1 #include <linux/bootmem.h> 2 #include <linux/linkage.h> 3 #include <linux/bitops.h> 4 #include <linux/kernel.h> 5 #include <linux/export.h> 6 #include <linux/percpu.h> 7 #include <linux/string.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/init.h> 12 #include <linux/kprobes.h> 13 #include <linux/kgdb.h> 14 #include <linux/smp.h> 15 #include <linux/io.h> 16 #include <linux/syscore_ops.h> 17 18 #include <asm/stackprotector.h> 19 #include <asm/perf_event.h> 20 #include <asm/mmu_context.h> 21 #include <asm/archrandom.h> 22 #include <asm/hypervisor.h> 23 #include <asm/processor.h> 24 #include <asm/tlbflush.h> 25 #include <asm/debugreg.h> 26 #include <asm/sections.h> 27 #include <asm/vsyscall.h> 28 #include <linux/topology.h> 29 #include <linux/cpumask.h> 30 #include <asm/pgtable.h> 31 #include <linux/atomic.h> 32 #include <asm/proto.h> 33 #include <asm/setup.h> 34 #include <asm/apic.h> 35 #include <asm/desc.h> 36 #include <asm/fpu/internal.h> 37 #include <asm/mtrr.h> 38 #include <linux/numa.h> 39 #include <asm/asm.h> 40 #include <asm/bugs.h> 41 #include <asm/cpu.h> 42 #include <asm/mce.h> 43 #include <asm/msr.h> 44 #include <asm/pat.h> 45 #include <asm/microcode.h> 46 #include <asm/microcode_intel.h> 47 48 #ifdef CONFIG_X86_LOCAL_APIC 49 #include <asm/uv/uv.h> 50 #endif 51 52 #include "cpu.h" 53 54 /* all of these masks are initialized in setup_cpu_local_masks() */ 55 cpumask_var_t cpu_initialized_mask; 56 cpumask_var_t cpu_callout_mask; 57 cpumask_var_t cpu_callin_mask; 58 59 /* representing cpus for which sibling maps can be computed */ 60 cpumask_var_t cpu_sibling_setup_mask; 61 62 /* correctly size the local cpu masks */ 63 void __init setup_cpu_local_masks(void) 64 { 65 alloc_bootmem_cpumask_var(&cpu_initialized_mask); 66 alloc_bootmem_cpumask_var(&cpu_callin_mask); 67 alloc_bootmem_cpumask_var(&cpu_callout_mask); 68 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 69 } 70 71 static void default_init(struct cpuinfo_x86 *c) 72 { 73 #ifdef CONFIG_X86_64 74 cpu_detect_cache_sizes(c); 75 #else 76 /* Not much we can do here... */ 77 /* Check if at least it has cpuid */ 78 if (c->cpuid_level == -1) { 79 /* No cpuid. It must be an ancient CPU */ 80 if (c->x86 == 4) 81 strcpy(c->x86_model_id, "486"); 82 else if (c->x86 == 3) 83 strcpy(c->x86_model_id, "386"); 84 } 85 #endif 86 } 87 88 static const struct cpu_dev default_cpu = { 89 .c_init = default_init, 90 .c_vendor = "Unknown", 91 .c_x86_vendor = X86_VENDOR_UNKNOWN, 92 }; 93 94 static const struct cpu_dev *this_cpu = &default_cpu; 95 96 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 97 #ifdef CONFIG_X86_64 98 /* 99 * We need valid kernel segments for data and code in long mode too 100 * IRET will check the segment types kkeil 2000/10/28 101 * Also sysret mandates a special GDT layout 102 * 103 * TLS descriptors are currently at a different place compared to i386. 104 * Hopefully nobody expects them at a fixed place (Wine?) 105 */ 106 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 107 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 108 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 109 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), 110 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), 111 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), 112 #else 113 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), 114 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 115 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), 116 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), 117 /* 118 * Segments used for calling PnP BIOS have byte granularity. 119 * They code segments and data segments have fixed 64k limits, 120 * the transfer segment sizes are set at run time. 121 */ 122 /* 32-bit code */ 123 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 124 /* 16-bit code */ 125 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 126 /* 16-bit data */ 127 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), 128 /* 16-bit data */ 129 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), 130 /* 16-bit data */ 131 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), 132 /* 133 * The APM segments have byte granularity and their bases 134 * are set at run time. All have 64k limits. 135 */ 136 /* 32-bit code */ 137 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 138 /* 16-bit code */ 139 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 140 /* data */ 141 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), 142 143 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 144 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 145 GDT_STACK_CANARY_INIT 146 #endif 147 } }; 148 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 149 150 static int __init x86_mpx_setup(char *s) 151 { 152 /* require an exact match without trailing characters */ 153 if (strlen(s)) 154 return 0; 155 156 /* do not emit a message if the feature is not present */ 157 if (!boot_cpu_has(X86_FEATURE_MPX)) 158 return 1; 159 160 setup_clear_cpu_cap(X86_FEATURE_MPX); 161 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); 162 return 1; 163 } 164 __setup("nompx", x86_mpx_setup); 165 166 static int __init x86_noinvpcid_setup(char *s) 167 { 168 /* noinvpcid doesn't accept parameters */ 169 if (s) 170 return -EINVAL; 171 172 /* do not emit a message if the feature is not present */ 173 if (!boot_cpu_has(X86_FEATURE_INVPCID)) 174 return 0; 175 176 setup_clear_cpu_cap(X86_FEATURE_INVPCID); 177 pr_info("noinvpcid: INVPCID feature disabled\n"); 178 return 0; 179 } 180 early_param("noinvpcid", x86_noinvpcid_setup); 181 182 #ifdef CONFIG_X86_32 183 static int cachesize_override = -1; 184 static int disable_x86_serial_nr = 1; 185 186 static int __init cachesize_setup(char *str) 187 { 188 get_option(&str, &cachesize_override); 189 return 1; 190 } 191 __setup("cachesize=", cachesize_setup); 192 193 static int __init x86_sep_setup(char *s) 194 { 195 setup_clear_cpu_cap(X86_FEATURE_SEP); 196 return 1; 197 } 198 __setup("nosep", x86_sep_setup); 199 200 /* Standard macro to see if a specific flag is changeable */ 201 static inline int flag_is_changeable_p(u32 flag) 202 { 203 u32 f1, f2; 204 205 /* 206 * Cyrix and IDT cpus allow disabling of CPUID 207 * so the code below may return different results 208 * when it is executed before and after enabling 209 * the CPUID. Add "volatile" to not allow gcc to 210 * optimize the subsequent calls to this function. 211 */ 212 asm volatile ("pushfl \n\t" 213 "pushfl \n\t" 214 "popl %0 \n\t" 215 "movl %0, %1 \n\t" 216 "xorl %2, %0 \n\t" 217 "pushl %0 \n\t" 218 "popfl \n\t" 219 "pushfl \n\t" 220 "popl %0 \n\t" 221 "popfl \n\t" 222 223 : "=&r" (f1), "=&r" (f2) 224 : "ir" (flag)); 225 226 return ((f1^f2) & flag) != 0; 227 } 228 229 /* Probe for the CPUID instruction */ 230 int have_cpuid_p(void) 231 { 232 return flag_is_changeable_p(X86_EFLAGS_ID); 233 } 234 235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 236 { 237 unsigned long lo, hi; 238 239 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 240 return; 241 242 /* Disable processor serial number: */ 243 244 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 245 lo |= 0x200000; 246 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 247 248 pr_notice("CPU serial number disabled.\n"); 249 clear_cpu_cap(c, X86_FEATURE_PN); 250 251 /* Disabling the serial number may affect the cpuid level */ 252 c->cpuid_level = cpuid_eax(0); 253 } 254 255 static int __init x86_serial_nr_setup(char *s) 256 { 257 disable_x86_serial_nr = 0; 258 return 1; 259 } 260 __setup("serialnumber", x86_serial_nr_setup); 261 #else 262 static inline int flag_is_changeable_p(u32 flag) 263 { 264 return 1; 265 } 266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 267 { 268 } 269 #endif 270 271 static __init int setup_disable_smep(char *arg) 272 { 273 setup_clear_cpu_cap(X86_FEATURE_SMEP); 274 /* Check for things that depend on SMEP being enabled: */ 275 check_mpx_erratum(&boot_cpu_data); 276 return 1; 277 } 278 __setup("nosmep", setup_disable_smep); 279 280 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 281 { 282 if (cpu_has(c, X86_FEATURE_SMEP)) 283 cr4_set_bits(X86_CR4_SMEP); 284 } 285 286 static __init int setup_disable_smap(char *arg) 287 { 288 setup_clear_cpu_cap(X86_FEATURE_SMAP); 289 return 1; 290 } 291 __setup("nosmap", setup_disable_smap); 292 293 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 294 { 295 unsigned long eflags = native_save_fl(); 296 297 /* This should have been cleared long ago */ 298 BUG_ON(eflags & X86_EFLAGS_AC); 299 300 if (cpu_has(c, X86_FEATURE_SMAP)) { 301 #ifdef CONFIG_X86_SMAP 302 cr4_set_bits(X86_CR4_SMAP); 303 #else 304 cr4_clear_bits(X86_CR4_SMAP); 305 #endif 306 } 307 } 308 309 /* 310 * Protection Keys are not available in 32-bit mode. 311 */ 312 static bool pku_disabled; 313 314 static __always_inline void setup_pku(struct cpuinfo_x86 *c) 315 { 316 /* check the boot processor, plus compile options for PKU: */ 317 if (!cpu_feature_enabled(X86_FEATURE_PKU)) 318 return; 319 /* checks the actual processor's cpuid bits: */ 320 if (!cpu_has(c, X86_FEATURE_PKU)) 321 return; 322 if (pku_disabled) 323 return; 324 325 cr4_set_bits(X86_CR4_PKE); 326 /* 327 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE 328 * cpuid bit to be set. We need to ensure that we 329 * update that bit in this CPU's "cpu_info". 330 */ 331 get_cpu_cap(c); 332 } 333 334 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 335 static __init int setup_disable_pku(char *arg) 336 { 337 /* 338 * Do not clear the X86_FEATURE_PKU bit. All of the 339 * runtime checks are against OSPKE so clearing the 340 * bit does nothing. 341 * 342 * This way, we will see "pku" in cpuinfo, but not 343 * "ospke", which is exactly what we want. It shows 344 * that the CPU has PKU, but the OS has not enabled it. 345 * This happens to be exactly how a system would look 346 * if we disabled the config option. 347 */ 348 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); 349 pku_disabled = true; 350 return 1; 351 } 352 __setup("nopku", setup_disable_pku); 353 #endif /* CONFIG_X86_64 */ 354 355 /* 356 * Some CPU features depend on higher CPUID levels, which may not always 357 * be available due to CPUID level capping or broken virtualization 358 * software. Add those features to this table to auto-disable them. 359 */ 360 struct cpuid_dependent_feature { 361 u32 feature; 362 u32 level; 363 }; 364 365 static const struct cpuid_dependent_feature 366 cpuid_dependent_features[] = { 367 { X86_FEATURE_MWAIT, 0x00000005 }, 368 { X86_FEATURE_DCA, 0x00000009 }, 369 { X86_FEATURE_XSAVE, 0x0000000d }, 370 { 0, 0 } 371 }; 372 373 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 374 { 375 const struct cpuid_dependent_feature *df; 376 377 for (df = cpuid_dependent_features; df->feature; df++) { 378 379 if (!cpu_has(c, df->feature)) 380 continue; 381 /* 382 * Note: cpuid_level is set to -1 if unavailable, but 383 * extended_extended_level is set to 0 if unavailable 384 * and the legitimate extended levels are all negative 385 * when signed; hence the weird messing around with 386 * signs here... 387 */ 388 if (!((s32)df->level < 0 ? 389 (u32)df->level > (u32)c->extended_cpuid_level : 390 (s32)df->level > (s32)c->cpuid_level)) 391 continue; 392 393 clear_cpu_cap(c, df->feature); 394 if (!warn) 395 continue; 396 397 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 398 x86_cap_flag(df->feature), df->level); 399 } 400 } 401 402 /* 403 * Naming convention should be: <Name> [(<Codename>)] 404 * This table only is used unless init_<vendor>() below doesn't set it; 405 * in particular, if CPUID levels 0x80000002..4 are supported, this 406 * isn't used 407 */ 408 409 /* Look up CPU names by table lookup. */ 410 static const char *table_lookup_model(struct cpuinfo_x86 *c) 411 { 412 #ifdef CONFIG_X86_32 413 const struct legacy_cpu_model_info *info; 414 415 if (c->x86_model >= 16) 416 return NULL; /* Range check */ 417 418 if (!this_cpu) 419 return NULL; 420 421 info = this_cpu->legacy_models; 422 423 while (info->family) { 424 if (info->family == c->x86) 425 return info->model_names[c->x86_model]; 426 info++; 427 } 428 #endif 429 return NULL; /* Not found */ 430 } 431 432 __u32 cpu_caps_cleared[NCAPINTS]; 433 __u32 cpu_caps_set[NCAPINTS]; 434 435 void load_percpu_segment(int cpu) 436 { 437 #ifdef CONFIG_X86_32 438 loadsegment(fs, __KERNEL_PERCPU); 439 #else 440 __loadsegment_simple(gs, 0); 441 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); 442 #endif 443 load_stack_canary_segment(); 444 } 445 446 /* 447 * Current gdt points %fs at the "master" per-cpu area: after this, 448 * it's on the real one. 449 */ 450 void switch_to_new_gdt(int cpu) 451 { 452 struct desc_ptr gdt_descr; 453 454 gdt_descr.address = (long)get_cpu_gdt_table(cpu); 455 gdt_descr.size = GDT_SIZE - 1; 456 load_gdt(&gdt_descr); 457 /* Reload the per-cpu base */ 458 459 load_percpu_segment(cpu); 460 } 461 462 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 463 464 static void get_model_name(struct cpuinfo_x86 *c) 465 { 466 unsigned int *v; 467 char *p, *q, *s; 468 469 if (c->extended_cpuid_level < 0x80000004) 470 return; 471 472 v = (unsigned int *)c->x86_model_id; 473 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 474 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 475 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 476 c->x86_model_id[48] = 0; 477 478 /* Trim whitespace */ 479 p = q = s = &c->x86_model_id[0]; 480 481 while (*p == ' ') 482 p++; 483 484 while (*p) { 485 /* Note the last non-whitespace index */ 486 if (!isspace(*p)) 487 s = q; 488 489 *q++ = *p++; 490 } 491 492 *(s + 1) = '\0'; 493 } 494 495 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 496 { 497 unsigned int n, dummy, ebx, ecx, edx, l2size; 498 499 n = c->extended_cpuid_level; 500 501 if (n >= 0x80000005) { 502 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 503 c->x86_cache_size = (ecx>>24) + (edx>>24); 504 #ifdef CONFIG_X86_64 505 /* On K8 L1 TLB is inclusive, so don't count it */ 506 c->x86_tlbsize = 0; 507 #endif 508 } 509 510 if (n < 0x80000006) /* Some chips just has a large L1. */ 511 return; 512 513 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 514 l2size = ecx >> 16; 515 516 #ifdef CONFIG_X86_64 517 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 518 #else 519 /* do processor-specific cache resizing */ 520 if (this_cpu->legacy_cache_size) 521 l2size = this_cpu->legacy_cache_size(c, l2size); 522 523 /* Allow user to override all this if necessary. */ 524 if (cachesize_override != -1) 525 l2size = cachesize_override; 526 527 if (l2size == 0) 528 return; /* Again, no L2 cache is possible */ 529 #endif 530 531 c->x86_cache_size = l2size; 532 } 533 534 u16 __read_mostly tlb_lli_4k[NR_INFO]; 535 u16 __read_mostly tlb_lli_2m[NR_INFO]; 536 u16 __read_mostly tlb_lli_4m[NR_INFO]; 537 u16 __read_mostly tlb_lld_4k[NR_INFO]; 538 u16 __read_mostly tlb_lld_2m[NR_INFO]; 539 u16 __read_mostly tlb_lld_4m[NR_INFO]; 540 u16 __read_mostly tlb_lld_1g[NR_INFO]; 541 542 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 543 { 544 if (this_cpu->c_detect_tlb) 545 this_cpu->c_detect_tlb(c); 546 547 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 548 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 549 tlb_lli_4m[ENTRIES]); 550 551 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 552 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 553 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 554 } 555 556 void detect_ht(struct cpuinfo_x86 *c) 557 { 558 #ifdef CONFIG_SMP 559 u32 eax, ebx, ecx, edx; 560 int index_msb, core_bits; 561 static bool printed; 562 563 if (!cpu_has(c, X86_FEATURE_HT)) 564 return; 565 566 if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) 567 goto out; 568 569 if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) 570 return; 571 572 cpuid(1, &eax, &ebx, &ecx, &edx); 573 574 smp_num_siblings = (ebx & 0xff0000) >> 16; 575 576 if (smp_num_siblings == 1) { 577 pr_info_once("CPU0: Hyper-Threading is disabled\n"); 578 goto out; 579 } 580 581 if (smp_num_siblings <= 1) 582 goto out; 583 584 index_msb = get_count_order(smp_num_siblings); 585 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); 586 587 smp_num_siblings = smp_num_siblings / c->x86_max_cores; 588 589 index_msb = get_count_order(smp_num_siblings); 590 591 core_bits = get_count_order(c->x86_max_cores); 592 593 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & 594 ((1 << core_bits) - 1); 595 596 out: 597 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { 598 pr_info("CPU: Physical Processor ID: %d\n", 599 c->phys_proc_id); 600 pr_info("CPU: Processor Core ID: %d\n", 601 c->cpu_core_id); 602 printed = 1; 603 } 604 #endif 605 } 606 607 static void get_cpu_vendor(struct cpuinfo_x86 *c) 608 { 609 char *v = c->x86_vendor_id; 610 int i; 611 612 for (i = 0; i < X86_VENDOR_NUM; i++) { 613 if (!cpu_devs[i]) 614 break; 615 616 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 617 (cpu_devs[i]->c_ident[1] && 618 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 619 620 this_cpu = cpu_devs[i]; 621 c->x86_vendor = this_cpu->c_x86_vendor; 622 return; 623 } 624 } 625 626 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ 627 "CPU: Your system may be unstable.\n", v); 628 629 c->x86_vendor = X86_VENDOR_UNKNOWN; 630 this_cpu = &default_cpu; 631 } 632 633 void cpu_detect(struct cpuinfo_x86 *c) 634 { 635 /* Get vendor name */ 636 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 637 (unsigned int *)&c->x86_vendor_id[0], 638 (unsigned int *)&c->x86_vendor_id[8], 639 (unsigned int *)&c->x86_vendor_id[4]); 640 641 c->x86 = 4; 642 /* Intel-defined flags: level 0x00000001 */ 643 if (c->cpuid_level >= 0x00000001) { 644 u32 junk, tfms, cap0, misc; 645 646 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 647 c->x86 = x86_family(tfms); 648 c->x86_model = x86_model(tfms); 649 c->x86_mask = x86_stepping(tfms); 650 651 if (cap0 & (1<<19)) { 652 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 653 c->x86_cache_alignment = c->x86_clflush_size; 654 } 655 } 656 } 657 658 void get_cpu_cap(struct cpuinfo_x86 *c) 659 { 660 u32 eax, ebx, ecx, edx; 661 662 /* Intel-defined flags: level 0x00000001 */ 663 if (c->cpuid_level >= 0x00000001) { 664 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 665 666 c->x86_capability[CPUID_1_ECX] = ecx; 667 c->x86_capability[CPUID_1_EDX] = edx; 668 } 669 670 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ 671 if (c->cpuid_level >= 0x00000006) 672 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); 673 674 /* Additional Intel-defined flags: level 0x00000007 */ 675 if (c->cpuid_level >= 0x00000007) { 676 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 677 c->x86_capability[CPUID_7_0_EBX] = ebx; 678 c->x86_capability[CPUID_7_ECX] = ecx; 679 } 680 681 /* Extended state features: level 0x0000000d */ 682 if (c->cpuid_level >= 0x0000000d) { 683 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 684 685 c->x86_capability[CPUID_D_1_EAX] = eax; 686 } 687 688 /* Additional Intel-defined flags: level 0x0000000F */ 689 if (c->cpuid_level >= 0x0000000F) { 690 691 /* QoS sub-leaf, EAX=0Fh, ECX=0 */ 692 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); 693 c->x86_capability[CPUID_F_0_EDX] = edx; 694 695 if (cpu_has(c, X86_FEATURE_CQM_LLC)) { 696 /* will be overridden if occupancy monitoring exists */ 697 c->x86_cache_max_rmid = ebx; 698 699 /* QoS sub-leaf, EAX=0Fh, ECX=1 */ 700 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); 701 c->x86_capability[CPUID_F_1_EDX] = edx; 702 703 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) || 704 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) || 705 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) { 706 c->x86_cache_max_rmid = ecx; 707 c->x86_cache_occ_scale = ebx; 708 } 709 } else { 710 c->x86_cache_max_rmid = -1; 711 c->x86_cache_occ_scale = -1; 712 } 713 } 714 715 /* AMD-defined flags: level 0x80000001 */ 716 eax = cpuid_eax(0x80000000); 717 c->extended_cpuid_level = eax; 718 719 if ((eax & 0xffff0000) == 0x80000000) { 720 if (eax >= 0x80000001) { 721 cpuid(0x80000001, &eax, &ebx, &ecx, &edx); 722 723 c->x86_capability[CPUID_8000_0001_ECX] = ecx; 724 c->x86_capability[CPUID_8000_0001_EDX] = edx; 725 } 726 } 727 728 if (c->extended_cpuid_level >= 0x80000007) { 729 cpuid(0x80000007, &eax, &ebx, &ecx, &edx); 730 731 c->x86_capability[CPUID_8000_0007_EBX] = ebx; 732 c->x86_power = edx; 733 } 734 735 if (c->extended_cpuid_level >= 0x80000008) { 736 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 737 738 c->x86_virt_bits = (eax >> 8) & 0xff; 739 c->x86_phys_bits = eax & 0xff; 740 c->x86_capability[CPUID_8000_0008_EBX] = ebx; 741 } 742 #ifdef CONFIG_X86_32 743 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) 744 c->x86_phys_bits = 36; 745 #endif 746 747 if (c->extended_cpuid_level >= 0x8000000a) 748 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); 749 750 init_scattered_cpuid_features(c); 751 } 752 753 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 754 { 755 #ifdef CONFIG_X86_32 756 int i; 757 758 /* 759 * First of all, decide if this is a 486 or higher 760 * It's a 486 if we can modify the AC flag 761 */ 762 if (flag_is_changeable_p(X86_EFLAGS_AC)) 763 c->x86 = 4; 764 else 765 c->x86 = 3; 766 767 for (i = 0; i < X86_VENDOR_NUM; i++) 768 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 769 c->x86_vendor_id[0] = 0; 770 cpu_devs[i]->c_identify(c); 771 if (c->x86_vendor_id[0]) { 772 get_cpu_vendor(c); 773 break; 774 } 775 } 776 #endif 777 } 778 779 /* 780 * Do minimum CPU detection early. 781 * Fields really needed: vendor, cpuid_level, family, model, mask, 782 * cache alignment. 783 * The others are not touched to avoid unwanted side effects. 784 * 785 * WARNING: this function is only called on the BP. Don't add code here 786 * that is supposed to run on all CPUs. 787 */ 788 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 789 { 790 #ifdef CONFIG_X86_64 791 c->x86_clflush_size = 64; 792 c->x86_phys_bits = 36; 793 c->x86_virt_bits = 48; 794 #else 795 c->x86_clflush_size = 32; 796 c->x86_phys_bits = 32; 797 c->x86_virt_bits = 32; 798 #endif 799 c->x86_cache_alignment = c->x86_clflush_size; 800 801 memset(&c->x86_capability, 0, sizeof c->x86_capability); 802 c->extended_cpuid_level = 0; 803 804 if (!have_cpuid_p()) 805 identify_cpu_without_cpuid(c); 806 807 /* cyrix could have cpuid enabled via c_identify()*/ 808 if (have_cpuid_p()) { 809 cpu_detect(c); 810 get_cpu_vendor(c); 811 get_cpu_cap(c); 812 813 if (this_cpu->c_early_init) 814 this_cpu->c_early_init(c); 815 816 c->cpu_index = 0; 817 filter_cpuid_features(c, false); 818 819 if (this_cpu->c_bsp_init) 820 this_cpu->c_bsp_init(c); 821 } 822 823 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 824 fpu__init_system(c); 825 } 826 827 void __init early_cpu_init(void) 828 { 829 const struct cpu_dev *const *cdev; 830 int count = 0; 831 832 #ifdef CONFIG_PROCESSOR_SELECT 833 pr_info("KERNEL supported cpus:\n"); 834 #endif 835 836 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 837 const struct cpu_dev *cpudev = *cdev; 838 839 if (count >= X86_VENDOR_NUM) 840 break; 841 cpu_devs[count] = cpudev; 842 count++; 843 844 #ifdef CONFIG_PROCESSOR_SELECT 845 { 846 unsigned int j; 847 848 for (j = 0; j < 2; j++) { 849 if (!cpudev->c_ident[j]) 850 continue; 851 pr_info(" %s %s\n", cpudev->c_vendor, 852 cpudev->c_ident[j]); 853 } 854 } 855 #endif 856 } 857 early_identify_cpu(&boot_cpu_data); 858 } 859 860 /* 861 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 862 * unfortunately, that's not true in practice because of early VIA 863 * chips and (more importantly) broken virtualizers that are not easy 864 * to detect. In the latter case it doesn't even *fail* reliably, so 865 * probing for it doesn't even work. Disable it completely on 32-bit 866 * unless we can find a reliable way to detect all the broken cases. 867 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 868 */ 869 static void detect_nopl(struct cpuinfo_x86 *c) 870 { 871 #ifdef CONFIG_X86_32 872 clear_cpu_cap(c, X86_FEATURE_NOPL); 873 #else 874 set_cpu_cap(c, X86_FEATURE_NOPL); 875 #endif 876 } 877 878 static void detect_null_seg_behavior(struct cpuinfo_x86 *c) 879 { 880 #ifdef CONFIG_X86_64 881 /* 882 * Empirically, writing zero to a segment selector on AMD does 883 * not clear the base, whereas writing zero to a segment 884 * selector on Intel does clear the base. Intel's behavior 885 * allows slightly faster context switches in the common case 886 * where GS is unused by the prev and next threads. 887 * 888 * Since neither vendor documents this anywhere that I can see, 889 * detect it directly instead of hardcoding the choice by 890 * vendor. 891 * 892 * I've designated AMD's behavior as the "bug" because it's 893 * counterintuitive and less friendly. 894 */ 895 896 unsigned long old_base, tmp; 897 rdmsrl(MSR_FS_BASE, old_base); 898 wrmsrl(MSR_FS_BASE, 1); 899 loadsegment(fs, 0); 900 rdmsrl(MSR_FS_BASE, tmp); 901 if (tmp != 0) 902 set_cpu_bug(c, X86_BUG_NULL_SEG); 903 wrmsrl(MSR_FS_BASE, old_base); 904 #endif 905 } 906 907 static void generic_identify(struct cpuinfo_x86 *c) 908 { 909 c->extended_cpuid_level = 0; 910 911 if (!have_cpuid_p()) 912 identify_cpu_without_cpuid(c); 913 914 /* cyrix could have cpuid enabled via c_identify()*/ 915 if (!have_cpuid_p()) 916 return; 917 918 cpu_detect(c); 919 920 get_cpu_vendor(c); 921 922 get_cpu_cap(c); 923 924 if (c->cpuid_level >= 0x00000001) { 925 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; 926 #ifdef CONFIG_X86_32 927 # ifdef CONFIG_SMP 928 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 929 # else 930 c->apicid = c->initial_apicid; 931 # endif 932 #endif 933 c->phys_proc_id = c->initial_apicid; 934 } 935 936 get_model_name(c); /* Default name */ 937 938 detect_nopl(c); 939 940 detect_null_seg_behavior(c); 941 942 /* 943 * ESPFIX is a strange bug. All real CPUs have it. Paravirt 944 * systems that run Linux at CPL > 0 may or may not have the 945 * issue, but, even if they have the issue, there's absolutely 946 * nothing we can do about it because we can't use the real IRET 947 * instruction. 948 * 949 * NB: For the time being, only 32-bit kernels support 950 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose 951 * whether to apply espfix using paravirt hooks. If any 952 * non-paravirt system ever shows up that does *not* have the 953 * ESPFIX issue, we can change this. 954 */ 955 #ifdef CONFIG_X86_32 956 # ifdef CONFIG_PARAVIRT 957 do { 958 extern void native_iret(void); 959 if (pv_cpu_ops.iret == native_iret) 960 set_cpu_bug(c, X86_BUG_ESPFIX); 961 } while (0); 962 # else 963 set_cpu_bug(c, X86_BUG_ESPFIX); 964 # endif 965 #endif 966 } 967 968 static void x86_init_cache_qos(struct cpuinfo_x86 *c) 969 { 970 /* 971 * The heavy lifting of max_rmid and cache_occ_scale are handled 972 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu 973 * in case CQM bits really aren't there in this CPU. 974 */ 975 if (c != &boot_cpu_data) { 976 boot_cpu_data.x86_cache_max_rmid = 977 min(boot_cpu_data.x86_cache_max_rmid, 978 c->x86_cache_max_rmid); 979 } 980 } 981 982 /* 983 * Validate that ACPI/mptables have the same information about the 984 * effective APIC id and update the package map. 985 */ 986 static void validate_apic_and_package_id(struct cpuinfo_x86 *c) 987 { 988 #ifdef CONFIG_SMP 989 unsigned int apicid, cpu = smp_processor_id(); 990 991 apicid = apic->cpu_present_to_apicid(cpu); 992 993 if (apicid != c->apicid) { 994 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n", 995 cpu, apicid, c->initial_apicid); 996 } 997 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu)); 998 #else 999 c->logical_proc_id = 0; 1000 #endif 1001 } 1002 1003 /* 1004 * This does the hard work of actually picking apart the CPU stuff... 1005 */ 1006 static void identify_cpu(struct cpuinfo_x86 *c) 1007 { 1008 int i; 1009 1010 c->loops_per_jiffy = loops_per_jiffy; 1011 c->x86_cache_size = -1; 1012 c->x86_vendor = X86_VENDOR_UNKNOWN; 1013 c->x86_model = c->x86_mask = 0; /* So far unknown... */ 1014 c->x86_vendor_id[0] = '\0'; /* Unset */ 1015 c->x86_model_id[0] = '\0'; /* Unset */ 1016 c->x86_max_cores = 1; 1017 c->x86_coreid_bits = 0; 1018 c->cu_id = 0xff; 1019 #ifdef CONFIG_X86_64 1020 c->x86_clflush_size = 64; 1021 c->x86_phys_bits = 36; 1022 c->x86_virt_bits = 48; 1023 #else 1024 c->cpuid_level = -1; /* CPUID not detected */ 1025 c->x86_clflush_size = 32; 1026 c->x86_phys_bits = 32; 1027 c->x86_virt_bits = 32; 1028 #endif 1029 c->x86_cache_alignment = c->x86_clflush_size; 1030 memset(&c->x86_capability, 0, sizeof c->x86_capability); 1031 1032 generic_identify(c); 1033 1034 if (this_cpu->c_identify) 1035 this_cpu->c_identify(c); 1036 1037 /* Clear/Set all flags overridden by options, after probe */ 1038 for (i = 0; i < NCAPINTS; i++) { 1039 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 1040 c->x86_capability[i] |= cpu_caps_set[i]; 1041 } 1042 1043 #ifdef CONFIG_X86_64 1044 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 1045 #endif 1046 1047 /* 1048 * Vendor-specific initialization. In this section we 1049 * canonicalize the feature flags, meaning if there are 1050 * features a certain CPU supports which CPUID doesn't 1051 * tell us, CPUID claiming incorrect flags, or other bugs, 1052 * we handle them here. 1053 * 1054 * At the end of this section, c->x86_capability better 1055 * indicate the features this CPU genuinely supports! 1056 */ 1057 if (this_cpu->c_init) 1058 this_cpu->c_init(c); 1059 1060 /* Disable the PN if appropriate */ 1061 squash_the_stupid_serial_number(c); 1062 1063 /* Set up SMEP/SMAP */ 1064 setup_smep(c); 1065 setup_smap(c); 1066 1067 /* 1068 * The vendor-specific functions might have changed features. 1069 * Now we do "generic changes." 1070 */ 1071 1072 /* Filter out anything that depends on CPUID levels we don't have */ 1073 filter_cpuid_features(c, true); 1074 1075 /* If the model name is still unset, do table lookup. */ 1076 if (!c->x86_model_id[0]) { 1077 const char *p; 1078 p = table_lookup_model(c); 1079 if (p) 1080 strcpy(c->x86_model_id, p); 1081 else 1082 /* Last resort... */ 1083 sprintf(c->x86_model_id, "%02x/%02x", 1084 c->x86, c->x86_model); 1085 } 1086 1087 #ifdef CONFIG_X86_64 1088 detect_ht(c); 1089 #endif 1090 1091 init_hypervisor(c); 1092 x86_init_rdrand(c); 1093 x86_init_cache_qos(c); 1094 setup_pku(c); 1095 1096 /* 1097 * Clear/Set all flags overridden by options, need do it 1098 * before following smp all cpus cap AND. 1099 */ 1100 for (i = 0; i < NCAPINTS; i++) { 1101 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 1102 c->x86_capability[i] |= cpu_caps_set[i]; 1103 } 1104 1105 /* 1106 * On SMP, boot_cpu_data holds the common feature set between 1107 * all CPUs; so make sure that we indicate which features are 1108 * common between the CPUs. The first time this routine gets 1109 * executed, c == &boot_cpu_data. 1110 */ 1111 if (c != &boot_cpu_data) { 1112 /* AND the already accumulated flags with these */ 1113 for (i = 0; i < NCAPINTS; i++) 1114 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 1115 1116 /* OR, i.e. replicate the bug flags */ 1117 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 1118 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 1119 } 1120 1121 /* Init Machine Check Exception if available. */ 1122 mcheck_cpu_init(c); 1123 1124 select_idle_routine(c); 1125 1126 #ifdef CONFIG_NUMA 1127 numa_add_cpu(smp_processor_id()); 1128 #endif 1129 } 1130 1131 /* 1132 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 1133 * on 32-bit kernels: 1134 */ 1135 #ifdef CONFIG_X86_32 1136 void enable_sep_cpu(void) 1137 { 1138 struct tss_struct *tss; 1139 int cpu; 1140 1141 if (!boot_cpu_has(X86_FEATURE_SEP)) 1142 return; 1143 1144 cpu = get_cpu(); 1145 tss = &per_cpu(cpu_tss, cpu); 1146 1147 /* 1148 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1149 * see the big comment in struct x86_hw_tss's definition. 1150 */ 1151 1152 tss->x86_tss.ss1 = __KERNEL_CS; 1153 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1154 1155 wrmsr(MSR_IA32_SYSENTER_ESP, 1156 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack), 1157 0); 1158 1159 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1160 1161 put_cpu(); 1162 } 1163 #endif 1164 1165 void __init identify_boot_cpu(void) 1166 { 1167 identify_cpu(&boot_cpu_data); 1168 #ifdef CONFIG_X86_32 1169 sysenter_setup(); 1170 enable_sep_cpu(); 1171 #endif 1172 cpu_detect_tlb(&boot_cpu_data); 1173 } 1174 1175 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1176 { 1177 BUG_ON(c == &boot_cpu_data); 1178 identify_cpu(c); 1179 #ifdef CONFIG_X86_32 1180 enable_sep_cpu(); 1181 #endif 1182 mtrr_ap_init(); 1183 validate_apic_and_package_id(c); 1184 } 1185 1186 static __init int setup_noclflush(char *arg) 1187 { 1188 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); 1189 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); 1190 return 1; 1191 } 1192 __setup("noclflush", setup_noclflush); 1193 1194 void print_cpu_info(struct cpuinfo_x86 *c) 1195 { 1196 const char *vendor = NULL; 1197 1198 if (c->x86_vendor < X86_VENDOR_NUM) { 1199 vendor = this_cpu->c_vendor; 1200 } else { 1201 if (c->cpuid_level >= 0) 1202 vendor = c->x86_vendor_id; 1203 } 1204 1205 if (vendor && !strstr(c->x86_model_id, vendor)) 1206 pr_cont("%s ", vendor); 1207 1208 if (c->x86_model_id[0]) 1209 pr_cont("%s", c->x86_model_id); 1210 else 1211 pr_cont("%d86", c->x86); 1212 1213 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 1214 1215 if (c->x86_mask || c->cpuid_level >= 0) 1216 pr_cont(", stepping: 0x%x)\n", c->x86_mask); 1217 else 1218 pr_cont(")\n"); 1219 } 1220 1221 static __init int setup_disablecpuid(char *arg) 1222 { 1223 int bit; 1224 1225 if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32) 1226 setup_clear_cpu_cap(bit); 1227 else 1228 return 0; 1229 1230 return 1; 1231 } 1232 __setup("clearcpuid=", setup_disablecpuid); 1233 1234 #ifdef CONFIG_X86_64 1235 struct desc_ptr idt_descr __ro_after_init = { 1236 .size = NR_VECTORS * 16 - 1, 1237 .address = (unsigned long) idt_table, 1238 }; 1239 const struct desc_ptr debug_idt_descr = { 1240 .size = NR_VECTORS * 16 - 1, 1241 .address = (unsigned long) debug_idt_table, 1242 }; 1243 1244 DEFINE_PER_CPU_FIRST(union irq_stack_union, 1245 irq_stack_union) __aligned(PAGE_SIZE) __visible; 1246 1247 /* 1248 * The following percpu variables are hot. Align current_task to 1249 * cacheline size such that they fall in the same cacheline. 1250 */ 1251 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = 1252 &init_task; 1253 EXPORT_PER_CPU_SYMBOL(current_task); 1254 1255 DEFINE_PER_CPU(char *, irq_stack_ptr) = 1256 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE; 1257 1258 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; 1259 1260 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1261 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1262 1263 /* 1264 * Special IST stacks which the CPU switches to when it calls 1265 * an IST-marked descriptor entry. Up to 7 stacks (hardware 1266 * limit), all of them are 4K, except the debug stack which 1267 * is 8K. 1268 */ 1269 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { 1270 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, 1271 [DEBUG_STACK - 1] = DEBUG_STKSZ 1272 }; 1273 1274 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks 1275 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); 1276 1277 /* May not be marked __init: used by software suspend */ 1278 void syscall_init(void) 1279 { 1280 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); 1281 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 1282 1283 #ifdef CONFIG_IA32_EMULATION 1284 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); 1285 /* 1286 * This only works on Intel CPUs. 1287 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 1288 * This does not cause SYSENTER to jump to the wrong location, because 1289 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 1290 */ 1291 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 1292 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1293 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 1294 #else 1295 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); 1296 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 1297 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1298 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 1299 #endif 1300 1301 /* Flags to clear on syscall */ 1302 wrmsrl(MSR_SYSCALL_MASK, 1303 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| 1304 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); 1305 } 1306 1307 /* 1308 * Copies of the original ist values from the tss are only accessed during 1309 * debugging, no special alignment required. 1310 */ 1311 DEFINE_PER_CPU(struct orig_ist, orig_ist); 1312 1313 static DEFINE_PER_CPU(unsigned long, debug_stack_addr); 1314 DEFINE_PER_CPU(int, debug_stack_usage); 1315 1316 int is_debug_stack(unsigned long addr) 1317 { 1318 return __this_cpu_read(debug_stack_usage) || 1319 (addr <= __this_cpu_read(debug_stack_addr) && 1320 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); 1321 } 1322 NOKPROBE_SYMBOL(is_debug_stack); 1323 1324 DEFINE_PER_CPU(u32, debug_idt_ctr); 1325 1326 void debug_stack_set_zero(void) 1327 { 1328 this_cpu_inc(debug_idt_ctr); 1329 load_current_idt(); 1330 } 1331 NOKPROBE_SYMBOL(debug_stack_set_zero); 1332 1333 void debug_stack_reset(void) 1334 { 1335 if (WARN_ON(!this_cpu_read(debug_idt_ctr))) 1336 return; 1337 if (this_cpu_dec_return(debug_idt_ctr) == 0) 1338 load_current_idt(); 1339 } 1340 NOKPROBE_SYMBOL(debug_stack_reset); 1341 1342 #else /* CONFIG_X86_64 */ 1343 1344 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 1345 EXPORT_PER_CPU_SYMBOL(current_task); 1346 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1347 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1348 1349 /* 1350 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find 1351 * the top of the kernel stack. Use an extra percpu variable to track the 1352 * top of the kernel stack directly. 1353 */ 1354 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = 1355 (unsigned long)&init_thread_union + THREAD_SIZE; 1356 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); 1357 1358 #ifdef CONFIG_CC_STACKPROTECTOR 1359 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 1360 #endif 1361 1362 #endif /* CONFIG_X86_64 */ 1363 1364 /* 1365 * Clear all 6 debug registers: 1366 */ 1367 static void clear_all_debug_regs(void) 1368 { 1369 int i; 1370 1371 for (i = 0; i < 8; i++) { 1372 /* Ignore db4, db5 */ 1373 if ((i == 4) || (i == 5)) 1374 continue; 1375 1376 set_debugreg(0, i); 1377 } 1378 } 1379 1380 #ifdef CONFIG_KGDB 1381 /* 1382 * Restore debug regs if using kgdbwait and you have a kernel debugger 1383 * connection established. 1384 */ 1385 static void dbg_restore_debug_regs(void) 1386 { 1387 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 1388 arch_kgdb_ops.correct_hw_break(); 1389 } 1390 #else /* ! CONFIG_KGDB */ 1391 #define dbg_restore_debug_regs() 1392 #endif /* ! CONFIG_KGDB */ 1393 1394 static void wait_for_master_cpu(int cpu) 1395 { 1396 #ifdef CONFIG_SMP 1397 /* 1398 * wait for ACK from master CPU before continuing 1399 * with AP initialization 1400 */ 1401 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); 1402 while (!cpumask_test_cpu(cpu, cpu_callout_mask)) 1403 cpu_relax(); 1404 #endif 1405 } 1406 1407 /* 1408 * cpu_init() initializes state that is per-CPU. Some data is already 1409 * initialized (naturally) in the bootstrap process, such as the GDT 1410 * and IDT. We reload them nevertheless, this function acts as a 1411 * 'CPU state barrier', nothing should get across. 1412 * A lot of state is already set up in PDA init for 64 bit 1413 */ 1414 #ifdef CONFIG_X86_64 1415 1416 void cpu_init(void) 1417 { 1418 struct orig_ist *oist; 1419 struct task_struct *me; 1420 struct tss_struct *t; 1421 unsigned long v; 1422 int cpu = raw_smp_processor_id(); 1423 int i; 1424 1425 wait_for_master_cpu(cpu); 1426 1427 /* 1428 * Initialize the CR4 shadow before doing anything that could 1429 * try to read it. 1430 */ 1431 cr4_init_shadow(); 1432 1433 if (cpu) 1434 load_ucode_ap(); 1435 1436 t = &per_cpu(cpu_tss, cpu); 1437 oist = &per_cpu(orig_ist, cpu); 1438 1439 #ifdef CONFIG_NUMA 1440 if (this_cpu_read(numa_node) == 0 && 1441 early_cpu_to_node(cpu) != NUMA_NO_NODE) 1442 set_numa_node(early_cpu_to_node(cpu)); 1443 #endif 1444 1445 me = current; 1446 1447 pr_debug("Initializing CPU#%d\n", cpu); 1448 1449 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1450 1451 /* 1452 * Initialize the per-CPU GDT with the boot GDT, 1453 * and set up the GDT descriptor: 1454 */ 1455 1456 switch_to_new_gdt(cpu); 1457 loadsegment(fs, 0); 1458 1459 load_current_idt(); 1460 1461 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 1462 syscall_init(); 1463 1464 wrmsrl(MSR_FS_BASE, 0); 1465 wrmsrl(MSR_KERNEL_GS_BASE, 0); 1466 barrier(); 1467 1468 x86_configure_nx(); 1469 x2apic_setup(); 1470 1471 /* 1472 * set up and load the per-CPU TSS 1473 */ 1474 if (!oist->ist[0]) { 1475 char *estacks = per_cpu(exception_stacks, cpu); 1476 1477 for (v = 0; v < N_EXCEPTION_STACKS; v++) { 1478 estacks += exception_stack_sizes[v]; 1479 oist->ist[v] = t->x86_tss.ist[v] = 1480 (unsigned long)estacks; 1481 if (v == DEBUG_STACK-1) 1482 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; 1483 } 1484 } 1485 1486 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1487 1488 /* 1489 * <= is required because the CPU will access up to 1490 * 8 bits beyond the end of the IO permission bitmap. 1491 */ 1492 for (i = 0; i <= IO_BITMAP_LONGS; i++) 1493 t->io_bitmap[i] = ~0UL; 1494 1495 atomic_inc(&init_mm.mm_count); 1496 me->active_mm = &init_mm; 1497 BUG_ON(me->mm); 1498 enter_lazy_tlb(&init_mm, me); 1499 1500 load_sp0(t, ¤t->thread); 1501 set_tss_desc(cpu, t); 1502 load_TR_desc(); 1503 load_mm_ldt(&init_mm); 1504 1505 clear_all_debug_regs(); 1506 dbg_restore_debug_regs(); 1507 1508 fpu__init_cpu(); 1509 1510 if (is_uv_system()) 1511 uv_cpu_init(); 1512 } 1513 1514 #else 1515 1516 void cpu_init(void) 1517 { 1518 int cpu = smp_processor_id(); 1519 struct task_struct *curr = current; 1520 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 1521 struct thread_struct *thread = &curr->thread; 1522 1523 wait_for_master_cpu(cpu); 1524 1525 /* 1526 * Initialize the CR4 shadow before doing anything that could 1527 * try to read it. 1528 */ 1529 cr4_init_shadow(); 1530 1531 show_ucode_info_early(); 1532 1533 pr_info("Initializing CPU#%d\n", cpu); 1534 1535 if (cpu_feature_enabled(X86_FEATURE_VME) || 1536 boot_cpu_has(X86_FEATURE_TSC) || 1537 boot_cpu_has(X86_FEATURE_DE)) 1538 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1539 1540 load_current_idt(); 1541 switch_to_new_gdt(cpu); 1542 1543 /* 1544 * Set up and load the per-CPU TSS and LDT 1545 */ 1546 atomic_inc(&init_mm.mm_count); 1547 curr->active_mm = &init_mm; 1548 BUG_ON(curr->mm); 1549 enter_lazy_tlb(&init_mm, curr); 1550 1551 load_sp0(t, thread); 1552 set_tss_desc(cpu, t); 1553 load_TR_desc(); 1554 load_mm_ldt(&init_mm); 1555 1556 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1557 1558 #ifdef CONFIG_DOUBLEFAULT 1559 /* Set up doublefault TSS pointer in the GDT */ 1560 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); 1561 #endif 1562 1563 clear_all_debug_regs(); 1564 dbg_restore_debug_regs(); 1565 1566 fpu__init_cpu(); 1567 } 1568 #endif 1569 1570 static void bsp_resume(void) 1571 { 1572 if (this_cpu->c_bsp_resume) 1573 this_cpu->c_bsp_resume(&boot_cpu_data); 1574 } 1575 1576 static struct syscore_ops cpu_syscore_ops = { 1577 .resume = bsp_resume, 1578 }; 1579 1580 static int __init init_cpu_syscore(void) 1581 { 1582 register_syscore_ops(&cpu_syscore_ops); 1583 return 0; 1584 } 1585 core_initcall(init_cpu_syscore); 1586