xref: /linux/arch/x86/kernel/cpu/common.c (revision 66a0e2d579dbec5c676cfe446234ffebb267c564)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17 
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/bugs.h>
41 #include <asm/cpu.h>
42 #include <asm/mce.h>
43 #include <asm/msr.h>
44 #include <asm/pat.h>
45 #include <asm/microcode.h>
46 #include <asm/microcode_intel.h>
47 
48 #ifdef CONFIG_X86_LOCAL_APIC
49 #include <asm/uv/uv.h>
50 #endif
51 
52 #include "cpu.h"
53 
54 /* all of these masks are initialized in setup_cpu_local_masks() */
55 cpumask_var_t cpu_initialized_mask;
56 cpumask_var_t cpu_callout_mask;
57 cpumask_var_t cpu_callin_mask;
58 
59 /* representing cpus for which sibling maps can be computed */
60 cpumask_var_t cpu_sibling_setup_mask;
61 
62 /* correctly size the local cpu masks */
63 void __init setup_cpu_local_masks(void)
64 {
65 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
66 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
67 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
68 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
69 }
70 
71 static void default_init(struct cpuinfo_x86 *c)
72 {
73 #ifdef CONFIG_X86_64
74 	cpu_detect_cache_sizes(c);
75 #else
76 	/* Not much we can do here... */
77 	/* Check if at least it has cpuid */
78 	if (c->cpuid_level == -1) {
79 		/* No cpuid. It must be an ancient CPU */
80 		if (c->x86 == 4)
81 			strcpy(c->x86_model_id, "486");
82 		else if (c->x86 == 3)
83 			strcpy(c->x86_model_id, "386");
84 	}
85 #endif
86 }
87 
88 static const struct cpu_dev default_cpu = {
89 	.c_init		= default_init,
90 	.c_vendor	= "Unknown",
91 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
92 };
93 
94 static const struct cpu_dev *this_cpu = &default_cpu;
95 
96 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
97 #ifdef CONFIG_X86_64
98 	/*
99 	 * We need valid kernel segments for data and code in long mode too
100 	 * IRET will check the segment types  kkeil 2000/10/28
101 	 * Also sysret mandates a special GDT layout
102 	 *
103 	 * TLS descriptors are currently at a different place compared to i386.
104 	 * Hopefully nobody expects them at a fixed place (Wine?)
105 	 */
106 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
107 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
108 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
110 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
111 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
112 #else
113 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
114 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
116 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
117 	/*
118 	 * Segments used for calling PnP BIOS have byte granularity.
119 	 * They code segments and data segments have fixed 64k limits,
120 	 * the transfer segment sizes are set at run time.
121 	 */
122 	/* 32-bit code */
123 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
124 	/* 16-bit code */
125 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
126 	/* 16-bit data */
127 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
128 	/* 16-bit data */
129 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
130 	/* 16-bit data */
131 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
132 	/*
133 	 * The APM segments have byte granularity and their bases
134 	 * are set at run time.  All have 64k limits.
135 	 */
136 	/* 32-bit code */
137 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 	/* 16-bit code */
139 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 	/* data */
141 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
142 
143 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
145 	GDT_STACK_CANARY_INIT
146 #endif
147 } };
148 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
149 
150 static int __init x86_mpx_setup(char *s)
151 {
152 	/* require an exact match without trailing characters */
153 	if (strlen(s))
154 		return 0;
155 
156 	/* do not emit a message if the feature is not present */
157 	if (!boot_cpu_has(X86_FEATURE_MPX))
158 		return 1;
159 
160 	setup_clear_cpu_cap(X86_FEATURE_MPX);
161 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
162 	return 1;
163 }
164 __setup("nompx", x86_mpx_setup);
165 
166 static int __init x86_noinvpcid_setup(char *s)
167 {
168 	/* noinvpcid doesn't accept parameters */
169 	if (s)
170 		return -EINVAL;
171 
172 	/* do not emit a message if the feature is not present */
173 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
174 		return 0;
175 
176 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
177 	pr_info("noinvpcid: INVPCID feature disabled\n");
178 	return 0;
179 }
180 early_param("noinvpcid", x86_noinvpcid_setup);
181 
182 #ifdef CONFIG_X86_32
183 static int cachesize_override = -1;
184 static int disable_x86_serial_nr = 1;
185 
186 static int __init cachesize_setup(char *str)
187 {
188 	get_option(&str, &cachesize_override);
189 	return 1;
190 }
191 __setup("cachesize=", cachesize_setup);
192 
193 static int __init x86_sep_setup(char *s)
194 {
195 	setup_clear_cpu_cap(X86_FEATURE_SEP);
196 	return 1;
197 }
198 __setup("nosep", x86_sep_setup);
199 
200 /* Standard macro to see if a specific flag is changeable */
201 static inline int flag_is_changeable_p(u32 flag)
202 {
203 	u32 f1, f2;
204 
205 	/*
206 	 * Cyrix and IDT cpus allow disabling of CPUID
207 	 * so the code below may return different results
208 	 * when it is executed before and after enabling
209 	 * the CPUID. Add "volatile" to not allow gcc to
210 	 * optimize the subsequent calls to this function.
211 	 */
212 	asm volatile ("pushfl		\n\t"
213 		      "pushfl		\n\t"
214 		      "popl %0		\n\t"
215 		      "movl %0, %1	\n\t"
216 		      "xorl %2, %0	\n\t"
217 		      "pushl %0		\n\t"
218 		      "popfl		\n\t"
219 		      "pushfl		\n\t"
220 		      "popl %0		\n\t"
221 		      "popfl		\n\t"
222 
223 		      : "=&r" (f1), "=&r" (f2)
224 		      : "ir" (flag));
225 
226 	return ((f1^f2) & flag) != 0;
227 }
228 
229 /* Probe for the CPUID instruction */
230 int have_cpuid_p(void)
231 {
232 	return flag_is_changeable_p(X86_EFLAGS_ID);
233 }
234 
235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
236 {
237 	unsigned long lo, hi;
238 
239 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
240 		return;
241 
242 	/* Disable processor serial number: */
243 
244 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245 	lo |= 0x200000;
246 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
247 
248 	pr_notice("CPU serial number disabled.\n");
249 	clear_cpu_cap(c, X86_FEATURE_PN);
250 
251 	/* Disabling the serial number may affect the cpuid level */
252 	c->cpuid_level = cpuid_eax(0);
253 }
254 
255 static int __init x86_serial_nr_setup(char *s)
256 {
257 	disable_x86_serial_nr = 0;
258 	return 1;
259 }
260 __setup("serialnumber", x86_serial_nr_setup);
261 #else
262 static inline int flag_is_changeable_p(u32 flag)
263 {
264 	return 1;
265 }
266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
267 {
268 }
269 #endif
270 
271 static __init int setup_disable_smep(char *arg)
272 {
273 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
274 	/* Check for things that depend on SMEP being enabled: */
275 	check_mpx_erratum(&boot_cpu_data);
276 	return 1;
277 }
278 __setup("nosmep", setup_disable_smep);
279 
280 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
281 {
282 	if (cpu_has(c, X86_FEATURE_SMEP))
283 		cr4_set_bits(X86_CR4_SMEP);
284 }
285 
286 static __init int setup_disable_smap(char *arg)
287 {
288 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
289 	return 1;
290 }
291 __setup("nosmap", setup_disable_smap);
292 
293 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
294 {
295 	unsigned long eflags = native_save_fl();
296 
297 	/* This should have been cleared long ago */
298 	BUG_ON(eflags & X86_EFLAGS_AC);
299 
300 	if (cpu_has(c, X86_FEATURE_SMAP)) {
301 #ifdef CONFIG_X86_SMAP
302 		cr4_set_bits(X86_CR4_SMAP);
303 #else
304 		cr4_clear_bits(X86_CR4_SMAP);
305 #endif
306 	}
307 }
308 
309 /*
310  * Protection Keys are not available in 32-bit mode.
311  */
312 static bool pku_disabled;
313 
314 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
315 {
316 	/* check the boot processor, plus compile options for PKU: */
317 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
318 		return;
319 	/* checks the actual processor's cpuid bits: */
320 	if (!cpu_has(c, X86_FEATURE_PKU))
321 		return;
322 	if (pku_disabled)
323 		return;
324 
325 	cr4_set_bits(X86_CR4_PKE);
326 	/*
327 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
328 	 * cpuid bit to be set.  We need to ensure that we
329 	 * update that bit in this CPU's "cpu_info".
330 	 */
331 	get_cpu_cap(c);
332 }
333 
334 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
335 static __init int setup_disable_pku(char *arg)
336 {
337 	/*
338 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
339 	 * runtime checks are against OSPKE so clearing the
340 	 * bit does nothing.
341 	 *
342 	 * This way, we will see "pku" in cpuinfo, but not
343 	 * "ospke", which is exactly what we want.  It shows
344 	 * that the CPU has PKU, but the OS has not enabled it.
345 	 * This happens to be exactly how a system would look
346 	 * if we disabled the config option.
347 	 */
348 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
349 	pku_disabled = true;
350 	return 1;
351 }
352 __setup("nopku", setup_disable_pku);
353 #endif /* CONFIG_X86_64 */
354 
355 /*
356  * Some CPU features depend on higher CPUID levels, which may not always
357  * be available due to CPUID level capping or broken virtualization
358  * software.  Add those features to this table to auto-disable them.
359  */
360 struct cpuid_dependent_feature {
361 	u32 feature;
362 	u32 level;
363 };
364 
365 static const struct cpuid_dependent_feature
366 cpuid_dependent_features[] = {
367 	{ X86_FEATURE_MWAIT,		0x00000005 },
368 	{ X86_FEATURE_DCA,		0x00000009 },
369 	{ X86_FEATURE_XSAVE,		0x0000000d },
370 	{ 0, 0 }
371 };
372 
373 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
374 {
375 	const struct cpuid_dependent_feature *df;
376 
377 	for (df = cpuid_dependent_features; df->feature; df++) {
378 
379 		if (!cpu_has(c, df->feature))
380 			continue;
381 		/*
382 		 * Note: cpuid_level is set to -1 if unavailable, but
383 		 * extended_extended_level is set to 0 if unavailable
384 		 * and the legitimate extended levels are all negative
385 		 * when signed; hence the weird messing around with
386 		 * signs here...
387 		 */
388 		if (!((s32)df->level < 0 ?
389 		     (u32)df->level > (u32)c->extended_cpuid_level :
390 		     (s32)df->level > (s32)c->cpuid_level))
391 			continue;
392 
393 		clear_cpu_cap(c, df->feature);
394 		if (!warn)
395 			continue;
396 
397 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
398 			x86_cap_flag(df->feature), df->level);
399 	}
400 }
401 
402 /*
403  * Naming convention should be: <Name> [(<Codename>)]
404  * This table only is used unless init_<vendor>() below doesn't set it;
405  * in particular, if CPUID levels 0x80000002..4 are supported, this
406  * isn't used
407  */
408 
409 /* Look up CPU names by table lookup. */
410 static const char *table_lookup_model(struct cpuinfo_x86 *c)
411 {
412 #ifdef CONFIG_X86_32
413 	const struct legacy_cpu_model_info *info;
414 
415 	if (c->x86_model >= 16)
416 		return NULL;	/* Range check */
417 
418 	if (!this_cpu)
419 		return NULL;
420 
421 	info = this_cpu->legacy_models;
422 
423 	while (info->family) {
424 		if (info->family == c->x86)
425 			return info->model_names[c->x86_model];
426 		info++;
427 	}
428 #endif
429 	return NULL;		/* Not found */
430 }
431 
432 __u32 cpu_caps_cleared[NCAPINTS];
433 __u32 cpu_caps_set[NCAPINTS];
434 
435 void load_percpu_segment(int cpu)
436 {
437 #ifdef CONFIG_X86_32
438 	loadsegment(fs, __KERNEL_PERCPU);
439 #else
440 	__loadsegment_simple(gs, 0);
441 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
442 #endif
443 	load_stack_canary_segment();
444 }
445 
446 /*
447  * Current gdt points %fs at the "master" per-cpu area: after this,
448  * it's on the real one.
449  */
450 void switch_to_new_gdt(int cpu)
451 {
452 	struct desc_ptr gdt_descr;
453 
454 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
455 	gdt_descr.size = GDT_SIZE - 1;
456 	load_gdt(&gdt_descr);
457 	/* Reload the per-cpu base */
458 
459 	load_percpu_segment(cpu);
460 }
461 
462 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
463 
464 static void get_model_name(struct cpuinfo_x86 *c)
465 {
466 	unsigned int *v;
467 	char *p, *q, *s;
468 
469 	if (c->extended_cpuid_level < 0x80000004)
470 		return;
471 
472 	v = (unsigned int *)c->x86_model_id;
473 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
474 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
475 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
476 	c->x86_model_id[48] = 0;
477 
478 	/* Trim whitespace */
479 	p = q = s = &c->x86_model_id[0];
480 
481 	while (*p == ' ')
482 		p++;
483 
484 	while (*p) {
485 		/* Note the last non-whitespace index */
486 		if (!isspace(*p))
487 			s = q;
488 
489 		*q++ = *p++;
490 	}
491 
492 	*(s + 1) = '\0';
493 }
494 
495 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
496 {
497 	unsigned int n, dummy, ebx, ecx, edx, l2size;
498 
499 	n = c->extended_cpuid_level;
500 
501 	if (n >= 0x80000005) {
502 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
503 		c->x86_cache_size = (ecx>>24) + (edx>>24);
504 #ifdef CONFIG_X86_64
505 		/* On K8 L1 TLB is inclusive, so don't count it */
506 		c->x86_tlbsize = 0;
507 #endif
508 	}
509 
510 	if (n < 0x80000006)	/* Some chips just has a large L1. */
511 		return;
512 
513 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
514 	l2size = ecx >> 16;
515 
516 #ifdef CONFIG_X86_64
517 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
518 #else
519 	/* do processor-specific cache resizing */
520 	if (this_cpu->legacy_cache_size)
521 		l2size = this_cpu->legacy_cache_size(c, l2size);
522 
523 	/* Allow user to override all this if necessary. */
524 	if (cachesize_override != -1)
525 		l2size = cachesize_override;
526 
527 	if (l2size == 0)
528 		return;		/* Again, no L2 cache is possible */
529 #endif
530 
531 	c->x86_cache_size = l2size;
532 }
533 
534 u16 __read_mostly tlb_lli_4k[NR_INFO];
535 u16 __read_mostly tlb_lli_2m[NR_INFO];
536 u16 __read_mostly tlb_lli_4m[NR_INFO];
537 u16 __read_mostly tlb_lld_4k[NR_INFO];
538 u16 __read_mostly tlb_lld_2m[NR_INFO];
539 u16 __read_mostly tlb_lld_4m[NR_INFO];
540 u16 __read_mostly tlb_lld_1g[NR_INFO];
541 
542 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
543 {
544 	if (this_cpu->c_detect_tlb)
545 		this_cpu->c_detect_tlb(c);
546 
547 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
548 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
549 		tlb_lli_4m[ENTRIES]);
550 
551 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
552 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
553 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
554 }
555 
556 void detect_ht(struct cpuinfo_x86 *c)
557 {
558 #ifdef CONFIG_SMP
559 	u32 eax, ebx, ecx, edx;
560 	int index_msb, core_bits;
561 	static bool printed;
562 
563 	if (!cpu_has(c, X86_FEATURE_HT))
564 		return;
565 
566 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
567 		goto out;
568 
569 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
570 		return;
571 
572 	cpuid(1, &eax, &ebx, &ecx, &edx);
573 
574 	smp_num_siblings = (ebx & 0xff0000) >> 16;
575 
576 	if (smp_num_siblings == 1) {
577 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
578 		goto out;
579 	}
580 
581 	if (smp_num_siblings <= 1)
582 		goto out;
583 
584 	index_msb = get_count_order(smp_num_siblings);
585 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
586 
587 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
588 
589 	index_msb = get_count_order(smp_num_siblings);
590 
591 	core_bits = get_count_order(c->x86_max_cores);
592 
593 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
594 				       ((1 << core_bits) - 1);
595 
596 out:
597 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
598 		pr_info("CPU: Physical Processor ID: %d\n",
599 			c->phys_proc_id);
600 		pr_info("CPU: Processor Core ID: %d\n",
601 			c->cpu_core_id);
602 		printed = 1;
603 	}
604 #endif
605 }
606 
607 static void get_cpu_vendor(struct cpuinfo_x86 *c)
608 {
609 	char *v = c->x86_vendor_id;
610 	int i;
611 
612 	for (i = 0; i < X86_VENDOR_NUM; i++) {
613 		if (!cpu_devs[i])
614 			break;
615 
616 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
617 		    (cpu_devs[i]->c_ident[1] &&
618 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
619 
620 			this_cpu = cpu_devs[i];
621 			c->x86_vendor = this_cpu->c_x86_vendor;
622 			return;
623 		}
624 	}
625 
626 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
627 		    "CPU: Your system may be unstable.\n", v);
628 
629 	c->x86_vendor = X86_VENDOR_UNKNOWN;
630 	this_cpu = &default_cpu;
631 }
632 
633 void cpu_detect(struct cpuinfo_x86 *c)
634 {
635 	/* Get vendor name */
636 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
637 	      (unsigned int *)&c->x86_vendor_id[0],
638 	      (unsigned int *)&c->x86_vendor_id[8],
639 	      (unsigned int *)&c->x86_vendor_id[4]);
640 
641 	c->x86 = 4;
642 	/* Intel-defined flags: level 0x00000001 */
643 	if (c->cpuid_level >= 0x00000001) {
644 		u32 junk, tfms, cap0, misc;
645 
646 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
647 		c->x86		= x86_family(tfms);
648 		c->x86_model	= x86_model(tfms);
649 		c->x86_mask	= x86_stepping(tfms);
650 
651 		if (cap0 & (1<<19)) {
652 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
653 			c->x86_cache_alignment = c->x86_clflush_size;
654 		}
655 	}
656 }
657 
658 void get_cpu_cap(struct cpuinfo_x86 *c)
659 {
660 	u32 eax, ebx, ecx, edx;
661 
662 	/* Intel-defined flags: level 0x00000001 */
663 	if (c->cpuid_level >= 0x00000001) {
664 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
665 
666 		c->x86_capability[CPUID_1_ECX] = ecx;
667 		c->x86_capability[CPUID_1_EDX] = edx;
668 	}
669 
670 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
671 	if (c->cpuid_level >= 0x00000006)
672 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
673 
674 	/* Additional Intel-defined flags: level 0x00000007 */
675 	if (c->cpuid_level >= 0x00000007) {
676 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
677 		c->x86_capability[CPUID_7_0_EBX] = ebx;
678 		c->x86_capability[CPUID_7_ECX] = ecx;
679 	}
680 
681 	/* Extended state features: level 0x0000000d */
682 	if (c->cpuid_level >= 0x0000000d) {
683 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
684 
685 		c->x86_capability[CPUID_D_1_EAX] = eax;
686 	}
687 
688 	/* Additional Intel-defined flags: level 0x0000000F */
689 	if (c->cpuid_level >= 0x0000000F) {
690 
691 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
692 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
693 		c->x86_capability[CPUID_F_0_EDX] = edx;
694 
695 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
696 			/* will be overridden if occupancy monitoring exists */
697 			c->x86_cache_max_rmid = ebx;
698 
699 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
700 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
701 			c->x86_capability[CPUID_F_1_EDX] = edx;
702 
703 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
704 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
705 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
706 				c->x86_cache_max_rmid = ecx;
707 				c->x86_cache_occ_scale = ebx;
708 			}
709 		} else {
710 			c->x86_cache_max_rmid = -1;
711 			c->x86_cache_occ_scale = -1;
712 		}
713 	}
714 
715 	/* AMD-defined flags: level 0x80000001 */
716 	eax = cpuid_eax(0x80000000);
717 	c->extended_cpuid_level = eax;
718 
719 	if ((eax & 0xffff0000) == 0x80000000) {
720 		if (eax >= 0x80000001) {
721 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
722 
723 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
724 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
725 		}
726 	}
727 
728 	if (c->extended_cpuid_level >= 0x80000007) {
729 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
730 
731 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
732 		c->x86_power = edx;
733 	}
734 
735 	if (c->extended_cpuid_level >= 0x80000008) {
736 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
737 
738 		c->x86_virt_bits = (eax >> 8) & 0xff;
739 		c->x86_phys_bits = eax & 0xff;
740 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
741 	}
742 #ifdef CONFIG_X86_32
743 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
744 		c->x86_phys_bits = 36;
745 #endif
746 
747 	if (c->extended_cpuid_level >= 0x8000000a)
748 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
749 
750 	init_scattered_cpuid_features(c);
751 }
752 
753 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
754 {
755 #ifdef CONFIG_X86_32
756 	int i;
757 
758 	/*
759 	 * First of all, decide if this is a 486 or higher
760 	 * It's a 486 if we can modify the AC flag
761 	 */
762 	if (flag_is_changeable_p(X86_EFLAGS_AC))
763 		c->x86 = 4;
764 	else
765 		c->x86 = 3;
766 
767 	for (i = 0; i < X86_VENDOR_NUM; i++)
768 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
769 			c->x86_vendor_id[0] = 0;
770 			cpu_devs[i]->c_identify(c);
771 			if (c->x86_vendor_id[0]) {
772 				get_cpu_vendor(c);
773 				break;
774 			}
775 		}
776 #endif
777 }
778 
779 /*
780  * Do minimum CPU detection early.
781  * Fields really needed: vendor, cpuid_level, family, model, mask,
782  * cache alignment.
783  * The others are not touched to avoid unwanted side effects.
784  *
785  * WARNING: this function is only called on the BP.  Don't add code here
786  * that is supposed to run on all CPUs.
787  */
788 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
789 {
790 #ifdef CONFIG_X86_64
791 	c->x86_clflush_size = 64;
792 	c->x86_phys_bits = 36;
793 	c->x86_virt_bits = 48;
794 #else
795 	c->x86_clflush_size = 32;
796 	c->x86_phys_bits = 32;
797 	c->x86_virt_bits = 32;
798 #endif
799 	c->x86_cache_alignment = c->x86_clflush_size;
800 
801 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
802 	c->extended_cpuid_level = 0;
803 
804 	if (!have_cpuid_p())
805 		identify_cpu_without_cpuid(c);
806 
807 	/* cyrix could have cpuid enabled via c_identify()*/
808 	if (have_cpuid_p()) {
809 		cpu_detect(c);
810 		get_cpu_vendor(c);
811 		get_cpu_cap(c);
812 
813 		if (this_cpu->c_early_init)
814 			this_cpu->c_early_init(c);
815 
816 		c->cpu_index = 0;
817 		filter_cpuid_features(c, false);
818 
819 		if (this_cpu->c_bsp_init)
820 			this_cpu->c_bsp_init(c);
821 	}
822 
823 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
824 	fpu__init_system(c);
825 }
826 
827 void __init early_cpu_init(void)
828 {
829 	const struct cpu_dev *const *cdev;
830 	int count = 0;
831 
832 #ifdef CONFIG_PROCESSOR_SELECT
833 	pr_info("KERNEL supported cpus:\n");
834 #endif
835 
836 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
837 		const struct cpu_dev *cpudev = *cdev;
838 
839 		if (count >= X86_VENDOR_NUM)
840 			break;
841 		cpu_devs[count] = cpudev;
842 		count++;
843 
844 #ifdef CONFIG_PROCESSOR_SELECT
845 		{
846 			unsigned int j;
847 
848 			for (j = 0; j < 2; j++) {
849 				if (!cpudev->c_ident[j])
850 					continue;
851 				pr_info("  %s %s\n", cpudev->c_vendor,
852 					cpudev->c_ident[j]);
853 			}
854 		}
855 #endif
856 	}
857 	early_identify_cpu(&boot_cpu_data);
858 }
859 
860 /*
861  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
862  * unfortunately, that's not true in practice because of early VIA
863  * chips and (more importantly) broken virtualizers that are not easy
864  * to detect. In the latter case it doesn't even *fail* reliably, so
865  * probing for it doesn't even work. Disable it completely on 32-bit
866  * unless we can find a reliable way to detect all the broken cases.
867  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
868  */
869 static void detect_nopl(struct cpuinfo_x86 *c)
870 {
871 #ifdef CONFIG_X86_32
872 	clear_cpu_cap(c, X86_FEATURE_NOPL);
873 #else
874 	set_cpu_cap(c, X86_FEATURE_NOPL);
875 #endif
876 }
877 
878 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
879 {
880 #ifdef CONFIG_X86_64
881 	/*
882 	 * Empirically, writing zero to a segment selector on AMD does
883 	 * not clear the base, whereas writing zero to a segment
884 	 * selector on Intel does clear the base.  Intel's behavior
885 	 * allows slightly faster context switches in the common case
886 	 * where GS is unused by the prev and next threads.
887 	 *
888 	 * Since neither vendor documents this anywhere that I can see,
889 	 * detect it directly instead of hardcoding the choice by
890 	 * vendor.
891 	 *
892 	 * I've designated AMD's behavior as the "bug" because it's
893 	 * counterintuitive and less friendly.
894 	 */
895 
896 	unsigned long old_base, tmp;
897 	rdmsrl(MSR_FS_BASE, old_base);
898 	wrmsrl(MSR_FS_BASE, 1);
899 	loadsegment(fs, 0);
900 	rdmsrl(MSR_FS_BASE, tmp);
901 	if (tmp != 0)
902 		set_cpu_bug(c, X86_BUG_NULL_SEG);
903 	wrmsrl(MSR_FS_BASE, old_base);
904 #endif
905 }
906 
907 static void generic_identify(struct cpuinfo_x86 *c)
908 {
909 	c->extended_cpuid_level = 0;
910 
911 	if (!have_cpuid_p())
912 		identify_cpu_without_cpuid(c);
913 
914 	/* cyrix could have cpuid enabled via c_identify()*/
915 	if (!have_cpuid_p())
916 		return;
917 
918 	cpu_detect(c);
919 
920 	get_cpu_vendor(c);
921 
922 	get_cpu_cap(c);
923 
924 	if (c->cpuid_level >= 0x00000001) {
925 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
926 #ifdef CONFIG_X86_32
927 # ifdef CONFIG_SMP
928 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
929 # else
930 		c->apicid = c->initial_apicid;
931 # endif
932 #endif
933 		c->phys_proc_id = c->initial_apicid;
934 	}
935 
936 	get_model_name(c); /* Default name */
937 
938 	detect_nopl(c);
939 
940 	detect_null_seg_behavior(c);
941 
942 	/*
943 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
944 	 * systems that run Linux at CPL > 0 may or may not have the
945 	 * issue, but, even if they have the issue, there's absolutely
946 	 * nothing we can do about it because we can't use the real IRET
947 	 * instruction.
948 	 *
949 	 * NB: For the time being, only 32-bit kernels support
950 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
951 	 * whether to apply espfix using paravirt hooks.  If any
952 	 * non-paravirt system ever shows up that does *not* have the
953 	 * ESPFIX issue, we can change this.
954 	 */
955 #ifdef CONFIG_X86_32
956 # ifdef CONFIG_PARAVIRT
957 	do {
958 		extern void native_iret(void);
959 		if (pv_cpu_ops.iret == native_iret)
960 			set_cpu_bug(c, X86_BUG_ESPFIX);
961 	} while (0);
962 # else
963 	set_cpu_bug(c, X86_BUG_ESPFIX);
964 # endif
965 #endif
966 }
967 
968 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
969 {
970 	/*
971 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
972 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
973 	 * in case CQM bits really aren't there in this CPU.
974 	 */
975 	if (c != &boot_cpu_data) {
976 		boot_cpu_data.x86_cache_max_rmid =
977 			min(boot_cpu_data.x86_cache_max_rmid,
978 			    c->x86_cache_max_rmid);
979 	}
980 }
981 
982 /*
983  * Validate that ACPI/mptables have the same information about the
984  * effective APIC id and update the package map.
985  */
986 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
987 {
988 #ifdef CONFIG_SMP
989 	unsigned int apicid, cpu = smp_processor_id();
990 
991 	apicid = apic->cpu_present_to_apicid(cpu);
992 
993 	if (apicid != c->apicid) {
994 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
995 		       cpu, apicid, c->initial_apicid);
996 	}
997 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
998 #else
999 	c->logical_proc_id = 0;
1000 #endif
1001 }
1002 
1003 /*
1004  * This does the hard work of actually picking apart the CPU stuff...
1005  */
1006 static void identify_cpu(struct cpuinfo_x86 *c)
1007 {
1008 	int i;
1009 
1010 	c->loops_per_jiffy = loops_per_jiffy;
1011 	c->x86_cache_size = -1;
1012 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1013 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
1014 	c->x86_vendor_id[0] = '\0'; /* Unset */
1015 	c->x86_model_id[0] = '\0';  /* Unset */
1016 	c->x86_max_cores = 1;
1017 	c->x86_coreid_bits = 0;
1018 	c->cu_id = 0xff;
1019 #ifdef CONFIG_X86_64
1020 	c->x86_clflush_size = 64;
1021 	c->x86_phys_bits = 36;
1022 	c->x86_virt_bits = 48;
1023 #else
1024 	c->cpuid_level = -1;	/* CPUID not detected */
1025 	c->x86_clflush_size = 32;
1026 	c->x86_phys_bits = 32;
1027 	c->x86_virt_bits = 32;
1028 #endif
1029 	c->x86_cache_alignment = c->x86_clflush_size;
1030 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1031 
1032 	generic_identify(c);
1033 
1034 	if (this_cpu->c_identify)
1035 		this_cpu->c_identify(c);
1036 
1037 	/* Clear/Set all flags overridden by options, after probe */
1038 	for (i = 0; i < NCAPINTS; i++) {
1039 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
1040 		c->x86_capability[i] |= cpu_caps_set[i];
1041 	}
1042 
1043 #ifdef CONFIG_X86_64
1044 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1045 #endif
1046 
1047 	/*
1048 	 * Vendor-specific initialization.  In this section we
1049 	 * canonicalize the feature flags, meaning if there are
1050 	 * features a certain CPU supports which CPUID doesn't
1051 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1052 	 * we handle them here.
1053 	 *
1054 	 * At the end of this section, c->x86_capability better
1055 	 * indicate the features this CPU genuinely supports!
1056 	 */
1057 	if (this_cpu->c_init)
1058 		this_cpu->c_init(c);
1059 
1060 	/* Disable the PN if appropriate */
1061 	squash_the_stupid_serial_number(c);
1062 
1063 	/* Set up SMEP/SMAP */
1064 	setup_smep(c);
1065 	setup_smap(c);
1066 
1067 	/*
1068 	 * The vendor-specific functions might have changed features.
1069 	 * Now we do "generic changes."
1070 	 */
1071 
1072 	/* Filter out anything that depends on CPUID levels we don't have */
1073 	filter_cpuid_features(c, true);
1074 
1075 	/* If the model name is still unset, do table lookup. */
1076 	if (!c->x86_model_id[0]) {
1077 		const char *p;
1078 		p = table_lookup_model(c);
1079 		if (p)
1080 			strcpy(c->x86_model_id, p);
1081 		else
1082 			/* Last resort... */
1083 			sprintf(c->x86_model_id, "%02x/%02x",
1084 				c->x86, c->x86_model);
1085 	}
1086 
1087 #ifdef CONFIG_X86_64
1088 	detect_ht(c);
1089 #endif
1090 
1091 	init_hypervisor(c);
1092 	x86_init_rdrand(c);
1093 	x86_init_cache_qos(c);
1094 	setup_pku(c);
1095 
1096 	/*
1097 	 * Clear/Set all flags overridden by options, need do it
1098 	 * before following smp all cpus cap AND.
1099 	 */
1100 	for (i = 0; i < NCAPINTS; i++) {
1101 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
1102 		c->x86_capability[i] |= cpu_caps_set[i];
1103 	}
1104 
1105 	/*
1106 	 * On SMP, boot_cpu_data holds the common feature set between
1107 	 * all CPUs; so make sure that we indicate which features are
1108 	 * common between the CPUs.  The first time this routine gets
1109 	 * executed, c == &boot_cpu_data.
1110 	 */
1111 	if (c != &boot_cpu_data) {
1112 		/* AND the already accumulated flags with these */
1113 		for (i = 0; i < NCAPINTS; i++)
1114 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1115 
1116 		/* OR, i.e. replicate the bug flags */
1117 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1118 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1119 	}
1120 
1121 	/* Init Machine Check Exception if available. */
1122 	mcheck_cpu_init(c);
1123 
1124 	select_idle_routine(c);
1125 
1126 #ifdef CONFIG_NUMA
1127 	numa_add_cpu(smp_processor_id());
1128 #endif
1129 }
1130 
1131 /*
1132  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1133  * on 32-bit kernels:
1134  */
1135 #ifdef CONFIG_X86_32
1136 void enable_sep_cpu(void)
1137 {
1138 	struct tss_struct *tss;
1139 	int cpu;
1140 
1141 	if (!boot_cpu_has(X86_FEATURE_SEP))
1142 		return;
1143 
1144 	cpu = get_cpu();
1145 	tss = &per_cpu(cpu_tss, cpu);
1146 
1147 	/*
1148 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1149 	 * see the big comment in struct x86_hw_tss's definition.
1150 	 */
1151 
1152 	tss->x86_tss.ss1 = __KERNEL_CS;
1153 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1154 
1155 	wrmsr(MSR_IA32_SYSENTER_ESP,
1156 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1157 	      0);
1158 
1159 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1160 
1161 	put_cpu();
1162 }
1163 #endif
1164 
1165 void __init identify_boot_cpu(void)
1166 {
1167 	identify_cpu(&boot_cpu_data);
1168 #ifdef CONFIG_X86_32
1169 	sysenter_setup();
1170 	enable_sep_cpu();
1171 #endif
1172 	cpu_detect_tlb(&boot_cpu_data);
1173 }
1174 
1175 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1176 {
1177 	BUG_ON(c == &boot_cpu_data);
1178 	identify_cpu(c);
1179 #ifdef CONFIG_X86_32
1180 	enable_sep_cpu();
1181 #endif
1182 	mtrr_ap_init();
1183 	validate_apic_and_package_id(c);
1184 }
1185 
1186 static __init int setup_noclflush(char *arg)
1187 {
1188 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1189 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1190 	return 1;
1191 }
1192 __setup("noclflush", setup_noclflush);
1193 
1194 void print_cpu_info(struct cpuinfo_x86 *c)
1195 {
1196 	const char *vendor = NULL;
1197 
1198 	if (c->x86_vendor < X86_VENDOR_NUM) {
1199 		vendor = this_cpu->c_vendor;
1200 	} else {
1201 		if (c->cpuid_level >= 0)
1202 			vendor = c->x86_vendor_id;
1203 	}
1204 
1205 	if (vendor && !strstr(c->x86_model_id, vendor))
1206 		pr_cont("%s ", vendor);
1207 
1208 	if (c->x86_model_id[0])
1209 		pr_cont("%s", c->x86_model_id);
1210 	else
1211 		pr_cont("%d86", c->x86);
1212 
1213 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1214 
1215 	if (c->x86_mask || c->cpuid_level >= 0)
1216 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1217 	else
1218 		pr_cont(")\n");
1219 }
1220 
1221 static __init int setup_disablecpuid(char *arg)
1222 {
1223 	int bit;
1224 
1225 	if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1226 		setup_clear_cpu_cap(bit);
1227 	else
1228 		return 0;
1229 
1230 	return 1;
1231 }
1232 __setup("clearcpuid=", setup_disablecpuid);
1233 
1234 #ifdef CONFIG_X86_64
1235 struct desc_ptr idt_descr __ro_after_init = {
1236 	.size = NR_VECTORS * 16 - 1,
1237 	.address = (unsigned long) idt_table,
1238 };
1239 const struct desc_ptr debug_idt_descr = {
1240 	.size = NR_VECTORS * 16 - 1,
1241 	.address = (unsigned long) debug_idt_table,
1242 };
1243 
1244 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1245 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1246 
1247 /*
1248  * The following percpu variables are hot.  Align current_task to
1249  * cacheline size such that they fall in the same cacheline.
1250  */
1251 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1252 	&init_task;
1253 EXPORT_PER_CPU_SYMBOL(current_task);
1254 
1255 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1256 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1257 
1258 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1259 
1260 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1261 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1262 
1263 /*
1264  * Special IST stacks which the CPU switches to when it calls
1265  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1266  * limit), all of them are 4K, except the debug stack which
1267  * is 8K.
1268  */
1269 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1270 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1271 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1272 };
1273 
1274 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1275 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1276 
1277 /* May not be marked __init: used by software suspend */
1278 void syscall_init(void)
1279 {
1280 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1281 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1282 
1283 #ifdef CONFIG_IA32_EMULATION
1284 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1285 	/*
1286 	 * This only works on Intel CPUs.
1287 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1288 	 * This does not cause SYSENTER to jump to the wrong location, because
1289 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1290 	 */
1291 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1292 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1293 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1294 #else
1295 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1296 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1297 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1298 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1299 #endif
1300 
1301 	/* Flags to clear on syscall */
1302 	wrmsrl(MSR_SYSCALL_MASK,
1303 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1304 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1305 }
1306 
1307 /*
1308  * Copies of the original ist values from the tss are only accessed during
1309  * debugging, no special alignment required.
1310  */
1311 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1312 
1313 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1314 DEFINE_PER_CPU(int, debug_stack_usage);
1315 
1316 int is_debug_stack(unsigned long addr)
1317 {
1318 	return __this_cpu_read(debug_stack_usage) ||
1319 		(addr <= __this_cpu_read(debug_stack_addr) &&
1320 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1321 }
1322 NOKPROBE_SYMBOL(is_debug_stack);
1323 
1324 DEFINE_PER_CPU(u32, debug_idt_ctr);
1325 
1326 void debug_stack_set_zero(void)
1327 {
1328 	this_cpu_inc(debug_idt_ctr);
1329 	load_current_idt();
1330 }
1331 NOKPROBE_SYMBOL(debug_stack_set_zero);
1332 
1333 void debug_stack_reset(void)
1334 {
1335 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1336 		return;
1337 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1338 		load_current_idt();
1339 }
1340 NOKPROBE_SYMBOL(debug_stack_reset);
1341 
1342 #else	/* CONFIG_X86_64 */
1343 
1344 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1345 EXPORT_PER_CPU_SYMBOL(current_task);
1346 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1347 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1348 
1349 /*
1350  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1351  * the top of the kernel stack.  Use an extra percpu variable to track the
1352  * top of the kernel stack directly.
1353  */
1354 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1355 	(unsigned long)&init_thread_union + THREAD_SIZE;
1356 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1357 
1358 #ifdef CONFIG_CC_STACKPROTECTOR
1359 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1360 #endif
1361 
1362 #endif	/* CONFIG_X86_64 */
1363 
1364 /*
1365  * Clear all 6 debug registers:
1366  */
1367 static void clear_all_debug_regs(void)
1368 {
1369 	int i;
1370 
1371 	for (i = 0; i < 8; i++) {
1372 		/* Ignore db4, db5 */
1373 		if ((i == 4) || (i == 5))
1374 			continue;
1375 
1376 		set_debugreg(0, i);
1377 	}
1378 }
1379 
1380 #ifdef CONFIG_KGDB
1381 /*
1382  * Restore debug regs if using kgdbwait and you have a kernel debugger
1383  * connection established.
1384  */
1385 static void dbg_restore_debug_regs(void)
1386 {
1387 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1388 		arch_kgdb_ops.correct_hw_break();
1389 }
1390 #else /* ! CONFIG_KGDB */
1391 #define dbg_restore_debug_regs()
1392 #endif /* ! CONFIG_KGDB */
1393 
1394 static void wait_for_master_cpu(int cpu)
1395 {
1396 #ifdef CONFIG_SMP
1397 	/*
1398 	 * wait for ACK from master CPU before continuing
1399 	 * with AP initialization
1400 	 */
1401 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1402 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1403 		cpu_relax();
1404 #endif
1405 }
1406 
1407 /*
1408  * cpu_init() initializes state that is per-CPU. Some data is already
1409  * initialized (naturally) in the bootstrap process, such as the GDT
1410  * and IDT. We reload them nevertheless, this function acts as a
1411  * 'CPU state barrier', nothing should get across.
1412  * A lot of state is already set up in PDA init for 64 bit
1413  */
1414 #ifdef CONFIG_X86_64
1415 
1416 void cpu_init(void)
1417 {
1418 	struct orig_ist *oist;
1419 	struct task_struct *me;
1420 	struct tss_struct *t;
1421 	unsigned long v;
1422 	int cpu = raw_smp_processor_id();
1423 	int i;
1424 
1425 	wait_for_master_cpu(cpu);
1426 
1427 	/*
1428 	 * Initialize the CR4 shadow before doing anything that could
1429 	 * try to read it.
1430 	 */
1431 	cr4_init_shadow();
1432 
1433 	if (cpu)
1434 		load_ucode_ap();
1435 
1436 	t = &per_cpu(cpu_tss, cpu);
1437 	oist = &per_cpu(orig_ist, cpu);
1438 
1439 #ifdef CONFIG_NUMA
1440 	if (this_cpu_read(numa_node) == 0 &&
1441 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1442 		set_numa_node(early_cpu_to_node(cpu));
1443 #endif
1444 
1445 	me = current;
1446 
1447 	pr_debug("Initializing CPU#%d\n", cpu);
1448 
1449 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1450 
1451 	/*
1452 	 * Initialize the per-CPU GDT with the boot GDT,
1453 	 * and set up the GDT descriptor:
1454 	 */
1455 
1456 	switch_to_new_gdt(cpu);
1457 	loadsegment(fs, 0);
1458 
1459 	load_current_idt();
1460 
1461 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1462 	syscall_init();
1463 
1464 	wrmsrl(MSR_FS_BASE, 0);
1465 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1466 	barrier();
1467 
1468 	x86_configure_nx();
1469 	x2apic_setup();
1470 
1471 	/*
1472 	 * set up and load the per-CPU TSS
1473 	 */
1474 	if (!oist->ist[0]) {
1475 		char *estacks = per_cpu(exception_stacks, cpu);
1476 
1477 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1478 			estacks += exception_stack_sizes[v];
1479 			oist->ist[v] = t->x86_tss.ist[v] =
1480 					(unsigned long)estacks;
1481 			if (v == DEBUG_STACK-1)
1482 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1483 		}
1484 	}
1485 
1486 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1487 
1488 	/*
1489 	 * <= is required because the CPU will access up to
1490 	 * 8 bits beyond the end of the IO permission bitmap.
1491 	 */
1492 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1493 		t->io_bitmap[i] = ~0UL;
1494 
1495 	atomic_inc(&init_mm.mm_count);
1496 	me->active_mm = &init_mm;
1497 	BUG_ON(me->mm);
1498 	enter_lazy_tlb(&init_mm, me);
1499 
1500 	load_sp0(t, &current->thread);
1501 	set_tss_desc(cpu, t);
1502 	load_TR_desc();
1503 	load_mm_ldt(&init_mm);
1504 
1505 	clear_all_debug_regs();
1506 	dbg_restore_debug_regs();
1507 
1508 	fpu__init_cpu();
1509 
1510 	if (is_uv_system())
1511 		uv_cpu_init();
1512 }
1513 
1514 #else
1515 
1516 void cpu_init(void)
1517 {
1518 	int cpu = smp_processor_id();
1519 	struct task_struct *curr = current;
1520 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1521 	struct thread_struct *thread = &curr->thread;
1522 
1523 	wait_for_master_cpu(cpu);
1524 
1525 	/*
1526 	 * Initialize the CR4 shadow before doing anything that could
1527 	 * try to read it.
1528 	 */
1529 	cr4_init_shadow();
1530 
1531 	show_ucode_info_early();
1532 
1533 	pr_info("Initializing CPU#%d\n", cpu);
1534 
1535 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1536 	    boot_cpu_has(X86_FEATURE_TSC) ||
1537 	    boot_cpu_has(X86_FEATURE_DE))
1538 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1539 
1540 	load_current_idt();
1541 	switch_to_new_gdt(cpu);
1542 
1543 	/*
1544 	 * Set up and load the per-CPU TSS and LDT
1545 	 */
1546 	atomic_inc(&init_mm.mm_count);
1547 	curr->active_mm = &init_mm;
1548 	BUG_ON(curr->mm);
1549 	enter_lazy_tlb(&init_mm, curr);
1550 
1551 	load_sp0(t, thread);
1552 	set_tss_desc(cpu, t);
1553 	load_TR_desc();
1554 	load_mm_ldt(&init_mm);
1555 
1556 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1557 
1558 #ifdef CONFIG_DOUBLEFAULT
1559 	/* Set up doublefault TSS pointer in the GDT */
1560 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1561 #endif
1562 
1563 	clear_all_debug_regs();
1564 	dbg_restore_debug_regs();
1565 
1566 	fpu__init_cpu();
1567 }
1568 #endif
1569 
1570 static void bsp_resume(void)
1571 {
1572 	if (this_cpu->c_bsp_resume)
1573 		this_cpu->c_bsp_resume(&boot_cpu_data);
1574 }
1575 
1576 static struct syscore_ops cpu_syscore_ops = {
1577 	.resume		= bsp_resume,
1578 };
1579 
1580 static int __init init_cpu_syscore(void)
1581 {
1582 	register_syscore_ops(&cpu_syscore_ops);
1583 	return 0;
1584 }
1585 core_initcall(init_cpu_syscore);
1586