: cpuid_level is set to -1 if unavailable, but
546 		 * extended_extended_level is set to 0 if unavailable
547 		 * and the legitimate extended levels are all negative
548 		 * when signed; hence the weird messing around with
549 		 * signs here...
550 		 */
551 		if (!((s32)df->level < 0 ?
552 		     (u32)df->level > (u32)c->extended_cpuid_level :
553 		     (s32)df->level > (s32)c->cpuid_level))
554 			continue;
555 
556 		clear_cpu_cap(c, df->feature);
557 		if (!warn)
558 			continue;
559 
560 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
561 			x86_cap_flag(df->feature), df->level);
562 	}
563 }
564 
565 /*
566  * Naming convention should be: <Name> [(<Codename>)]
567  * This table only is used unless init_<vendor>() below doesn't set it;
568  * in particular, if CPUID levels 0x80000002..4 are supported, this
569  * isn't used
570  */
571 
572 /* Look up CPU names by table lookup. */
573 static const char *table_lookup_model(struct cpuinfo_x86 *c)
574 {
575 #ifdef CONFIG_X86_32
576 	const struct legacy_cpu_model_info *info;
577 
578 	if (c->x86_model >= 16)
579 		return NULL;	/* Range check */
580 
581 	if (!this_cpu)
582 		return NULL;
583 
584 	info = this_cpu->legacy_models;
585 
586 	while (info->family) {
587 		if (info->family == c->x86)
588 			return info->model_names[c->x86_model];
589 		info++;
590 	}
591 #endif
592 	return NULL;		/* Not found */
593 }
594 
595 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
596 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
597 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
598 
599 void load_percpu_segment(int cpu)
600 {
601 #ifdef CONFIG_X86_32
602 	loadsegment(fs, __KERNEL_PERCPU);
603 #else
604 	__loadsegment_simple(gs, 0);
605 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
606 #endif
607 }
608 
609 #ifdef CONFIG_X86_32
610 /* The 32-bit entry code needs to find cpu_entry_area. */
611 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
612 #endif
613 
614 /* Load the original GDT from the per-cpu structure */
615 void load_direct_gdt(int cpu)
616 {
617 	struct desc_ptr gdt_descr;
618 
619 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
620 	gdt_descr.size = GDT_SIZE - 1;
621 	load_gdt(&gdt_descr);
622 }
623 EXPORT_SYMBOL_GPL(load_direct_gdt);
624 
625 /* Load a fixmap remapping of the per-cpu GDT */
626 void load_fixmap_gdt(int cpu)
627 {
628 	struct desc_ptr gdt_descr;
629 
630 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
631 	gdt_descr.size = GDT_SIZE - 1;
632 	load_gdt(&gdt_descr);
633 }
634 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
635 
636 /*
637  * Current gdt points %fs at the "master" per-cpu area: after this,
638  * it's on the real one.
639  */
640 void switch_to_new_gdt(int cpu)
641 {
642 	/* Load the original GDT */
643 	load_direct_gdt(cpu);
644 	/* Reload the per-cpu base */
645 	load_percpu_segment(cpu);
646 }
647 
648 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
649 
650 static void get_model_name(struct cpuinfo_x86 *c)
651 {
652 	unsigned int *v;
653 	char *p, *q, *s;
654 
655 	if (c->extended_cpuid_level < 0x80000004)
656 		return;
657 
658 	v = (unsigned int *)c->x86_model_id;
659 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
660 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
661 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
662 	c->x86_model_id[48] = 0;
663 
664 	/* Trim whitespace */
665 	p = q = s = &c->x86_model_id[0];
666 
667 	while (*p == ' ')
668 		p++;
669 
670 	while (*p) {
671 		/* Note the last non-whitespace index */
672 		if (!isspace(*p))
673 			s = q;
674 
675 		*q++ = *p++;
676 	}
677 
678 	*(s + 1) = '\0';
679 }
680 
681 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
682 {
683 	unsigned int eax, ebx, ecx, edx;
684 
685 	c->x86_max_cores = 1;
686 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
687 		return;
688 
689 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
690 	if (eax & 0x1f)
691 		c->x86_max_cores = (eax >> 26) + 1;
692 }
693 
694 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
695 {
696 	unsigned int n, dummy, ebx, ecx, edx, l2size;
697 
698 	n = c->extended_cpuid_level;
699 
700 	if (n >= 0x80000005) {
701 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
702 		c->x86_cache_size = (ecx>>24) + (edx>>24);
703 #ifdef CONFIG_X86_64
704 		/* On K8 L1 TLB is inclusive, so don't count it */
705 		c->x86_tlbsize = 0;
706 #endif
707 	}
708 
709 	if (n < 0x80000006)	/* Some chips just has a large L1. */
710 		return;
711 
712 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
713 	l2size = ecx >> 16;
714 
715 #ifdef CONFIG_X86_64
716 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
717 #else
718 	/* do processor-specific cache resizing */
719 	if (this_cpu->legacy_cache_size)
720 		l2size = this_cpu->legacy_cache_size(c, l2size);
721 
722 	/* Allow user to override all this if necessary. */
723 	if (cachesize_override != -1)
724 		l2size = cachesize_override;
725 
726 	if (l2size == 0)
727 		return;		/* Again, no L2 cache is possible */
728 #endif
729 
730 	c->x86_cache_size = l2size;
731 }
732 
733 u16 __read_mostly tlb_lli_4k[NR_INFO];
734 u16 __read_mostly tlb_lli_2m[NR_INFO];
735 u16 __read_mostly tlb_lli_4m[NR_INFO];
736 u16 __read_mostly tlb_lld_4k[NR_INFO];
737 u16 __read_mostly tlb_lld_2m[NR_INFO];
738 u16 __read_mostly tlb_lld_4m[NR_INFO];
739 u16 __read_mostly tlb_lld_1g[NR_INFO];
740 
741 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
742 {
743 	if (this_cpu->c_detect_tlb)
744 		this_cpu->c_detect_tlb(c);
745 
746 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
747 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
748 		tlb_lli_4m[ENTRIES]);
749 
750 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
751 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
752 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
753 }
754 
755 int detect_ht_early(struct cpuinfo_x86 *c)
756 {
757 #ifdef CONFIG_SMP
758 	u32 eax, ebx, ecx, edx;
759 
760 	if (!cpu_has(c, X86_FEATURE_HT))
761 		return -1;
762 
763 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
764 		return -1;
765 
766 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
767 		return -1;
768 
769 	cpuid(1, &eax, &ebx, &ecx, &edx);
770 
771 	smp_num_siblings = (ebx & 0xff0000) >> 16;
772 	if (smp_num_siblings == 1)
773 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
774 #endif
775 	return 0;
776 }
777 
778 void detect_ht(struct cpuinfo_x86 *c)
779 {
780 #ifdef CONFIG_SMP
781 	int index_msb, core_bits;
782 
783 	if (detect_ht_early(c) < 0)
784 		return;
785 
786 	index_msb = get_count_order(smp_num_siblings);
787 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
788 
789 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
790 
791 	index_msb = get_count_order(smp_num_siblings);
792 
793 	core_bits = get_count_order(c->x86_max_cores);
794 
795 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
796 				       ((1 << core_bits) - 1);
797 #endif
798 }
799 
800 static void get_cpu_vendor(struct cpuinfo_x86 *c)
801 {
802 	char *v = c->x86_vendor_id;
803 	int i;
804 
805 	for (i = 0; i < X86_VENDOR_NUM; i++) {
806 		if (!cpu_devs[i])
807 			break;
808 
809 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
810 		    (cpu_devs[i]->c_ident[1] &&
811 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
812 
813 			this_cpu = cpu_devs[i];
814 			c->x86_vendor = this_cpu->c_x86_vendor;
815 			return;
816 		}
817 	}
818 
819 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
820 		    "CPU: Your system may be unstable.\n", v);
821 
822 	c->x86_vendor = X86_VENDOR_UNKNOWN;
823 	this_cpu = &default_cpu;
824 }
825 
826 void cpu_detect(struct cpuinfo_x86 *c)
827 {
828 	/* Get vendor name */
829 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
830 	      (unsigned int *)&c->x86_vendor_id[0],
831 	      (unsigned int *)&c->x86_vendor_id[8],
832 	      (unsigned int *)&c->x86_vendor_id[4]);
833 
834 	c->x86 = 4;
835 	/* Intel-defined flags: level 0x00000001 */
836 	if (c->cpuid_level >= 0x00000001) {
837 		u32 junk, tfms, cap0, misc;
838 
839 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
840 		c->x86		= x86_family(tfms);
841 		c->x86_model	= x86_model(tfms);
842 		c->x86_stepping	= x86_stepping(tfms);
843 
844 		if (cap0 & (1<<19)) {
845 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
846 			c->x86_cache_alignment = c->x86_clflush_size;
847 		}
848 	}
849 }
850 
851 static void apply_forced_caps(struct cpuinfo_x86 *c)
852 {
853 	int i;
854 
855 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
856 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
857 		c->x86_capability[i] |= cpu_caps_set[i];
858 	}
859 }
860 
861 static void init_speculation_control(struct cpuinfo_x86 *c)
862 {
863 	/*
864 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
865 	 * and they also have a different bit for STIBP support. Also,
866 	 * a hypervisor might have set the individual AMD bits even on
867 	 * Intel CPUs, for finer-grained selection of what's available.
868 	 */
869 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
870 		set_cpu_cap(c, X86_FEATURE_IBRS);
871 		set_cpu_cap(c, X86_FEATURE_IBPB);
872 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
873 	}
874 
875 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
876 		set_cpu_cap(c, X86_FEATURE_STIBP);
877 
878 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
879 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
880 		set_cpu_cap(c, X86_FEATURE_SSBD);
881 
882 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
883 		set_cpu_cap(c, X86_FEATURE_IBRS);
884 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
885 	}
886 
887 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
888 		set_cpu_cap(c, X86_FEATURE_IBPB);
889 
890 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
891 		set_cpu_cap(c, X86_FEATURE_STIBP);
892 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
893 	}
894 
895 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
896 		set_cpu_cap(c, X86_FEATURE_SSBD);
897 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
898 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
899 	}
900 }
901 
902 void get_cpu_cap(struct cpuinfo_x86 *c)
903 {
904 	u32 eax, ebx, ecx, edx;
905 
906 	/* Intel-defined flags: level 0x00000001 */
907 	if (c->cpuid_level >= 0x00000001) {
908 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
909 
910 		c->x86_capability[CPUID_1_ECX] = ecx;
911 		c->x86_capability[CPUID_1_EDX] = edx;
912 	}
913 
914 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
915 	if (c->cpuid_level >= 0x00000006)
916 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
917 
918 	/* Additional Intel-defined flags: level 0x00000007 */
919 	if (c->cpuid_level >= 0x00000007) {
920 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
921 		c->x86_capability[CPUID_7_0_EBX] = ebx;
922 		c->x86_capability[CPUID_7_ECX] = ecx;
923 		c->x86_capability[CPUID_7_EDX] = edx;
924 
925 		/* Check valid sub-leaf index before accessing it */
926 		if (eax >= 1) {
927 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
928 			c->x86_capability[CPUID_7_1_EAX] = eax;
929 		}
930 	}
931 
932 	/* Extended state features: level 0x0000000d */
933 	if (c->cpuid_level >= 0x0000000d) {
934 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
935 
936 		c->x86_capability[CPUID_D_1_EAX] = eax;
937 	}
938 
939 	/* AMD-defined flags: level 0x80000001 */
940 	eax = cpuid_eax(0x80000000);
941 	c->extended_cpuid_level = eax;
942 
943 	if ((eax & 0xffff0000) == 0x80000000) {
944 		if (eax >= 0x80000001) {
945 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
946 
947 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
948 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
949 		}
950 	}
951 
952 	if (c->extended_cpuid_level >= 0x80000007) {
953 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
954 
955 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
956 		c->x86_power = edx;
957 	}
958 
959 	if (c->extended_cpuid_level >= 0x80000008) {
960 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
961 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
962 	}
963 
964 	if (c->extended_cpuid_level >= 0x8000000a)
965 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
966 
967 	if (c->extended_cpuid_level >= 0x8000001f)
968 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
969 
970 	init_scattered_cpuid_features(c);
971 	init_speculation_control(c);
972 
973 	/*
974 	 * Clear/Set all flags overridden by options, after probe.
975 	 * This needs to happen each time we re-probe, which may happen
976 	 * several times during CPU initialization.
977 	 */
978 	apply_forced_caps(c);
979 }
980 
981 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
982 {
983 	u32 eax, ebx, ecx, edx;
984 
985 	if (c->extended_cpuid_level >= 0x80000008) {
986 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
987 
988 		c->x86_virt_bits = (eax >> 8) & 0xff;
989 		c->x86_phys_bits = eax & 0xff;
990 	}
991 #ifdef CONFIG_X86_32
992 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
993 		c->x86_phys_bits = 36;
994 #endif
995 	c->x86_cache_bits = c->x86_phys_bits;
996 }
997 
998 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
999 {
1000 #ifdef CONFIG_X86_32
1001 	int i;
1002 
1003 	/*
1004 	 * First of all, decide if this is a 486 or higher
1005 	 * It's a 486 if we can modify the AC flag
1006 	 */
1007 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1008 		c->x86 = 4;
1009 	else
1010 		c->x86 = 3;
1011 
1012 	for (i = 0; i < X86_VENDOR_NUM; i++)
1013 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1014 			c->x86_vendor_id[0] = 0;
1015 			cpu_devs[i]->c_identify(c);
1016 			if (c->x86_vendor_id[0]) {
1017 				get_cpu_vendor(c);
1018 				break;
1019 			}
1020 		}
1021 #endif
1022 }
1023 
1024 #define NO_SPECULATION		BIT(0)
1025 #define NO_MELTDOWN		BIT(1)
1026 #define NO_SSB			BIT(2)
1027 #define NO_L1TF			BIT(3)
1028 #define NO_MDS			BIT(4)
1029 #define MSBDS_ONLY		BIT(5)
1030 #define NO_SWAPGS		BIT(6)
1031 #define NO_ITLB_MULTIHIT	BIT(7)
1032 #define NO_SPECTRE_V2		BIT(8)
1033 
1034 #define VULNWL(vendor, family, model, whitelist)	\
1035 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1036 
1037 #define VULNWL_INTEL(model, whitelist)		\
1038 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1039 
1040 #define VULNWL_AMD(family, whitelist)		\
1041 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1042 
1043 #define VULNWL_HYGON(family, whitelist)		\
1044 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1045 
1046 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1047 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1048 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1049 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1050 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1051 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1052 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1053 
1054 	/* Intel Family 6 */
1055 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1056 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1057 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1058 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1059 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1060 
1061 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067 
1068 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1069 
1070 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1072 
1073 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1074 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1075 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1076 
1077 	/*
1078 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1079 	 * being documented as such in the APM).  But according to AMD, %gs is
1080 	 * updated non-speculatively, and the issuing of %gs-relative memory
1081 	 * operands will be blocked until the %gs update completes, which is
1082 	 * good enough for our purposes.
1083 	 */
1084 
1085 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
1086 
1087 	/* AMD Family 0xf - 0x12 */
1088 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1089 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1092 
1093 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1094 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1095 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1096 
1097 	/* Zhaoxin Family 7 */
1098 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1099 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1100 	{}
1101 };
1102 
1103 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1104 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1105 					    INTEL_FAM6_##model, steppings, \
1106 					    X86_FEATURE_ANY, issues)
1107 
1108 #define SRBDS		BIT(0)
1109 
1110 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1111 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1112 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1113 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1114 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1115 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1116 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1117 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS),
1118 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS),
1119 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x0, 0xC),	SRBDS),
1120 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x0, 0xD),	SRBDS),
1121 	{}
1122 };
1123 
1124 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1125 {
1126 	const struct x86_cpu_id *m = x86_match_cpu(table);
1127 
1128 	return m && !!(m->driver_data & which);
1129 }
1130 
1131 u64 x86_read_arch_cap_msr(void)
1132 {
1133 	u64 ia32_cap = 0;
1134 
1135 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1136 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1137 
1138 	return ia32_cap;
1139 }
1140 
1141 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1142 {
1143 	u64 ia32_cap = x86_read_arch_cap_msr();
1144 
1145 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1146 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1147 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1148 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1149 
1150 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1151 		return;
1152 
1153 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1154 
1155 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1156 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1157 
1158 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1159 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1160 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1161 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1162 
1163 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1164 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1165 
1166 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1167 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1168 		setup_force_cpu_bug(X86_BUG_MDS);
1169 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1170 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1171 	}
1172 
1173 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1174 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1175 
1176 	/*
1177 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1178 	 *	- TSX is supported or
1179 	 *	- TSX_CTRL is present
1180 	 *
1181 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1182 	 * the kernel boot e.g. kexec.
1183 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1184 	 * update is not present or running as guest that don't get TSX_CTRL.
1185 	 */
1186 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1187 	    (cpu_has(c, X86_FEATURE_RTM) ||
1188 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1189 		setup_force_cpu_bug(X86_BUG_TAA);
1190 
1191 	/*
1192 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1193 	 * in the vulnerability blacklist.
1194 	 */
1195 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1196 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1197 	    cpu_matches(cpu_vuln_blacklist, SRBDS))
1198 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1199 
1200 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1201 		return;
1202 
1203 	/* Rogue Data Cache Load? No! */
1204 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1205 		return;
1206 
1207 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1208 
1209 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1210 		return;
1211 
1212 	setup_force_cpu_bug(X86_BUG_L1TF);
1213 }
1214 
1215 /*
1216  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1217  * unfortunately, that's not true in practice because of early VIA
1218  * chips and (more importantly) broken virtualizers that are not easy
1219  * to detect. In the latter case it doesn't even *fail* reliably, so
1220  * probing for it doesn't even work. Disable it completely on 32-bit
1221  * unless we can find a reliable way to detect all the broken cases.
1222  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1223  */
1224 static void detect_nopl(void)
1225 {
1226 #ifdef CONFIG_X86_32
1227 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1228 #else
1229 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1230 #endif
1231 }
1232 
1233 /*
1234  * We parse cpu parameters early because fpu__init_system() is executed
1235  * before parse_early_param().
1236  */
1237 static void __init cpu_parse_early_param(void)
1238 {
1239 	char arg[128];
1240 	char *argptr = arg;
1241 	int arglen, res, bit;
1242 
1243 #ifdef CONFIG_X86_32
1244 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1245 #ifdef CONFIG_MATH_EMULATION
1246 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1247 #else
1248 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1249 #endif
1250 
1251 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1252 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1253 #endif
1254 
1255 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1256 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1257 
1258 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1259 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1260 
1261 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1262 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1263 
1264 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1265 	if (arglen <= 0)
1266 		return;
1267 
1268 	pr_info("Clearing CPUID bits:");
1269 	do {
1270 		res = get_option(&argptr, &bit);
1271 		if (res == 0 || res == 3)
1272 			break;
1273 
1274 		/* If the argument was too long, the last bit may be cut off */
1275 		if (res == 1 && arglen >= sizeof(arg))
1276 			break;
1277 
1278 		if (bit >= 0 && bit < NCAPINTS * 32) {
1279 			pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1280 			setup_clear_cpu_cap(bit);
1281 		}
1282 	} while (res == 2);
1283 	pr_cont("\n");
1284 }
1285 
1286 /*
1287  * Do minimum CPU detection early.
1288  * Fields really needed: vendor, cpuid_level, family, model, mask,
1289  * cache alignment.
1290  * The others are not touched to avoid unwanted side effects.
1291  *
1292  * WARNING: this function is only called on the boot CPU.  Don't add code
1293  * here that is supposed to run on all CPUs.
1294  */
1295 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1296 {
1297 #ifdef CONFIG_X86_64
1298 	c->x86_clflush_size = 64;
1299 	c->x86_phys_bits = 36;
1300 	c->x86_virt_bits = 48;
1301 #else
1302 	c->x86_clflush_size = 32;
1303 	c->x86_phys_bits = 32;
1304 	c->x86_virt_bits = 32;
1305 #endif
1306 	c->x86_cache_alignment = c->x86_clflush_size;
1307 
1308 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1309 	c->extended_cpuid_level = 0;
1310 
1311 	if (!have_cpuid_p())
1312 		identify_cpu_without_cpuid(c);
1313 
1314 	/* cyrix could have cpuid enabled via c_identify()*/
1315 	if (have_cpuid_p()) {
1316 		cpu_detect(c);
1317 		get_cpu_vendor(c);
1318 		get_cpu_cap(c);
1319 		get_cpu_address_sizes(c);
1320 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1321 		cpu_parse_early_param();
1322 
1323 		if (this_cpu->c_early_init)
1324 			this_cpu->c_early_init(c);
1325 
1326 		c->cpu_index = 0;
1327 		filter_cpuid_features(c, false);
1328 
1329 		if (this_cpu->c_bsp_init)
1330 			this_cpu->c_bsp_init(c);
1331 	} else {
1332 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1333 	}
1334 
1335 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1336 
1337 	cpu_set_bug_bits(c);
1338 
1339 	sld_setup(c);
1340 
1341 	fpu__init_system(c);
1342 
1343 	init_sigframe_size();
1344 
1345 #ifdef CONFIG_X86_32
1346 	/*
1347 	 * Regardless of whether PCID is enumerated, the SDM says
1348 	 * that it can't be enabled in 32-bit mode.
1349 	 */
1350 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1351 #endif
1352 
1353 	/*
1354 	 * Later in the boot process pgtable_l5_enabled() relies on
1355 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1356 	 * enabled by this point we need to clear the feature bit to avoid
1357 	 * false-positives at the later stage.
1358 	 *
1359 	 * pgtable_l5_enabled() can be false here for several reasons:
1360 	 *  - 5-level paging is disabled compile-time;
1361 	 *  - it's 32-bit kernel;
1362 	 *  - machine doesn't support 5-level paging;
1363 	 *  - user specified 'no5lvl' in kernel command line.
1364 	 */
1365 	if (!pgtable_l5_enabled())
1366 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1367 
1368 	detect_nopl();
1369 }
1370 
1371 void __init early_cpu_init(void)
1372 {
1373 	const struct cpu_dev *const *cdev;
1374 	int count = 0;
1375 
1376 #ifdef CONFIG_PROCESSOR_SELECT
1377 	pr_info("KERNEL supported cpus:\n");
1378 #endif
1379 
1380 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1381 		const struct cpu_dev *cpudev = *cdev;
1382 
1383 		if (count >= X86_VENDOR_NUM)
1384 			break;
1385 		cpu_devs[count] = cpudev;
1386 		count++;
1387 
1388 #ifdef CONFIG_PROCESSOR_SELECT
1389 		{
1390 			unsigned int j;
1391 
1392 			for (j = 0; j < 2; j++) {
1393 				if (!cpudev->c_ident[j])
1394 					continue;
1395 				pr_info("  %s %s\n", cpudev->c_vendor,
1396 					cpudev->c_ident[j]);
1397 			}
1398 		}
1399 #endif
1400 	}
1401 	early_identify_cpu(&boot_cpu_data);
1402 }
1403 
1404 static bool detect_null_seg_behavior(void)
1405 {
1406 	/*
1407 	 * Empirically, writing zero to a segment selector on AMD does
1408 	 * not clear the base, whereas writing zero to a segment
1409 	 * selector on Intel does clear the base.  Intel's behavior
1410 	 * allows slightly faster context switches in the common case
1411 	 * where GS is unused by the prev and next threads.
1412 	 *
1413 	 * Since neither vendor documents this anywhere that I can see,
1414 	 * detect it directly instead of hard-coding the choice by
1415 	 * vendor.
1416 	 *
1417 	 * I've designated AMD's behavior as the "bug" because it's
1418 	 * counterintuitive and less friendly.
1419 	 */
1420 
1421 	unsigned long old_base, tmp;
1422 	rdmsrl(MSR_FS_BASE, old_base);
1423 	wrmsrl(MSR_FS_BASE, 1);
1424 	loadsegment(fs, 0);
1425 	rdmsrl(MSR_FS_BASE, tmp);
1426 	wrmsrl(MSR_FS_BASE, old_base);
1427 	return tmp == 0;
1428 }
1429 
1430 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1431 {
1432 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1433 	if (!IS_ENABLED(CONFIG_X86_64))
1434 		return;
1435 
1436 	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1437 	if (c->extended_cpuid_level >= 0x80000021 &&
1438 	    cpuid_eax(0x80000021) & BIT(6))
1439 		return;
1440 
1441 	/*
1442 	 * CPUID bit above wasn't set. If this kernel is still running
1443 	 * as a HV guest, then the HV has decided not to advertize
1444 	 * that CPUID bit for whatever reason.	For example, one
1445 	 * member of the migration pool might be vulnerable.  Which
1446 	 * means, the bug is present: set the BUG flag and return.
1447 	 */
1448 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1449 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1450 		return;
1451 	}
1452 
1453 	/*
1454 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1455 	 * 0x18 is the respective family for Hygon.
1456 	 */
1457 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1458 	    detect_null_seg_behavior())
1459 		return;
1460 
1461 	/* All the remaining ones are affected */
1462 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1463 }
1464 
1465 static void generic_identify(struct cpuinfo_x86 *c)
1466 {
1467 	c->extended_cpuid_level = 0;
1468 
1469 	if (!have_cpuid_p())
1470 		identify_cpu_without_cpuid(c);
1471 
1472 	/* cyrix could have cpuid enabled via c_identify()*/
1473 	if (!have_cpuid_p())
1474 		return;
1475 
1476 	cpu_detect(c);
1477 
1478 	get_cpu_vendor(c);
1479 
1480 	get_cpu_cap(c);
1481 
1482 	get_cpu_address_sizes(c);
1483 
1484 	if (c->cpuid_level >= 0x00000001) {
1485 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1486 #ifdef CONFIG_X86_32
1487 # ifdef CONFIG_SMP
1488 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1489 # else
1490 		c->apicid = c->initial_apicid;
1491 # endif
1492 #endif
1493 		c->phys_proc_id = c->initial_apicid;
1494 	}
1495 
1496 	get_model_name(c); /* Default name */
1497 
1498 	/*
1499 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1500 	 * systems that run Linux at CPL > 0 may or may not have the
1501 	 * issue, but, even if they have the issue, there's absolutely
1502 	 * nothing we can do about it because we can't use the real IRET
1503 	 * instruction.
1504 	 *
1505 	 * NB: For the time being, only 32-bit kernels support
1506 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1507 	 * whether to apply espfix using paravirt hooks.  If any
1508 	 * non-paravirt system ever shows up that does *not* have the
1509 	 * ESPFIX issue, we can change this.
1510 	 */
1511 #ifdef CONFIG_X86_32
1512 	set_cpu_bug(c, X86_BUG_ESPFIX);
1513 #endif
1514 }
1515 
1516 /*
1517  * Validate that ACPI/mptables have the same information about the
1518  * effective APIC id and update the package map.
1519  */
1520 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1521 {
1522 #ifdef CONFIG_SMP
1523 	unsigned int apicid, cpu = smp_processor_id();
1524 
1525 	apicid = apic->cpu_present_to_apicid(cpu);
1526 
1527 	if (apicid != c->apicid) {
1528 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1529 		       cpu, apicid, c->initial_apicid);
1530 	}
1531 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1532 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1533 #else
1534 	c->logical_proc_id = 0;
1535 #endif
1536 }
1537 
1538 /*
1539  * This does the hard work of actually picking apart the CPU stuff...
1540  */
1541 static void identify_cpu(struct cpuinfo_x86 *c)
1542 {
1543 	int i;
1544 
1545 	c->loops_per_jiffy = loops_per_jiffy;
1546 	c->x86_cache_size = 0;
1547 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1548 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1549 	c->x86_vendor_id[0] = '\0'; /* Unset */
1550 	c->x86_model_id[0] = '\0';  /* Unset */
1551 	c->x86_max_cores = 1;
1552 	c->x86_coreid_bits = 0;
1553 	c->cu_id = 0xff;
1554 #ifdef CONFIG_X86_64
1555 	c->x86_clflush_size = 64;
1556 	c->x86_phys_bits = 36;
1557 	c->x86_virt_bits = 48;
1558 #else
1559 	c->cpuid_level = -1;	/* CPUID not detected */
1560 	c->x86_clflush_size = 32;
1561 	c->x86_phys_bits = 32;
1562 	c->x86_virt_bits = 32;
1563 #endif
1564 	c->x86_cache_alignment = c->x86_clflush_size;
1565 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1566 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1567 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1568 #endif
1569 
1570 	generic_identify(c);
1571 
1572 	if (this_cpu->c_identify)
1573 		this_cpu->c_identify(c);
1574 
1575 	/* Clear/Set all flags overridden by options, after probe */
1576 	apply_forced_caps(c);
1577 
1578 #ifdef CONFIG_X86_64
1579 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1580 #endif
1581 
1582 	/*
1583 	 * Vendor-specific initialization.  In this section we
1584 	 * canonicalize the feature flags, meaning if there are
1585 	 * features a certain CPU supports which CPUID doesn't
1586 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1587 	 * we handle them here.
1588 	 *
1589 	 * At the end of this section, c->x86_capability better
1590 	 * indicate the features this CPU genuinely supports!
1591 	 */
1592 	if (this_cpu->c_init)
1593 		this_cpu->c_init(c);
1594 
1595 	/* Disable the PN if appropriate */
1596 	squash_the_stupid_serial_number(c);
1597 
1598 	/* Set up SMEP/SMAP/UMIP */
1599 	setup_smep(c);
1600 	setup_smap(c);
1601 	setup_umip(c);
1602 
1603 	/* Enable FSGSBASE instructions if available. */
1604 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1605 		cr4_set_bits(X86_CR4_FSGSBASE);
1606 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1607 	}
1608 
1609 	/*
1610 	 * The vendor-specific functions might have changed features.
1611 	 * Now we do "generic changes."
1612 	 */
1613 
1614 	/* Filter out anything that depends on CPUID levels we don't have */
1615 	filter_cpuid_features(c, true);
1616 
1617 	/* If the model name is still unset, do table lookup. */
1618 	if (!c->x86_model_id[0]) {
1619 		const char *p;
1620 		p = table_lookup_model(c);
1621 		if (p)
1622 			strcpy(c->x86_model_id, p);
1623 		else
1624 			/* Last resort... */
1625 			sprintf(c->x86_model_id, "%02x/%02x",
1626 				c->x86, c->x86_model);
1627 	}
1628 
1629 #ifdef CONFIG_X86_64
1630 	detect_ht(c);
1631 #endif
1632 
1633 	x86_init_rdrand(c);
1634 	setup_pku(c);
1635 
1636 	/*
1637 	 * Clear/Set all flags overridden by options, need do it
1638 	 * before following smp all cpus cap AND.
1639 	 */
1640 	apply_forced_caps(c);
1641 
1642 	/*
1643 	 * On SMP, boot_cpu_data holds the common feature set between
1644 	 * all CPUs; so make sure that we indicate which features are
1645 	 * common between the CPUs.  The first time this routine gets
1646 	 * executed, c == &boot_cpu_data.
1647 	 */
1648 	if (c != &boot_cpu_data) {
1649 		/* AND the already accumulated flags with these */
1650 		for (i = 0; i < NCAPINTS; i++)
1651 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1652 
1653 		/* OR, i.e. replicate the bug flags */
1654 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1655 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1656 	}
1657 
1658 	/* Init Machine Check Exception if available. */
1659 	mcheck_cpu_init(c);
1660 
1661 	select_idle_routine(c);
1662 
1663 #ifdef CONFIG_NUMA
1664 	numa_add_cpu(smp_processor_id());
1665 #endif
1666 }
1667 
1668 /*
1669  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1670  * on 32-bit kernels:
1671  */
1672 #ifdef CONFIG_X86_32
1673 void enable_sep_cpu(void)
1674 {
1675 	struct tss_struct *tss;
1676 	int cpu;
1677 
1678 	if (!boot_cpu_has(X86_FEATURE_SEP))
1679 		return;
1680 
1681 	cpu = get_cpu();
1682 	tss = &per_cpu(cpu_tss_rw, cpu);
1683 
1684 	/*
1685 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1686 	 * see the big comment in struct x86_hw_tss's definition.
1687 	 */
1688 
1689 	tss->x86_tss.ss1 = __KERNEL_CS;
1690 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1691 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1692 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1693 
1694 	put_cpu();
1695 }
1696 #endif
1697 
1698 void __init identify_boot_cpu(void)
1699 {
1700 	identify_cpu(&boot_cpu_data);
1701 #ifdef CONFIG_X86_32
1702 	sysenter_setup();
1703 	enable_sep_cpu();
1704 #endif
1705 	cpu_detect_tlb(&boot_cpu_data);
1706 	setup_cr_pinning();
1707 
1708 	tsx_init();
1709 }
1710 
1711 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1712 {
1713 	BUG_ON(c == &boot_cpu_data);
1714 	identify_cpu(c);
1715 #ifdef CONFIG_X86_32
1716 	enable_sep_cpu();
1717 #endif
1718 	mtrr_ap_init();
1719 	validate_apic_and_package_id(c);
1720 	x86_spec_ctrl_setup_ap();
1721 	update_srbds_msr();
1722 }
1723 
1724 static __init int setup_noclflush(char *arg)
1725 {
1726 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1727 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1728 	return 1;
1729 }
1730 __setup("noclflush", setup_noclflush);
1731 
1732 void print_cpu_info(struct cpuinfo_x86 *c)
1733 {
1734 	const char *vendor = NULL;
1735 
1736 	if (c->x86_vendor < X86_VENDOR_NUM) {
1737 		vendor = this_cpu->c_vendor;
1738 	} else {
1739 		if (c->cpuid_level >= 0)
1740 			vendor = c->x86_vendor_id;
1741 	}
1742 
1743 	if (vendor && !strstr(c->x86_model_id, vendor))
1744 		pr_cont("%s ", vendor);
1745 
1746 	if (c->x86_model_id[0])
1747 		pr_cont("%s", c->x86_model_id);
1748 	else
1749 		pr_cont("%d86", c->x86);
1750 
1751 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1752 
1753 	if (c->x86_stepping || c->cpuid_level >= 0)
1754 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1755 	else
1756 		pr_cont(")\n");
1757 }
1758 
1759 /*
1760  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1761  * function prevents it from becoming an environment variable for init.
1762  */
1763 static __init int setup_clearcpuid(char *arg)
1764 {
1765 	return 1;
1766 }
1767 __setup("clearcpuid=", setup_clearcpuid);
1768 
1769 #ifdef CONFIG_X86_64
1770 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1771 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1772 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1773 
1774 /*
1775  * The following percpu variables are hot.  Align current_task to
1776  * cacheline size such that they fall in the same cacheline.
1777  */
1778 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1779 	&init_task;
1780 EXPORT_PER_CPU_SYMBOL(current_task);
1781 
1782 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1783 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1784 
1785 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1786 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1787 
1788 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1789 
1790 static void wrmsrl_cstar(unsigned long val)
1791 {
1792 	/*
1793 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
1794 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
1795 	 * guest. Avoid the pointless write on all Intel CPUs.
1796 	 */
1797 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1798 		wrmsrl(MSR_CSTAR, val);
1799 }
1800 
1801 /* May not be marked __init: used by software suspend */
1802 void syscall_init(void)
1803 {
1804 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1805 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1806 
1807 #ifdef CONFIG_IA32_EMULATION
1808 	wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
1809 	/*
1810 	 * This only works on Intel CPUs.
1811 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1812 	 * This does not cause SYSENTER to jump to the wrong location, because
1813 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1814 	 */
1815 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1816 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1817 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1818 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1819 #else
1820 	wrmsrl_cstar((unsigned long)ignore_sysret);
1821 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1822 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1823 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1824 #endif
1825 
1826 	/*
1827 	 * Flags to clear on syscall; clear as much as possible
1828 	 * to minimize user space-kernel interference.
1829 	 */
1830 	wrmsrl(MSR_SYSCALL_MASK,
1831 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1832 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1833 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1834 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1835 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
1836 }
1837 
1838 #else	/* CONFIG_X86_64 */
1839 
1840 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1841 EXPORT_PER_CPU_SYMBOL(current_task);
1842 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1843 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1844 
1845 /*
1846  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1847  * the top of the kernel stack.  Use an extra percpu variable to track the
1848  * top of the kernel stack directly.
1849  */
1850 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1851 	(unsigned long)&init_thread_union + THREAD_SIZE;
1852 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1853 
1854 #ifdef CONFIG_STACKPROTECTOR
1855 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1856 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1857 #endif
1858 
1859 #endif	/* CONFIG_X86_64 */
1860 
1861 /*
1862  * Clear all 6 debug registers:
1863  */
1864 static void clear_all_debug_regs(void)
1865 {
1866 	int i;
1867 
1868 	for (i = 0; i < 8; i++) {
1869 		/* Ignore db4, db5 */
1870 		if ((i == 4) || (i == 5))
1871 			continue;
1872 
1873 		set_debugreg(0, i);
1874 	}
1875 }
1876 
1877 #ifdef CONFIG_KGDB
1878 /*
1879  * Restore debug regs if using kgdbwait and you have a kernel debugger
1880  * connection established.
1881  */
1882 static void dbg_restore_debug_regs(void)
1883 {
1884 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1885 		arch_kgdb_ops.correct_hw_break();
1886 }
1887 #else /* ! CONFIG_KGDB */
1888 #define dbg_restore_debug_regs()
1889 #endif /* ! CONFIG_KGDB */
1890 
1891 static void wait_for_master_cpu(int cpu)
1892 {
1893 #ifdef CONFIG_SMP
1894 	/*
1895 	 * wait for ACK from master CPU before continuing
1896 	 * with AP initialization
1897 	 */
1898 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1899 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1900 		cpu_relax();
1901 #endif
1902 }
1903 
1904 #ifdef CONFIG_X86_64
1905 static inline void setup_getcpu(int cpu)
1906 {
1907 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1908 	struct desc_struct d = { };
1909 
1910 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1911 		wrmsr(MSR_TSC_AUX, cpudata, 0);
1912 
1913 	/* Store CPU and node number in limit. */
1914 	d.limit0 = cpudata;
1915 	d.limit1 = cpudata >> 16;
1916 
1917 	d.type = 5;		/* RO data, expand down, accessed */
1918 	d.dpl = 3;		/* Visible to user code */
1919 	d.s = 1;		/* Not a system segment */
1920 	d.p = 1;		/* Present */
1921 	d.d = 1;		/* 32-bit */
1922 
1923 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1924 }
1925 
1926 static inline void ucode_cpu_init(int cpu)
1927 {
1928 	if (cpu)
1929 		load_ucode_ap();
1930 }
1931 
1932 static inline void tss_setup_ist(struct tss_struct *tss)
1933 {
1934 	/* Set up the per-CPU TSS IST stacks */
1935 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1936 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1937 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1938 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1939 	/* Only mapped when SEV-ES is active */
1940 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1941 }
1942 
1943 #else /* CONFIG_X86_64 */
1944 
1945 static inline void setup_getcpu(int cpu) { }
1946 
1947 static inline void ucode_cpu_init(int cpu)
1948 {
1949 	show_ucode_info_early();
1950 }
1951 
1952 static inline void tss_setup_ist(struct tss_struct *tss) { }
1953 
1954 #endif /* !CONFIG_X86_64 */
1955 
1956 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1957 {
1958 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1959 
1960 #ifdef CONFIG_X86_IOPL_IOPERM
1961 	tss->io_bitmap.prev_max = 0;
1962 	tss->io_bitmap.prev_sequence = 0;
1963 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1964 	/*
1965 	 * Invalidate the extra array entry past the end of the all
1966 	 * permission bitmap as required by the hardware.
1967 	 */
1968 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1969 #endif
1970 }
1971 
1972 /*
1973  * Setup everything needed to handle exceptions from the IDT, including the IST
1974  * exceptions which use paranoid_entry().
1975  */
1976 void cpu_init_exception_handling(void)
1977 {
1978 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1979 	int cpu = raw_smp_processor_id();
1980 
1981 	/* paranoid_entry() gets the CPU number from the GDT */
1982 	setup_getcpu(cpu);
1983 
1984 	/* IST vectors need TSS to be set up. */
1985 	tss_setup_ist(tss);
1986 	tss_setup_io_bitmap(tss);
1987 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1988 
1989 	load_TR_desc();
1990 
1991 	/* Finally load the IDT */
1992 	load_current_idt();
1993 }
1994 
1995 /*
1996  * cpu_init() initializes state that is per-CPU. Some data is already
1997  * initialized (naturally) in the bootstrap process, such as the GDT.  We
1998  * reload it nevertheless, this function acts as a 'CPU state barrier',
1999  * nothing should get across.
2000  */
2001 void cpu_init(void)
2002 {
2003 	struct task_struct *cur = current;
2004 	int cpu = raw_smp_processor_id();
2005 
2006 	wait_for_master_cpu(cpu);
2007 
2008 	ucode_cpu_init(cpu);
2009 
2010 #ifdef CONFIG_NUMA
2011 	if (this_cpu_read(numa_node) == 0 &&
2012 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2013 		set_numa_node(early_cpu_to_node(cpu));
2014 #endif
2015 	pr_debug("Initializing CPU#%d\n", cpu);
2016 
2017 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2018 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2019 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2020 
2021 	/*
2022 	 * Initialize the per-CPU GDT with the boot GDT,
2023 	 * and set up the GDT descriptor:
2024 	 */
2025 	switch_to_new_gdt(cpu);
2026 
2027 	if (IS_ENABLED(CONFIG_X86_64)) {
2028 		loadsegment(fs, 0);
2029 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2030 		syscall_init();
2031 
2032 		wrmsrl(MSR_FS_BASE, 0);
2033 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2034 		barrier();
2035 
2036 		x2apic_setup();
2037 	}
2038 
2039 	mmgrab(&init_mm);
2040 	cur->active_mm = &init_mm;
2041 	BUG_ON(cur->mm);
2042 	initialize_tlbstate_and_flush();
2043 	enter_lazy_tlb(&init_mm, cur);
2044 
2045 	/*
2046 	 * sp0 points to the entry trampoline stack regardless of what task
2047 	 * is running.
2048 	 */
2049 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2050 
2051 	load_mm_ldt(&init_mm);
2052 
2053 	clear_all_debug_regs();
2054 	dbg_restore_debug_regs();
2055 
2056 	doublefault_init_cpu_tss();
2057 
2058 	fpu__init_cpu();
2059 
2060 	if (is_uv_system())
2061 		uv_cpu_init();
2062 
2063 	load_fixmap_gdt(cpu);
2064 }
2065 
2066 #ifdef CONFIG_SMP
2067 void cpu_init_secondary(void)
2068 {
2069 	/*
2070 	 * Relies on the BP having set-up the IDT tables, which are loaded
2071 	 * on this CPU in cpu_init_exception_handling().
2072 	 */
2073 	cpu_init_exception_handling();
2074 	cpu_init();
2075 }
2076 #endif
2077 
2078 /*
2079  * The microcode loader calls this upon late microcode load to recheck features,
2080  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2081  * hotplug lock.
2082  */
2083 void microcode_check(void)
2084 {
2085 	struct cpuinfo_x86 info;
2086 
2087 	perf_check_microcode();
2088 
2089 	/* Reload CPUID max function as it might've changed. */
2090 	info.cpuid_level = cpuid_eax(0);
2091 
2092 	/*
2093 	 * Copy all capability leafs to pick up the synthetic ones so that
2094 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2095 	 * get overwritten in get_cpu_cap().
2096 	 */
2097 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2098 
2099 	get_cpu_cap(&info);
2100 
2101 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2102 		return;
2103 
2104 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2105 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2106 }
2107 
2108 /*
2109  * Invoked from core CPU hotplug code after hotplug operations
2110  */
2111 void arch_smt_update(void)
2112 {
2113 	/* Handle the speculative execution misfeatures */
2114 	cpu_bugs_smt_update();
2115 	/* Check whether IPI broadcasting can be enabled */
2116 	apic_smt_update();
2117 }
2118