xref: /linux/arch/x86/kernel/cpu/common.c (revision 667ca1ec7c9eb7ac3b80590b6597151b4c2a750b)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52 
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56 
57 #include "cpu.h"
58 
59 u32 elf_hwcap2 __read_mostly;
60 
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65 
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68 
69 /* correctly size the local cpu masks */
70 void __init setup_cpu_local_masks(void)
71 {
72 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
73 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
74 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
75 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
76 }
77 
78 static void default_init(struct cpuinfo_x86 *c)
79 {
80 #ifdef CONFIG_X86_64
81 	cpu_detect_cache_sizes(c);
82 #else
83 	/* Not much we can do here... */
84 	/* Check if at least it has cpuid */
85 	if (c->cpuid_level == -1) {
86 		/* No cpuid. It must be an ancient CPU */
87 		if (c->x86 == 4)
88 			strcpy(c->x86_model_id, "486");
89 		else if (c->x86 == 3)
90 			strcpy(c->x86_model_id, "386");
91 	}
92 #endif
93 }
94 
95 static const struct cpu_dev default_cpu = {
96 	.c_init		= default_init,
97 	.c_vendor	= "Unknown",
98 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
99 };
100 
101 static const struct cpu_dev *this_cpu = &default_cpu;
102 
103 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
104 #ifdef CONFIG_X86_64
105 	/*
106 	 * We need valid kernel segments for data and code in long mode too
107 	 * IRET will check the segment types  kkeil 2000/10/28
108 	 * Also sysret mandates a special GDT layout
109 	 *
110 	 * TLS descriptors are currently at a different place compared to i386.
111 	 * Hopefully nobody expects them at a fixed place (Wine?)
112 	 */
113 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
114 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
115 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
116 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
117 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
118 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
119 #else
120 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
121 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
122 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
123 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
124 	/*
125 	 * Segments used for calling PnP BIOS have byte granularity.
126 	 * They code segments and data segments have fixed 64k limits,
127 	 * the transfer segment sizes are set at run time.
128 	 */
129 	/* 32-bit code */
130 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 	/* 16-bit code */
132 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 	/* 16-bit data */
134 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
135 	/* 16-bit data */
136 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
137 	/* 16-bit data */
138 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
139 	/*
140 	 * The APM segments have byte granularity and their bases
141 	 * are set at run time.  All have 64k limits.
142 	 */
143 	/* 32-bit code */
144 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
145 	/* 16-bit code */
146 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
147 	/* data */
148 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
149 
150 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
151 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
152 	GDT_STACK_CANARY_INIT
153 #endif
154 } };
155 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
156 
157 static int __init x86_mpx_setup(char *s)
158 {
159 	/* require an exact match without trailing characters */
160 	if (strlen(s))
161 		return 0;
162 
163 	/* do not emit a message if the feature is not present */
164 	if (!boot_cpu_has(X86_FEATURE_MPX))
165 		return 1;
166 
167 	setup_clear_cpu_cap(X86_FEATURE_MPX);
168 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
169 	return 1;
170 }
171 __setup("nompx", x86_mpx_setup);
172 
173 #ifdef CONFIG_X86_64
174 static int __init x86_nopcid_setup(char *s)
175 {
176 	/* nopcid doesn't accept parameters */
177 	if (s)
178 		return -EINVAL;
179 
180 	/* do not emit a message if the feature is not present */
181 	if (!boot_cpu_has(X86_FEATURE_PCID))
182 		return 0;
183 
184 	setup_clear_cpu_cap(X86_FEATURE_PCID);
185 	pr_info("nopcid: PCID feature disabled\n");
186 	return 0;
187 }
188 early_param("nopcid", x86_nopcid_setup);
189 #endif
190 
191 static int __init x86_noinvpcid_setup(char *s)
192 {
193 	/* noinvpcid doesn't accept parameters */
194 	if (s)
195 		return -EINVAL;
196 
197 	/* do not emit a message if the feature is not present */
198 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
199 		return 0;
200 
201 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
202 	pr_info("noinvpcid: INVPCID feature disabled\n");
203 	return 0;
204 }
205 early_param("noinvpcid", x86_noinvpcid_setup);
206 
207 #ifdef CONFIG_X86_32
208 static int cachesize_override = -1;
209 static int disable_x86_serial_nr = 1;
210 
211 static int __init cachesize_setup(char *str)
212 {
213 	get_option(&str, &cachesize_override);
214 	return 1;
215 }
216 __setup("cachesize=", cachesize_setup);
217 
218 static int __init x86_sep_setup(char *s)
219 {
220 	setup_clear_cpu_cap(X86_FEATURE_SEP);
221 	return 1;
222 }
223 __setup("nosep", x86_sep_setup);
224 
225 /* Standard macro to see if a specific flag is changeable */
226 static inline int flag_is_changeable_p(u32 flag)
227 {
228 	u32 f1, f2;
229 
230 	/*
231 	 * Cyrix and IDT cpus allow disabling of CPUID
232 	 * so the code below may return different results
233 	 * when it is executed before and after enabling
234 	 * the CPUID. Add "volatile" to not allow gcc to
235 	 * optimize the subsequent calls to this function.
236 	 */
237 	asm volatile ("pushfl		\n\t"
238 		      "pushfl		\n\t"
239 		      "popl %0		\n\t"
240 		      "movl %0, %1	\n\t"
241 		      "xorl %2, %0	\n\t"
242 		      "pushl %0		\n\t"
243 		      "popfl		\n\t"
244 		      "pushfl		\n\t"
245 		      "popl %0		\n\t"
246 		      "popfl		\n\t"
247 
248 		      : "=&r" (f1), "=&r" (f2)
249 		      : "ir" (flag));
250 
251 	return ((f1^f2) & flag) != 0;
252 }
253 
254 /* Probe for the CPUID instruction */
255 int have_cpuid_p(void)
256 {
257 	return flag_is_changeable_p(X86_EFLAGS_ID);
258 }
259 
260 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
261 {
262 	unsigned long lo, hi;
263 
264 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
265 		return;
266 
267 	/* Disable processor serial number: */
268 
269 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270 	lo |= 0x200000;
271 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272 
273 	pr_notice("CPU serial number disabled.\n");
274 	clear_cpu_cap(c, X86_FEATURE_PN);
275 
276 	/* Disabling the serial number may affect the cpuid level */
277 	c->cpuid_level = cpuid_eax(0);
278 }
279 
280 static int __init x86_serial_nr_setup(char *s)
281 {
282 	disable_x86_serial_nr = 0;
283 	return 1;
284 }
285 __setup("serialnumber", x86_serial_nr_setup);
286 #else
287 static inline int flag_is_changeable_p(u32 flag)
288 {
289 	return 1;
290 }
291 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
292 {
293 }
294 #endif
295 
296 static __init int setup_disable_smep(char *arg)
297 {
298 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
299 	/* Check for things that depend on SMEP being enabled: */
300 	check_mpx_erratum(&boot_cpu_data);
301 	return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304 
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 	if (cpu_has(c, X86_FEATURE_SMEP))
308 		cr4_set_bits(X86_CR4_SMEP);
309 }
310 
311 static __init int setup_disable_smap(char *arg)
312 {
313 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 	return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317 
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 	unsigned long eflags = native_save_fl();
321 
322 	/* This should have been cleared long ago */
323 	BUG_ON(eflags & X86_EFLAGS_AC);
324 
325 	if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 		cr4_set_bits(X86_CR4_SMAP);
328 #else
329 		cr4_clear_bits(X86_CR4_SMAP);
330 #endif
331 	}
332 }
333 
334 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
335 {
336 	/* Check the boot processor, plus build option for UMIP. */
337 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
338 		goto out;
339 
340 	/* Check the current processor's cpuid bits. */
341 	if (!cpu_has(c, X86_FEATURE_UMIP))
342 		goto out;
343 
344 	cr4_set_bits(X86_CR4_UMIP);
345 
346 	pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
347 
348 	return;
349 
350 out:
351 	/*
352 	 * Make sure UMIP is disabled in case it was enabled in a
353 	 * previous boot (e.g., via kexec).
354 	 */
355 	cr4_clear_bits(X86_CR4_UMIP);
356 }
357 
358 /*
359  * Protection Keys are not available in 32-bit mode.
360  */
361 static bool pku_disabled;
362 
363 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
364 {
365 	/* check the boot processor, plus compile options for PKU: */
366 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
367 		return;
368 	/* checks the actual processor's cpuid bits: */
369 	if (!cpu_has(c, X86_FEATURE_PKU))
370 		return;
371 	if (pku_disabled)
372 		return;
373 
374 	cr4_set_bits(X86_CR4_PKE);
375 	/*
376 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
377 	 * cpuid bit to be set.  We need to ensure that we
378 	 * update that bit in this CPU's "cpu_info".
379 	 */
380 	get_cpu_cap(c);
381 }
382 
383 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
384 static __init int setup_disable_pku(char *arg)
385 {
386 	/*
387 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
388 	 * runtime checks are against OSPKE so clearing the
389 	 * bit does nothing.
390 	 *
391 	 * This way, we will see "pku" in cpuinfo, but not
392 	 * "ospke", which is exactly what we want.  It shows
393 	 * that the CPU has PKU, but the OS has not enabled it.
394 	 * This happens to be exactly how a system would look
395 	 * if we disabled the config option.
396 	 */
397 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
398 	pku_disabled = true;
399 	return 1;
400 }
401 __setup("nopku", setup_disable_pku);
402 #endif /* CONFIG_X86_64 */
403 
404 /*
405  * Some CPU features depend on higher CPUID levels, which may not always
406  * be available due to CPUID level capping or broken virtualization
407  * software.  Add those features to this table to auto-disable them.
408  */
409 struct cpuid_dependent_feature {
410 	u32 feature;
411 	u32 level;
412 };
413 
414 static const struct cpuid_dependent_feature
415 cpuid_dependent_features[] = {
416 	{ X86_FEATURE_MWAIT,		0x00000005 },
417 	{ X86_FEATURE_DCA,		0x00000009 },
418 	{ X86_FEATURE_XSAVE,		0x0000000d },
419 	{ 0, 0 }
420 };
421 
422 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
423 {
424 	const struct cpuid_dependent_feature *df;
425 
426 	for (df = cpuid_dependent_features; df->feature; df++) {
427 
428 		if (!cpu_has(c, df->feature))
429 			continue;
430 		/*
431 		 * Note: cpuid_level is set to -1 if unavailable, but
432 		 * extended_extended_level is set to 0 if unavailable
433 		 * and the legitimate extended levels are all negative
434 		 * when signed; hence the weird messing around with
435 		 * signs here...
436 		 */
437 		if (!((s32)df->level < 0 ?
438 		     (u32)df->level > (u32)c->extended_cpuid_level :
439 		     (s32)df->level > (s32)c->cpuid_level))
440 			continue;
441 
442 		clear_cpu_cap(c, df->feature);
443 		if (!warn)
444 			continue;
445 
446 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
447 			x86_cap_flag(df->feature), df->level);
448 	}
449 }
450 
451 /*
452  * Naming convention should be: <Name> [(<Codename>)]
453  * This table only is used unless init_<vendor>() below doesn't set it;
454  * in particular, if CPUID levels 0x80000002..4 are supported, this
455  * isn't used
456  */
457 
458 /* Look up CPU names by table lookup. */
459 static const char *table_lookup_model(struct cpuinfo_x86 *c)
460 {
461 #ifdef CONFIG_X86_32
462 	const struct legacy_cpu_model_info *info;
463 
464 	if (c->x86_model >= 16)
465 		return NULL;	/* Range check */
466 
467 	if (!this_cpu)
468 		return NULL;
469 
470 	info = this_cpu->legacy_models;
471 
472 	while (info->family) {
473 		if (info->family == c->x86)
474 			return info->model_names[c->x86_model];
475 		info++;
476 	}
477 #endif
478 	return NULL;		/* Not found */
479 }
480 
481 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
482 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
483 
484 void load_percpu_segment(int cpu)
485 {
486 #ifdef CONFIG_X86_32
487 	loadsegment(fs, __KERNEL_PERCPU);
488 #else
489 	__loadsegment_simple(gs, 0);
490 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
491 #endif
492 	load_stack_canary_segment();
493 }
494 
495 #ifdef CONFIG_X86_32
496 /* The 32-bit entry code needs to find cpu_entry_area. */
497 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
498 #endif
499 
500 #ifdef CONFIG_X86_64
501 /*
502  * Special IST stacks which the CPU switches to when it calls
503  * an IST-marked descriptor entry. Up to 7 stacks (hardware
504  * limit), all of them are 4K, except the debug stack which
505  * is 8K.
506  */
507 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
508 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
509 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
510 };
511 #endif
512 
513 /* Load the original GDT from the per-cpu structure */
514 void load_direct_gdt(int cpu)
515 {
516 	struct desc_ptr gdt_descr;
517 
518 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
519 	gdt_descr.size = GDT_SIZE - 1;
520 	load_gdt(&gdt_descr);
521 }
522 EXPORT_SYMBOL_GPL(load_direct_gdt);
523 
524 /* Load a fixmap remapping of the per-cpu GDT */
525 void load_fixmap_gdt(int cpu)
526 {
527 	struct desc_ptr gdt_descr;
528 
529 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
530 	gdt_descr.size = GDT_SIZE - 1;
531 	load_gdt(&gdt_descr);
532 }
533 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
534 
535 /*
536  * Current gdt points %fs at the "master" per-cpu area: after this,
537  * it's on the real one.
538  */
539 void switch_to_new_gdt(int cpu)
540 {
541 	/* Load the original GDT */
542 	load_direct_gdt(cpu);
543 	/* Reload the per-cpu base */
544 	load_percpu_segment(cpu);
545 }
546 
547 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
548 
549 static void get_model_name(struct cpuinfo_x86 *c)
550 {
551 	unsigned int *v;
552 	char *p, *q, *s;
553 
554 	if (c->extended_cpuid_level < 0x80000004)
555 		return;
556 
557 	v = (unsigned int *)c->x86_model_id;
558 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
559 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
560 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
561 	c->x86_model_id[48] = 0;
562 
563 	/* Trim whitespace */
564 	p = q = s = &c->x86_model_id[0];
565 
566 	while (*p == ' ')
567 		p++;
568 
569 	while (*p) {
570 		/* Note the last non-whitespace index */
571 		if (!isspace(*p))
572 			s = q;
573 
574 		*q++ = *p++;
575 	}
576 
577 	*(s + 1) = '\0';
578 }
579 
580 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
581 {
582 	unsigned int n, dummy, ebx, ecx, edx, l2size;
583 
584 	n = c->extended_cpuid_level;
585 
586 	if (n >= 0x80000005) {
587 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
588 		c->x86_cache_size = (ecx>>24) + (edx>>24);
589 #ifdef CONFIG_X86_64
590 		/* On K8 L1 TLB is inclusive, so don't count it */
591 		c->x86_tlbsize = 0;
592 #endif
593 	}
594 
595 	if (n < 0x80000006)	/* Some chips just has a large L1. */
596 		return;
597 
598 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
599 	l2size = ecx >> 16;
600 
601 #ifdef CONFIG_X86_64
602 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
603 #else
604 	/* do processor-specific cache resizing */
605 	if (this_cpu->legacy_cache_size)
606 		l2size = this_cpu->legacy_cache_size(c, l2size);
607 
608 	/* Allow user to override all this if necessary. */
609 	if (cachesize_override != -1)
610 		l2size = cachesize_override;
611 
612 	if (l2size == 0)
613 		return;		/* Again, no L2 cache is possible */
614 #endif
615 
616 	c->x86_cache_size = l2size;
617 }
618 
619 u16 __read_mostly tlb_lli_4k[NR_INFO];
620 u16 __read_mostly tlb_lli_2m[NR_INFO];
621 u16 __read_mostly tlb_lli_4m[NR_INFO];
622 u16 __read_mostly tlb_lld_4k[NR_INFO];
623 u16 __read_mostly tlb_lld_2m[NR_INFO];
624 u16 __read_mostly tlb_lld_4m[NR_INFO];
625 u16 __read_mostly tlb_lld_1g[NR_INFO];
626 
627 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
628 {
629 	if (this_cpu->c_detect_tlb)
630 		this_cpu->c_detect_tlb(c);
631 
632 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
633 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
634 		tlb_lli_4m[ENTRIES]);
635 
636 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
637 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
638 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
639 }
640 
641 void detect_ht(struct cpuinfo_x86 *c)
642 {
643 #ifdef CONFIG_SMP
644 	u32 eax, ebx, ecx, edx;
645 	int index_msb, core_bits;
646 	static bool printed;
647 
648 	if (!cpu_has(c, X86_FEATURE_HT))
649 		return;
650 
651 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
652 		goto out;
653 
654 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
655 		return;
656 
657 	cpuid(1, &eax, &ebx, &ecx, &edx);
658 
659 	smp_num_siblings = (ebx & 0xff0000) >> 16;
660 
661 	if (smp_num_siblings == 1) {
662 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
663 		goto out;
664 	}
665 
666 	if (smp_num_siblings <= 1)
667 		goto out;
668 
669 	index_msb = get_count_order(smp_num_siblings);
670 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
671 
672 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
673 
674 	index_msb = get_count_order(smp_num_siblings);
675 
676 	core_bits = get_count_order(c->x86_max_cores);
677 
678 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
679 				       ((1 << core_bits) - 1);
680 
681 out:
682 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
683 		pr_info("CPU: Physical Processor ID: %d\n",
684 			c->phys_proc_id);
685 		pr_info("CPU: Processor Core ID: %d\n",
686 			c->cpu_core_id);
687 		printed = 1;
688 	}
689 #endif
690 }
691 
692 static void get_cpu_vendor(struct cpuinfo_x86 *c)
693 {
694 	char *v = c->x86_vendor_id;
695 	int i;
696 
697 	for (i = 0; i < X86_VENDOR_NUM; i++) {
698 		if (!cpu_devs[i])
699 			break;
700 
701 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
702 		    (cpu_devs[i]->c_ident[1] &&
703 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
704 
705 			this_cpu = cpu_devs[i];
706 			c->x86_vendor = this_cpu->c_x86_vendor;
707 			return;
708 		}
709 	}
710 
711 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
712 		    "CPU: Your system may be unstable.\n", v);
713 
714 	c->x86_vendor = X86_VENDOR_UNKNOWN;
715 	this_cpu = &default_cpu;
716 }
717 
718 void cpu_detect(struct cpuinfo_x86 *c)
719 {
720 	/* Get vendor name */
721 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
722 	      (unsigned int *)&c->x86_vendor_id[0],
723 	      (unsigned int *)&c->x86_vendor_id[8],
724 	      (unsigned int *)&c->x86_vendor_id[4]);
725 
726 	c->x86 = 4;
727 	/* Intel-defined flags: level 0x00000001 */
728 	if (c->cpuid_level >= 0x00000001) {
729 		u32 junk, tfms, cap0, misc;
730 
731 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
732 		c->x86		= x86_family(tfms);
733 		c->x86_model	= x86_model(tfms);
734 		c->x86_mask	= x86_stepping(tfms);
735 
736 		if (cap0 & (1<<19)) {
737 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
738 			c->x86_cache_alignment = c->x86_clflush_size;
739 		}
740 	}
741 }
742 
743 static void apply_forced_caps(struct cpuinfo_x86 *c)
744 {
745 	int i;
746 
747 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
748 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
749 		c->x86_capability[i] |= cpu_caps_set[i];
750 	}
751 }
752 
753 void get_cpu_cap(struct cpuinfo_x86 *c)
754 {
755 	u32 eax, ebx, ecx, edx;
756 
757 	/* Intel-defined flags: level 0x00000001 */
758 	if (c->cpuid_level >= 0x00000001) {
759 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
760 
761 		c->x86_capability[CPUID_1_ECX] = ecx;
762 		c->x86_capability[CPUID_1_EDX] = edx;
763 	}
764 
765 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
766 	if (c->cpuid_level >= 0x00000006)
767 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
768 
769 	/* Additional Intel-defined flags: level 0x00000007 */
770 	if (c->cpuid_level >= 0x00000007) {
771 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
772 		c->x86_capability[CPUID_7_0_EBX] = ebx;
773 		c->x86_capability[CPUID_7_ECX] = ecx;
774 		c->x86_capability[CPUID_7_EDX] = edx;
775 	}
776 
777 	/* Extended state features: level 0x0000000d */
778 	if (c->cpuid_level >= 0x0000000d) {
779 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
780 
781 		c->x86_capability[CPUID_D_1_EAX] = eax;
782 	}
783 
784 	/* Additional Intel-defined flags: level 0x0000000F */
785 	if (c->cpuid_level >= 0x0000000F) {
786 
787 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
788 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
789 		c->x86_capability[CPUID_F_0_EDX] = edx;
790 
791 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
792 			/* will be overridden if occupancy monitoring exists */
793 			c->x86_cache_max_rmid = ebx;
794 
795 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
796 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
797 			c->x86_capability[CPUID_F_1_EDX] = edx;
798 
799 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
800 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
801 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
802 				c->x86_cache_max_rmid = ecx;
803 				c->x86_cache_occ_scale = ebx;
804 			}
805 		} else {
806 			c->x86_cache_max_rmid = -1;
807 			c->x86_cache_occ_scale = -1;
808 		}
809 	}
810 
811 	/* AMD-defined flags: level 0x80000001 */
812 	eax = cpuid_eax(0x80000000);
813 	c->extended_cpuid_level = eax;
814 
815 	if ((eax & 0xffff0000) == 0x80000000) {
816 		if (eax >= 0x80000001) {
817 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
818 
819 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
820 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
821 		}
822 	}
823 
824 	if (c->extended_cpuid_level >= 0x80000007) {
825 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
826 
827 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
828 		c->x86_power = edx;
829 	}
830 
831 	if (c->extended_cpuid_level >= 0x80000008) {
832 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
833 
834 		c->x86_virt_bits = (eax >> 8) & 0xff;
835 		c->x86_phys_bits = eax & 0xff;
836 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
837 	}
838 #ifdef CONFIG_X86_32
839 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
840 		c->x86_phys_bits = 36;
841 #endif
842 
843 	if (c->extended_cpuid_level >= 0x8000000a)
844 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
845 
846 	init_scattered_cpuid_features(c);
847 
848 	/*
849 	 * Clear/Set all flags overridden by options, after probe.
850 	 * This needs to happen each time we re-probe, which may happen
851 	 * several times during CPU initialization.
852 	 */
853 	apply_forced_caps(c);
854 }
855 
856 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
857 {
858 #ifdef CONFIG_X86_32
859 	int i;
860 
861 	/*
862 	 * First of all, decide if this is a 486 or higher
863 	 * It's a 486 if we can modify the AC flag
864 	 */
865 	if (flag_is_changeable_p(X86_EFLAGS_AC))
866 		c->x86 = 4;
867 	else
868 		c->x86 = 3;
869 
870 	for (i = 0; i < X86_VENDOR_NUM; i++)
871 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
872 			c->x86_vendor_id[0] = 0;
873 			cpu_devs[i]->c_identify(c);
874 			if (c->x86_vendor_id[0]) {
875 				get_cpu_vendor(c);
876 				break;
877 			}
878 		}
879 #endif
880 }
881 
882 static const __initdata struct x86_cpu_id cpu_no_speculation[] = {
883 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CEDARVIEW,	X86_FEATURE_ANY },
884 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CLOVERVIEW,	X86_FEATURE_ANY },
885 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_LINCROFT,	X86_FEATURE_ANY },
886 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PENWELL,	X86_FEATURE_ANY },
887 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PINEVIEW,	X86_FEATURE_ANY },
888 	{ X86_VENDOR_CENTAUR,	5 },
889 	{ X86_VENDOR_INTEL,	5 },
890 	{ X86_VENDOR_NSC,	5 },
891 	{ X86_VENDOR_ANY,	4 },
892 	{}
893 };
894 
895 static const __initdata struct x86_cpu_id cpu_no_meltdown[] = {
896 	{ X86_VENDOR_AMD },
897 	{}
898 };
899 
900 static bool __init cpu_vulnerable_to_meltdown(struct cpuinfo_x86 *c)
901 {
902 	u64 ia32_cap = 0;
903 
904 	if (x86_match_cpu(cpu_no_meltdown))
905 		return false;
906 
907 	if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
908 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
909 
910 	/* Rogue Data Cache Load? No! */
911 	if (ia32_cap & ARCH_CAP_RDCL_NO)
912 		return false;
913 
914 	return true;
915 }
916 
917 /*
918  * Do minimum CPU detection early.
919  * Fields really needed: vendor, cpuid_level, family, model, mask,
920  * cache alignment.
921  * The others are not touched to avoid unwanted side effects.
922  *
923  * WARNING: this function is only called on the boot CPU.  Don't add code
924  * here that is supposed to run on all CPUs.
925  */
926 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
927 {
928 #ifdef CONFIG_X86_64
929 	c->x86_clflush_size = 64;
930 	c->x86_phys_bits = 36;
931 	c->x86_virt_bits = 48;
932 #else
933 	c->x86_clflush_size = 32;
934 	c->x86_phys_bits = 32;
935 	c->x86_virt_bits = 32;
936 #endif
937 	c->x86_cache_alignment = c->x86_clflush_size;
938 
939 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
940 	c->extended_cpuid_level = 0;
941 
942 	/* cyrix could have cpuid enabled via c_identify()*/
943 	if (have_cpuid_p()) {
944 		cpu_detect(c);
945 		get_cpu_vendor(c);
946 		get_cpu_cap(c);
947 		setup_force_cpu_cap(X86_FEATURE_CPUID);
948 
949 		if (this_cpu->c_early_init)
950 			this_cpu->c_early_init(c);
951 
952 		c->cpu_index = 0;
953 		filter_cpuid_features(c, false);
954 
955 		if (this_cpu->c_bsp_init)
956 			this_cpu->c_bsp_init(c);
957 	} else {
958 		identify_cpu_without_cpuid(c);
959 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
960 	}
961 
962 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
963 
964 	if (!x86_match_cpu(cpu_no_speculation)) {
965 		if (cpu_vulnerable_to_meltdown(c))
966 			setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
967 		setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
968 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
969 	}
970 
971 	fpu__init_system(c);
972 
973 #ifdef CONFIG_X86_32
974 	/*
975 	 * Regardless of whether PCID is enumerated, the SDM says
976 	 * that it can't be enabled in 32-bit mode.
977 	 */
978 	setup_clear_cpu_cap(X86_FEATURE_PCID);
979 #endif
980 }
981 
982 void __init early_cpu_init(void)
983 {
984 	const struct cpu_dev *const *cdev;
985 	int count = 0;
986 
987 #ifdef CONFIG_PROCESSOR_SELECT
988 	pr_info("KERNEL supported cpus:\n");
989 #endif
990 
991 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
992 		const struct cpu_dev *cpudev = *cdev;
993 
994 		if (count >= X86_VENDOR_NUM)
995 			break;
996 		cpu_devs[count] = cpudev;
997 		count++;
998 
999 #ifdef CONFIG_PROCESSOR_SELECT
1000 		{
1001 			unsigned int j;
1002 
1003 			for (j = 0; j < 2; j++) {
1004 				if (!cpudev->c_ident[j])
1005 					continue;
1006 				pr_info("  %s %s\n", cpudev->c_vendor,
1007 					cpudev->c_ident[j]);
1008 			}
1009 		}
1010 #endif
1011 	}
1012 	early_identify_cpu(&boot_cpu_data);
1013 }
1014 
1015 /*
1016  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1017  * unfortunately, that's not true in practice because of early VIA
1018  * chips and (more importantly) broken virtualizers that are not easy
1019  * to detect. In the latter case it doesn't even *fail* reliably, so
1020  * probing for it doesn't even work. Disable it completely on 32-bit
1021  * unless we can find a reliable way to detect all the broken cases.
1022  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1023  */
1024 static void detect_nopl(struct cpuinfo_x86 *c)
1025 {
1026 #ifdef CONFIG_X86_32
1027 	clear_cpu_cap(c, X86_FEATURE_NOPL);
1028 #else
1029 	set_cpu_cap(c, X86_FEATURE_NOPL);
1030 #endif
1031 }
1032 
1033 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1034 {
1035 #ifdef CONFIG_X86_64
1036 	/*
1037 	 * Empirically, writing zero to a segment selector on AMD does
1038 	 * not clear the base, whereas writing zero to a segment
1039 	 * selector on Intel does clear the base.  Intel's behavior
1040 	 * allows slightly faster context switches in the common case
1041 	 * where GS is unused by the prev and next threads.
1042 	 *
1043 	 * Since neither vendor documents this anywhere that I can see,
1044 	 * detect it directly instead of hardcoding the choice by
1045 	 * vendor.
1046 	 *
1047 	 * I've designated AMD's behavior as the "bug" because it's
1048 	 * counterintuitive and less friendly.
1049 	 */
1050 
1051 	unsigned long old_base, tmp;
1052 	rdmsrl(MSR_FS_BASE, old_base);
1053 	wrmsrl(MSR_FS_BASE, 1);
1054 	loadsegment(fs, 0);
1055 	rdmsrl(MSR_FS_BASE, tmp);
1056 	if (tmp != 0)
1057 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1058 	wrmsrl(MSR_FS_BASE, old_base);
1059 #endif
1060 }
1061 
1062 static void generic_identify(struct cpuinfo_x86 *c)
1063 {
1064 	c->extended_cpuid_level = 0;
1065 
1066 	if (!have_cpuid_p())
1067 		identify_cpu_without_cpuid(c);
1068 
1069 	/* cyrix could have cpuid enabled via c_identify()*/
1070 	if (!have_cpuid_p())
1071 		return;
1072 
1073 	cpu_detect(c);
1074 
1075 	get_cpu_vendor(c);
1076 
1077 	get_cpu_cap(c);
1078 
1079 	if (c->cpuid_level >= 0x00000001) {
1080 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1081 #ifdef CONFIG_X86_32
1082 # ifdef CONFIG_SMP
1083 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1084 # else
1085 		c->apicid = c->initial_apicid;
1086 # endif
1087 #endif
1088 		c->phys_proc_id = c->initial_apicid;
1089 	}
1090 
1091 	get_model_name(c); /* Default name */
1092 
1093 	detect_nopl(c);
1094 
1095 	detect_null_seg_behavior(c);
1096 
1097 	/*
1098 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1099 	 * systems that run Linux at CPL > 0 may or may not have the
1100 	 * issue, but, even if they have the issue, there's absolutely
1101 	 * nothing we can do about it because we can't use the real IRET
1102 	 * instruction.
1103 	 *
1104 	 * NB: For the time being, only 32-bit kernels support
1105 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1106 	 * whether to apply espfix using paravirt hooks.  If any
1107 	 * non-paravirt system ever shows up that does *not* have the
1108 	 * ESPFIX issue, we can change this.
1109 	 */
1110 #ifdef CONFIG_X86_32
1111 # ifdef CONFIG_PARAVIRT
1112 	do {
1113 		extern void native_iret(void);
1114 		if (pv_cpu_ops.iret == native_iret)
1115 			set_cpu_bug(c, X86_BUG_ESPFIX);
1116 	} while (0);
1117 # else
1118 	set_cpu_bug(c, X86_BUG_ESPFIX);
1119 # endif
1120 #endif
1121 }
1122 
1123 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1124 {
1125 	/*
1126 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1127 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1128 	 * in case CQM bits really aren't there in this CPU.
1129 	 */
1130 	if (c != &boot_cpu_data) {
1131 		boot_cpu_data.x86_cache_max_rmid =
1132 			min(boot_cpu_data.x86_cache_max_rmid,
1133 			    c->x86_cache_max_rmid);
1134 	}
1135 }
1136 
1137 /*
1138  * Validate that ACPI/mptables have the same information about the
1139  * effective APIC id and update the package map.
1140  */
1141 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1142 {
1143 #ifdef CONFIG_SMP
1144 	unsigned int apicid, cpu = smp_processor_id();
1145 
1146 	apicid = apic->cpu_present_to_apicid(cpu);
1147 
1148 	if (apicid != c->apicid) {
1149 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1150 		       cpu, apicid, c->initial_apicid);
1151 	}
1152 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1153 #else
1154 	c->logical_proc_id = 0;
1155 #endif
1156 }
1157 
1158 /*
1159  * This does the hard work of actually picking apart the CPU stuff...
1160  */
1161 static void identify_cpu(struct cpuinfo_x86 *c)
1162 {
1163 	int i;
1164 
1165 	c->loops_per_jiffy = loops_per_jiffy;
1166 	c->x86_cache_size = -1;
1167 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1168 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
1169 	c->x86_vendor_id[0] = '\0'; /* Unset */
1170 	c->x86_model_id[0] = '\0';  /* Unset */
1171 	c->x86_max_cores = 1;
1172 	c->x86_coreid_bits = 0;
1173 	c->cu_id = 0xff;
1174 #ifdef CONFIG_X86_64
1175 	c->x86_clflush_size = 64;
1176 	c->x86_phys_bits = 36;
1177 	c->x86_virt_bits = 48;
1178 #else
1179 	c->cpuid_level = -1;	/* CPUID not detected */
1180 	c->x86_clflush_size = 32;
1181 	c->x86_phys_bits = 32;
1182 	c->x86_virt_bits = 32;
1183 #endif
1184 	c->x86_cache_alignment = c->x86_clflush_size;
1185 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1186 
1187 	generic_identify(c);
1188 
1189 	if (this_cpu->c_identify)
1190 		this_cpu->c_identify(c);
1191 
1192 	/* Clear/Set all flags overridden by options, after probe */
1193 	apply_forced_caps(c);
1194 
1195 #ifdef CONFIG_X86_64
1196 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1197 #endif
1198 
1199 	/*
1200 	 * Vendor-specific initialization.  In this section we
1201 	 * canonicalize the feature flags, meaning if there are
1202 	 * features a certain CPU supports which CPUID doesn't
1203 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1204 	 * we handle them here.
1205 	 *
1206 	 * At the end of this section, c->x86_capability better
1207 	 * indicate the features this CPU genuinely supports!
1208 	 */
1209 	if (this_cpu->c_init)
1210 		this_cpu->c_init(c);
1211 
1212 	/* Disable the PN if appropriate */
1213 	squash_the_stupid_serial_number(c);
1214 
1215 	/* Set up SMEP/SMAP/UMIP */
1216 	setup_smep(c);
1217 	setup_smap(c);
1218 	setup_umip(c);
1219 
1220 	/*
1221 	 * The vendor-specific functions might have changed features.
1222 	 * Now we do "generic changes."
1223 	 */
1224 
1225 	/* Filter out anything that depends on CPUID levels we don't have */
1226 	filter_cpuid_features(c, true);
1227 
1228 	/* If the model name is still unset, do table lookup. */
1229 	if (!c->x86_model_id[0]) {
1230 		const char *p;
1231 		p = table_lookup_model(c);
1232 		if (p)
1233 			strcpy(c->x86_model_id, p);
1234 		else
1235 			/* Last resort... */
1236 			sprintf(c->x86_model_id, "%02x/%02x",
1237 				c->x86, c->x86_model);
1238 	}
1239 
1240 #ifdef CONFIG_X86_64
1241 	detect_ht(c);
1242 #endif
1243 
1244 	x86_init_rdrand(c);
1245 	x86_init_cache_qos(c);
1246 	setup_pku(c);
1247 
1248 	/*
1249 	 * Clear/Set all flags overridden by options, need do it
1250 	 * before following smp all cpus cap AND.
1251 	 */
1252 	apply_forced_caps(c);
1253 
1254 	/*
1255 	 * On SMP, boot_cpu_data holds the common feature set between
1256 	 * all CPUs; so make sure that we indicate which features are
1257 	 * common between the CPUs.  The first time this routine gets
1258 	 * executed, c == &boot_cpu_data.
1259 	 */
1260 	if (c != &boot_cpu_data) {
1261 		/* AND the already accumulated flags with these */
1262 		for (i = 0; i < NCAPINTS; i++)
1263 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1264 
1265 		/* OR, i.e. replicate the bug flags */
1266 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1267 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1268 	}
1269 
1270 	/* Init Machine Check Exception if available. */
1271 	mcheck_cpu_init(c);
1272 
1273 	select_idle_routine(c);
1274 
1275 #ifdef CONFIG_NUMA
1276 	numa_add_cpu(smp_processor_id());
1277 #endif
1278 }
1279 
1280 /*
1281  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1282  * on 32-bit kernels:
1283  */
1284 #ifdef CONFIG_X86_32
1285 void enable_sep_cpu(void)
1286 {
1287 	struct tss_struct *tss;
1288 	int cpu;
1289 
1290 	if (!boot_cpu_has(X86_FEATURE_SEP))
1291 		return;
1292 
1293 	cpu = get_cpu();
1294 	tss = &per_cpu(cpu_tss_rw, cpu);
1295 
1296 	/*
1297 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1298 	 * see the big comment in struct x86_hw_tss's definition.
1299 	 */
1300 
1301 	tss->x86_tss.ss1 = __KERNEL_CS;
1302 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1303 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1304 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1305 
1306 	put_cpu();
1307 }
1308 #endif
1309 
1310 void __init identify_boot_cpu(void)
1311 {
1312 	identify_cpu(&boot_cpu_data);
1313 #ifdef CONFIG_X86_32
1314 	sysenter_setup();
1315 	enable_sep_cpu();
1316 #endif
1317 	cpu_detect_tlb(&boot_cpu_data);
1318 }
1319 
1320 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1321 {
1322 	BUG_ON(c == &boot_cpu_data);
1323 	identify_cpu(c);
1324 #ifdef CONFIG_X86_32
1325 	enable_sep_cpu();
1326 #endif
1327 	mtrr_ap_init();
1328 	validate_apic_and_package_id(c);
1329 }
1330 
1331 static __init int setup_noclflush(char *arg)
1332 {
1333 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1334 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1335 	return 1;
1336 }
1337 __setup("noclflush", setup_noclflush);
1338 
1339 void print_cpu_info(struct cpuinfo_x86 *c)
1340 {
1341 	const char *vendor = NULL;
1342 
1343 	if (c->x86_vendor < X86_VENDOR_NUM) {
1344 		vendor = this_cpu->c_vendor;
1345 	} else {
1346 		if (c->cpuid_level >= 0)
1347 			vendor = c->x86_vendor_id;
1348 	}
1349 
1350 	if (vendor && !strstr(c->x86_model_id, vendor))
1351 		pr_cont("%s ", vendor);
1352 
1353 	if (c->x86_model_id[0])
1354 		pr_cont("%s", c->x86_model_id);
1355 	else
1356 		pr_cont("%d86", c->x86);
1357 
1358 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1359 
1360 	if (c->x86_mask || c->cpuid_level >= 0)
1361 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1362 	else
1363 		pr_cont(")\n");
1364 }
1365 
1366 /*
1367  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1368  * But we need to keep a dummy __setup around otherwise it would
1369  * show up as an environment variable for init.
1370  */
1371 static __init int setup_clearcpuid(char *arg)
1372 {
1373 	return 1;
1374 }
1375 __setup("clearcpuid=", setup_clearcpuid);
1376 
1377 #ifdef CONFIG_X86_64
1378 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1379 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1380 
1381 /*
1382  * The following percpu variables are hot.  Align current_task to
1383  * cacheline size such that they fall in the same cacheline.
1384  */
1385 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1386 	&init_task;
1387 EXPORT_PER_CPU_SYMBOL(current_task);
1388 
1389 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1390 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1391 
1392 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1393 
1394 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1395 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1396 
1397 /* May not be marked __init: used by software suspend */
1398 void syscall_init(void)
1399 {
1400 	extern char _entry_trampoline[];
1401 	extern char entry_SYSCALL_64_trampoline[];
1402 
1403 	int cpu = smp_processor_id();
1404 	unsigned long SYSCALL64_entry_trampoline =
1405 		(unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1406 		(entry_SYSCALL_64_trampoline - _entry_trampoline);
1407 
1408 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1409 	if (static_cpu_has(X86_FEATURE_PTI))
1410 		wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1411 	else
1412 		wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1413 
1414 #ifdef CONFIG_IA32_EMULATION
1415 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1416 	/*
1417 	 * This only works on Intel CPUs.
1418 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1419 	 * This does not cause SYSENTER to jump to the wrong location, because
1420 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1421 	 */
1422 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1423 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1424 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1425 #else
1426 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1427 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1428 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1429 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1430 #endif
1431 
1432 	/* Flags to clear on syscall */
1433 	wrmsrl(MSR_SYSCALL_MASK,
1434 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1435 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1436 }
1437 
1438 /*
1439  * Copies of the original ist values from the tss are only accessed during
1440  * debugging, no special alignment required.
1441  */
1442 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1443 
1444 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1445 DEFINE_PER_CPU(int, debug_stack_usage);
1446 
1447 int is_debug_stack(unsigned long addr)
1448 {
1449 	return __this_cpu_read(debug_stack_usage) ||
1450 		(addr <= __this_cpu_read(debug_stack_addr) &&
1451 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1452 }
1453 NOKPROBE_SYMBOL(is_debug_stack);
1454 
1455 DEFINE_PER_CPU(u32, debug_idt_ctr);
1456 
1457 void debug_stack_set_zero(void)
1458 {
1459 	this_cpu_inc(debug_idt_ctr);
1460 	load_current_idt();
1461 }
1462 NOKPROBE_SYMBOL(debug_stack_set_zero);
1463 
1464 void debug_stack_reset(void)
1465 {
1466 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1467 		return;
1468 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1469 		load_current_idt();
1470 }
1471 NOKPROBE_SYMBOL(debug_stack_reset);
1472 
1473 #else	/* CONFIG_X86_64 */
1474 
1475 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1476 EXPORT_PER_CPU_SYMBOL(current_task);
1477 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1478 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1479 
1480 /*
1481  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1482  * the top of the kernel stack.  Use an extra percpu variable to track the
1483  * top of the kernel stack directly.
1484  */
1485 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1486 	(unsigned long)&init_thread_union + THREAD_SIZE;
1487 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1488 
1489 #ifdef CONFIG_CC_STACKPROTECTOR
1490 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1491 #endif
1492 
1493 #endif	/* CONFIG_X86_64 */
1494 
1495 /*
1496  * Clear all 6 debug registers:
1497  */
1498 static void clear_all_debug_regs(void)
1499 {
1500 	int i;
1501 
1502 	for (i = 0; i < 8; i++) {
1503 		/* Ignore db4, db5 */
1504 		if ((i == 4) || (i == 5))
1505 			continue;
1506 
1507 		set_debugreg(0, i);
1508 	}
1509 }
1510 
1511 #ifdef CONFIG_KGDB
1512 /*
1513  * Restore debug regs if using kgdbwait and you have a kernel debugger
1514  * connection established.
1515  */
1516 static void dbg_restore_debug_regs(void)
1517 {
1518 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1519 		arch_kgdb_ops.correct_hw_break();
1520 }
1521 #else /* ! CONFIG_KGDB */
1522 #define dbg_restore_debug_regs()
1523 #endif /* ! CONFIG_KGDB */
1524 
1525 static void wait_for_master_cpu(int cpu)
1526 {
1527 #ifdef CONFIG_SMP
1528 	/*
1529 	 * wait for ACK from master CPU before continuing
1530 	 * with AP initialization
1531 	 */
1532 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1533 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1534 		cpu_relax();
1535 #endif
1536 }
1537 
1538 /*
1539  * cpu_init() initializes state that is per-CPU. Some data is already
1540  * initialized (naturally) in the bootstrap process, such as the GDT
1541  * and IDT. We reload them nevertheless, this function acts as a
1542  * 'CPU state barrier', nothing should get across.
1543  * A lot of state is already set up in PDA init for 64 bit
1544  */
1545 #ifdef CONFIG_X86_64
1546 
1547 void cpu_init(void)
1548 {
1549 	struct orig_ist *oist;
1550 	struct task_struct *me;
1551 	struct tss_struct *t;
1552 	unsigned long v;
1553 	int cpu = raw_smp_processor_id();
1554 	int i;
1555 
1556 	wait_for_master_cpu(cpu);
1557 
1558 	/*
1559 	 * Initialize the CR4 shadow before doing anything that could
1560 	 * try to read it.
1561 	 */
1562 	cr4_init_shadow();
1563 
1564 	if (cpu)
1565 		load_ucode_ap();
1566 
1567 	t = &per_cpu(cpu_tss_rw, cpu);
1568 	oist = &per_cpu(orig_ist, cpu);
1569 
1570 #ifdef CONFIG_NUMA
1571 	if (this_cpu_read(numa_node) == 0 &&
1572 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1573 		set_numa_node(early_cpu_to_node(cpu));
1574 #endif
1575 
1576 	me = current;
1577 
1578 	pr_debug("Initializing CPU#%d\n", cpu);
1579 
1580 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1581 
1582 	/*
1583 	 * Initialize the per-CPU GDT with the boot GDT,
1584 	 * and set up the GDT descriptor:
1585 	 */
1586 
1587 	switch_to_new_gdt(cpu);
1588 	loadsegment(fs, 0);
1589 
1590 	load_current_idt();
1591 
1592 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1593 	syscall_init();
1594 
1595 	wrmsrl(MSR_FS_BASE, 0);
1596 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1597 	barrier();
1598 
1599 	x86_configure_nx();
1600 	x2apic_setup();
1601 
1602 	/*
1603 	 * set up and load the per-CPU TSS
1604 	 */
1605 	if (!oist->ist[0]) {
1606 		char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1607 
1608 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1609 			estacks += exception_stack_sizes[v];
1610 			oist->ist[v] = t->x86_tss.ist[v] =
1611 					(unsigned long)estacks;
1612 			if (v == DEBUG_STACK-1)
1613 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1614 		}
1615 	}
1616 
1617 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1618 
1619 	/*
1620 	 * <= is required because the CPU will access up to
1621 	 * 8 bits beyond the end of the IO permission bitmap.
1622 	 */
1623 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1624 		t->io_bitmap[i] = ~0UL;
1625 
1626 	mmgrab(&init_mm);
1627 	me->active_mm = &init_mm;
1628 	BUG_ON(me->mm);
1629 	initialize_tlbstate_and_flush();
1630 	enter_lazy_tlb(&init_mm, me);
1631 
1632 	/*
1633 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1634 	 * regardless of what task is running.
1635 	 */
1636 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1637 	load_TR_desc();
1638 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1639 
1640 	load_mm_ldt(&init_mm);
1641 
1642 	clear_all_debug_regs();
1643 	dbg_restore_debug_regs();
1644 
1645 	fpu__init_cpu();
1646 
1647 	if (is_uv_system())
1648 		uv_cpu_init();
1649 
1650 	load_fixmap_gdt(cpu);
1651 }
1652 
1653 #else
1654 
1655 void cpu_init(void)
1656 {
1657 	int cpu = smp_processor_id();
1658 	struct task_struct *curr = current;
1659 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1660 
1661 	wait_for_master_cpu(cpu);
1662 
1663 	/*
1664 	 * Initialize the CR4 shadow before doing anything that could
1665 	 * try to read it.
1666 	 */
1667 	cr4_init_shadow();
1668 
1669 	show_ucode_info_early();
1670 
1671 	pr_info("Initializing CPU#%d\n", cpu);
1672 
1673 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1674 	    boot_cpu_has(X86_FEATURE_TSC) ||
1675 	    boot_cpu_has(X86_FEATURE_DE))
1676 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1677 
1678 	load_current_idt();
1679 	switch_to_new_gdt(cpu);
1680 
1681 	/*
1682 	 * Set up and load the per-CPU TSS and LDT
1683 	 */
1684 	mmgrab(&init_mm);
1685 	curr->active_mm = &init_mm;
1686 	BUG_ON(curr->mm);
1687 	initialize_tlbstate_and_flush();
1688 	enter_lazy_tlb(&init_mm, curr);
1689 
1690 	/*
1691 	 * Initialize the TSS.  Don't bother initializing sp0, as the initial
1692 	 * task never enters user mode.
1693 	 */
1694 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1695 	load_TR_desc();
1696 
1697 	load_mm_ldt(&init_mm);
1698 
1699 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1700 
1701 #ifdef CONFIG_DOUBLEFAULT
1702 	/* Set up doublefault TSS pointer in the GDT */
1703 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1704 #endif
1705 
1706 	clear_all_debug_regs();
1707 	dbg_restore_debug_regs();
1708 
1709 	fpu__init_cpu();
1710 
1711 	load_fixmap_gdt(cpu);
1712 }
1713 #endif
1714 
1715 static void bsp_resume(void)
1716 {
1717 	if (this_cpu->c_bsp_resume)
1718 		this_cpu->c_bsp_resume(&boot_cpu_data);
1719 }
1720 
1721 static struct syscore_ops cpu_syscore_ops = {
1722 	.resume		= bsp_resume,
1723 };
1724 
1725 static int __init init_cpu_syscore(void)
1726 {
1727 	register_syscore_ops(&cpu_syscore_ops);
1728 	return 0;
1729 }
1730 core_initcall(init_cpu_syscore);
1731