xref: /linux/arch/x86/kernel/cpu/common.c (revision 607bfbd7ffc60156ae0831c917497dc91a57dd8d)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17 
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/cpu.h>
41 #include <asm/mce.h>
42 #include <asm/msr.h>
43 #include <asm/pat.h>
44 #include <asm/microcode.h>
45 #include <asm/microcode_intel.h>
46 
47 #ifdef CONFIG_X86_LOCAL_APIC
48 #include <asm/uv/uv.h>
49 #endif
50 
51 #include "cpu.h"
52 
53 /* all of these masks are initialized in setup_cpu_local_masks() */
54 cpumask_var_t cpu_initialized_mask;
55 cpumask_var_t cpu_callout_mask;
56 cpumask_var_t cpu_callin_mask;
57 
58 /* representing cpus for which sibling maps can be computed */
59 cpumask_var_t cpu_sibling_setup_mask;
60 
61 /* correctly size the local cpu masks */
62 void __init setup_cpu_local_masks(void)
63 {
64 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68 }
69 
70 static void default_init(struct cpuinfo_x86 *c)
71 {
72 #ifdef CONFIG_X86_64
73 	cpu_detect_cache_sizes(c);
74 #else
75 	/* Not much we can do here... */
76 	/* Check if at least it has cpuid */
77 	if (c->cpuid_level == -1) {
78 		/* No cpuid. It must be an ancient CPU */
79 		if (c->x86 == 4)
80 			strcpy(c->x86_model_id, "486");
81 		else if (c->x86 == 3)
82 			strcpy(c->x86_model_id, "386");
83 	}
84 #endif
85 }
86 
87 static const struct cpu_dev default_cpu = {
88 	.c_init		= default_init,
89 	.c_vendor	= "Unknown",
90 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
91 };
92 
93 static const struct cpu_dev *this_cpu = &default_cpu;
94 
95 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96 #ifdef CONFIG_X86_64
97 	/*
98 	 * We need valid kernel segments for data and code in long mode too
99 	 * IRET will check the segment types  kkeil 2000/10/28
100 	 * Also sysret mandates a special GDT layout
101 	 *
102 	 * TLS descriptors are currently at a different place compared to i386.
103 	 * Hopefully nobody expects them at a fixed place (Wine?)
104 	 */
105 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111 #else
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 	/*
117 	 * Segments used for calling PnP BIOS have byte granularity.
118 	 * They code segments and data segments have fixed 64k limits,
119 	 * the transfer segment sizes are set at run time.
120 	 */
121 	/* 32-bit code */
122 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 	/* 16-bit code */
124 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 	/* 16-bit data */
128 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
129 	/* 16-bit data */
130 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
131 	/*
132 	 * The APM segments have byte granularity and their bases
133 	 * are set at run time.  All have 64k limits.
134 	 */
135 	/* 32-bit code */
136 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 	/* 16-bit code */
138 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 	/* data */
140 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141 
142 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 	GDT_STACK_CANARY_INIT
145 #endif
146 } };
147 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148 
149 static int __init x86_mpx_setup(char *s)
150 {
151 	/* require an exact match without trailing characters */
152 	if (strlen(s))
153 		return 0;
154 
155 	/* do not emit a message if the feature is not present */
156 	if (!boot_cpu_has(X86_FEATURE_MPX))
157 		return 1;
158 
159 	setup_clear_cpu_cap(X86_FEATURE_MPX);
160 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 	return 1;
162 }
163 __setup("nompx", x86_mpx_setup);
164 
165 #ifdef CONFIG_X86_32
166 static int cachesize_override = -1;
167 static int disable_x86_serial_nr = 1;
168 
169 static int __init cachesize_setup(char *str)
170 {
171 	get_option(&str, &cachesize_override);
172 	return 1;
173 }
174 __setup("cachesize=", cachesize_setup);
175 
176 static int __init x86_sep_setup(char *s)
177 {
178 	setup_clear_cpu_cap(X86_FEATURE_SEP);
179 	return 1;
180 }
181 __setup("nosep", x86_sep_setup);
182 
183 /* Standard macro to see if a specific flag is changeable */
184 static inline int flag_is_changeable_p(u32 flag)
185 {
186 	u32 f1, f2;
187 
188 	/*
189 	 * Cyrix and IDT cpus allow disabling of CPUID
190 	 * so the code below may return different results
191 	 * when it is executed before and after enabling
192 	 * the CPUID. Add "volatile" to not allow gcc to
193 	 * optimize the subsequent calls to this function.
194 	 */
195 	asm volatile ("pushfl		\n\t"
196 		      "pushfl		\n\t"
197 		      "popl %0		\n\t"
198 		      "movl %0, %1	\n\t"
199 		      "xorl %2, %0	\n\t"
200 		      "pushl %0		\n\t"
201 		      "popfl		\n\t"
202 		      "pushfl		\n\t"
203 		      "popl %0		\n\t"
204 		      "popfl		\n\t"
205 
206 		      : "=&r" (f1), "=&r" (f2)
207 		      : "ir" (flag));
208 
209 	return ((f1^f2) & flag) != 0;
210 }
211 
212 /* Probe for the CPUID instruction */
213 int have_cpuid_p(void)
214 {
215 	return flag_is_changeable_p(X86_EFLAGS_ID);
216 }
217 
218 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
219 {
220 	unsigned long lo, hi;
221 
222 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
223 		return;
224 
225 	/* Disable processor serial number: */
226 
227 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228 	lo |= 0x200000;
229 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
230 
231 	pr_notice("CPU serial number disabled.\n");
232 	clear_cpu_cap(c, X86_FEATURE_PN);
233 
234 	/* Disabling the serial number may affect the cpuid level */
235 	c->cpuid_level = cpuid_eax(0);
236 }
237 
238 static int __init x86_serial_nr_setup(char *s)
239 {
240 	disable_x86_serial_nr = 0;
241 	return 1;
242 }
243 __setup("serialnumber", x86_serial_nr_setup);
244 #else
245 static inline int flag_is_changeable_p(u32 flag)
246 {
247 	return 1;
248 }
249 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
250 {
251 }
252 #endif
253 
254 static __init int setup_disable_smep(char *arg)
255 {
256 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
257 	return 1;
258 }
259 __setup("nosmep", setup_disable_smep);
260 
261 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
262 {
263 	if (cpu_has(c, X86_FEATURE_SMEP))
264 		cr4_set_bits(X86_CR4_SMEP);
265 }
266 
267 static __init int setup_disable_smap(char *arg)
268 {
269 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
270 	return 1;
271 }
272 __setup("nosmap", setup_disable_smap);
273 
274 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
275 {
276 	unsigned long eflags = native_save_fl();
277 
278 	/* This should have been cleared long ago */
279 	BUG_ON(eflags & X86_EFLAGS_AC);
280 
281 	if (cpu_has(c, X86_FEATURE_SMAP)) {
282 #ifdef CONFIG_X86_SMAP
283 		cr4_set_bits(X86_CR4_SMAP);
284 #else
285 		cr4_clear_bits(X86_CR4_SMAP);
286 #endif
287 	}
288 }
289 
290 /*
291  * Some CPU features depend on higher CPUID levels, which may not always
292  * be available due to CPUID level capping or broken virtualization
293  * software.  Add those features to this table to auto-disable them.
294  */
295 struct cpuid_dependent_feature {
296 	u32 feature;
297 	u32 level;
298 };
299 
300 static const struct cpuid_dependent_feature
301 cpuid_dependent_features[] = {
302 	{ X86_FEATURE_MWAIT,		0x00000005 },
303 	{ X86_FEATURE_DCA,		0x00000009 },
304 	{ X86_FEATURE_XSAVE,		0x0000000d },
305 	{ 0, 0 }
306 };
307 
308 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
309 {
310 	const struct cpuid_dependent_feature *df;
311 
312 	for (df = cpuid_dependent_features; df->feature; df++) {
313 
314 		if (!cpu_has(c, df->feature))
315 			continue;
316 		/*
317 		 * Note: cpuid_level is set to -1 if unavailable, but
318 		 * extended_extended_level is set to 0 if unavailable
319 		 * and the legitimate extended levels are all negative
320 		 * when signed; hence the weird messing around with
321 		 * signs here...
322 		 */
323 		if (!((s32)df->level < 0 ?
324 		     (u32)df->level > (u32)c->extended_cpuid_level :
325 		     (s32)df->level > (s32)c->cpuid_level))
326 			continue;
327 
328 		clear_cpu_cap(c, df->feature);
329 		if (!warn)
330 			continue;
331 
332 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
333 			x86_cap_flag(df->feature), df->level);
334 	}
335 }
336 
337 /*
338  * Naming convention should be: <Name> [(<Codename>)]
339  * This table only is used unless init_<vendor>() below doesn't set it;
340  * in particular, if CPUID levels 0x80000002..4 are supported, this
341  * isn't used
342  */
343 
344 /* Look up CPU names by table lookup. */
345 static const char *table_lookup_model(struct cpuinfo_x86 *c)
346 {
347 #ifdef CONFIG_X86_32
348 	const struct legacy_cpu_model_info *info;
349 
350 	if (c->x86_model >= 16)
351 		return NULL;	/* Range check */
352 
353 	if (!this_cpu)
354 		return NULL;
355 
356 	info = this_cpu->legacy_models;
357 
358 	while (info->family) {
359 		if (info->family == c->x86)
360 			return info->model_names[c->x86_model];
361 		info++;
362 	}
363 #endif
364 	return NULL;		/* Not found */
365 }
366 
367 __u32 cpu_caps_cleared[NCAPINTS];
368 __u32 cpu_caps_set[NCAPINTS];
369 
370 void load_percpu_segment(int cpu)
371 {
372 #ifdef CONFIG_X86_32
373 	loadsegment(fs, __KERNEL_PERCPU);
374 #else
375 	loadsegment(gs, 0);
376 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
377 #endif
378 	load_stack_canary_segment();
379 }
380 
381 /*
382  * Current gdt points %fs at the "master" per-cpu area: after this,
383  * it's on the real one.
384  */
385 void switch_to_new_gdt(int cpu)
386 {
387 	struct desc_ptr gdt_descr;
388 
389 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
390 	gdt_descr.size = GDT_SIZE - 1;
391 	load_gdt(&gdt_descr);
392 	/* Reload the per-cpu base */
393 
394 	load_percpu_segment(cpu);
395 }
396 
397 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
398 
399 static void get_model_name(struct cpuinfo_x86 *c)
400 {
401 	unsigned int *v;
402 	char *p, *q, *s;
403 
404 	if (c->extended_cpuid_level < 0x80000004)
405 		return;
406 
407 	v = (unsigned int *)c->x86_model_id;
408 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
409 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
410 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
411 	c->x86_model_id[48] = 0;
412 
413 	/* Trim whitespace */
414 	p = q = s = &c->x86_model_id[0];
415 
416 	while (*p == ' ')
417 		p++;
418 
419 	while (*p) {
420 		/* Note the last non-whitespace index */
421 		if (!isspace(*p))
422 			s = q;
423 
424 		*q++ = *p++;
425 	}
426 
427 	*(s + 1) = '\0';
428 }
429 
430 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
431 {
432 	unsigned int n, dummy, ebx, ecx, edx, l2size;
433 
434 	n = c->extended_cpuid_level;
435 
436 	if (n >= 0x80000005) {
437 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
438 		c->x86_cache_size = (ecx>>24) + (edx>>24);
439 #ifdef CONFIG_X86_64
440 		/* On K8 L1 TLB is inclusive, so don't count it */
441 		c->x86_tlbsize = 0;
442 #endif
443 	}
444 
445 	if (n < 0x80000006)	/* Some chips just has a large L1. */
446 		return;
447 
448 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
449 	l2size = ecx >> 16;
450 
451 #ifdef CONFIG_X86_64
452 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
453 #else
454 	/* do processor-specific cache resizing */
455 	if (this_cpu->legacy_cache_size)
456 		l2size = this_cpu->legacy_cache_size(c, l2size);
457 
458 	/* Allow user to override all this if necessary. */
459 	if (cachesize_override != -1)
460 		l2size = cachesize_override;
461 
462 	if (l2size == 0)
463 		return;		/* Again, no L2 cache is possible */
464 #endif
465 
466 	c->x86_cache_size = l2size;
467 }
468 
469 u16 __read_mostly tlb_lli_4k[NR_INFO];
470 u16 __read_mostly tlb_lli_2m[NR_INFO];
471 u16 __read_mostly tlb_lli_4m[NR_INFO];
472 u16 __read_mostly tlb_lld_4k[NR_INFO];
473 u16 __read_mostly tlb_lld_2m[NR_INFO];
474 u16 __read_mostly tlb_lld_4m[NR_INFO];
475 u16 __read_mostly tlb_lld_1g[NR_INFO];
476 
477 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
478 {
479 	if (this_cpu->c_detect_tlb)
480 		this_cpu->c_detect_tlb(c);
481 
482 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
483 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
484 		tlb_lli_4m[ENTRIES]);
485 
486 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
487 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
488 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
489 }
490 
491 void detect_ht(struct cpuinfo_x86 *c)
492 {
493 #ifdef CONFIG_SMP
494 	u32 eax, ebx, ecx, edx;
495 	int index_msb, core_bits;
496 	static bool printed;
497 
498 	if (!cpu_has(c, X86_FEATURE_HT))
499 		return;
500 
501 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
502 		goto out;
503 
504 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
505 		return;
506 
507 	cpuid(1, &eax, &ebx, &ecx, &edx);
508 
509 	smp_num_siblings = (ebx & 0xff0000) >> 16;
510 
511 	if (smp_num_siblings == 1) {
512 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
513 		goto out;
514 	}
515 
516 	if (smp_num_siblings <= 1)
517 		goto out;
518 
519 	index_msb = get_count_order(smp_num_siblings);
520 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
521 
522 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
523 
524 	index_msb = get_count_order(smp_num_siblings);
525 
526 	core_bits = get_count_order(c->x86_max_cores);
527 
528 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
529 				       ((1 << core_bits) - 1);
530 
531 out:
532 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
533 		pr_info("CPU: Physical Processor ID: %d\n",
534 			c->phys_proc_id);
535 		pr_info("CPU: Processor Core ID: %d\n",
536 			c->cpu_core_id);
537 		printed = 1;
538 	}
539 #endif
540 }
541 
542 static void get_cpu_vendor(struct cpuinfo_x86 *c)
543 {
544 	char *v = c->x86_vendor_id;
545 	int i;
546 
547 	for (i = 0; i < X86_VENDOR_NUM; i++) {
548 		if (!cpu_devs[i])
549 			break;
550 
551 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
552 		    (cpu_devs[i]->c_ident[1] &&
553 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
554 
555 			this_cpu = cpu_devs[i];
556 			c->x86_vendor = this_cpu->c_x86_vendor;
557 			return;
558 		}
559 	}
560 
561 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
562 		    "CPU: Your system may be unstable.\n", v);
563 
564 	c->x86_vendor = X86_VENDOR_UNKNOWN;
565 	this_cpu = &default_cpu;
566 }
567 
568 void cpu_detect(struct cpuinfo_x86 *c)
569 {
570 	/* Get vendor name */
571 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
572 	      (unsigned int *)&c->x86_vendor_id[0],
573 	      (unsigned int *)&c->x86_vendor_id[8],
574 	      (unsigned int *)&c->x86_vendor_id[4]);
575 
576 	c->x86 = 4;
577 	/* Intel-defined flags: level 0x00000001 */
578 	if (c->cpuid_level >= 0x00000001) {
579 		u32 junk, tfms, cap0, misc;
580 
581 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
582 		c->x86		= x86_family(tfms);
583 		c->x86_model	= x86_model(tfms);
584 		c->x86_mask	= x86_stepping(tfms);
585 
586 		if (cap0 & (1<<19)) {
587 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
588 			c->x86_cache_alignment = c->x86_clflush_size;
589 		}
590 	}
591 }
592 
593 void get_cpu_cap(struct cpuinfo_x86 *c)
594 {
595 	u32 eax, ebx, ecx, edx;
596 
597 	/* Intel-defined flags: level 0x00000001 */
598 	if (c->cpuid_level >= 0x00000001) {
599 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
600 
601 		c->x86_capability[CPUID_1_ECX] = ecx;
602 		c->x86_capability[CPUID_1_EDX] = edx;
603 	}
604 
605 	/* Additional Intel-defined flags: level 0x00000007 */
606 	if (c->cpuid_level >= 0x00000007) {
607 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
608 
609 		c->x86_capability[CPUID_7_0_EBX] = ebx;
610 
611 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
612 	}
613 
614 	/* Extended state features: level 0x0000000d */
615 	if (c->cpuid_level >= 0x0000000d) {
616 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
617 
618 		c->x86_capability[CPUID_D_1_EAX] = eax;
619 	}
620 
621 	/* Additional Intel-defined flags: level 0x0000000F */
622 	if (c->cpuid_level >= 0x0000000F) {
623 
624 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
625 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
626 		c->x86_capability[CPUID_F_0_EDX] = edx;
627 
628 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
629 			/* will be overridden if occupancy monitoring exists */
630 			c->x86_cache_max_rmid = ebx;
631 
632 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
633 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
634 			c->x86_capability[CPUID_F_1_EDX] = edx;
635 
636 			if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
637 				c->x86_cache_max_rmid = ecx;
638 				c->x86_cache_occ_scale = ebx;
639 			}
640 		} else {
641 			c->x86_cache_max_rmid = -1;
642 			c->x86_cache_occ_scale = -1;
643 		}
644 	}
645 
646 	/* AMD-defined flags: level 0x80000001 */
647 	eax = cpuid_eax(0x80000000);
648 	c->extended_cpuid_level = eax;
649 
650 	if ((eax & 0xffff0000) == 0x80000000) {
651 		if (eax >= 0x80000001) {
652 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
653 
654 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
655 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
656 		}
657 	}
658 
659 	if (c->extended_cpuid_level >= 0x80000008) {
660 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
661 
662 		c->x86_virt_bits = (eax >> 8) & 0xff;
663 		c->x86_phys_bits = eax & 0xff;
664 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
665 	}
666 #ifdef CONFIG_X86_32
667 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
668 		c->x86_phys_bits = 36;
669 #endif
670 
671 	if (c->extended_cpuid_level >= 0x80000007)
672 		c->x86_power = cpuid_edx(0x80000007);
673 
674 	if (c->extended_cpuid_level >= 0x8000000a)
675 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
676 
677 	init_scattered_cpuid_features(c);
678 }
679 
680 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
681 {
682 #ifdef CONFIG_X86_32
683 	int i;
684 
685 	/*
686 	 * First of all, decide if this is a 486 or higher
687 	 * It's a 486 if we can modify the AC flag
688 	 */
689 	if (flag_is_changeable_p(X86_EFLAGS_AC))
690 		c->x86 = 4;
691 	else
692 		c->x86 = 3;
693 
694 	for (i = 0; i < X86_VENDOR_NUM; i++)
695 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
696 			c->x86_vendor_id[0] = 0;
697 			cpu_devs[i]->c_identify(c);
698 			if (c->x86_vendor_id[0]) {
699 				get_cpu_vendor(c);
700 				break;
701 			}
702 		}
703 #endif
704 }
705 
706 /*
707  * Do minimum CPU detection early.
708  * Fields really needed: vendor, cpuid_level, family, model, mask,
709  * cache alignment.
710  * The others are not touched to avoid unwanted side effects.
711  *
712  * WARNING: this function is only called on the BP.  Don't add code here
713  * that is supposed to run on all CPUs.
714  */
715 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
716 {
717 #ifdef CONFIG_X86_64
718 	c->x86_clflush_size = 64;
719 	c->x86_phys_bits = 36;
720 	c->x86_virt_bits = 48;
721 #else
722 	c->x86_clflush_size = 32;
723 	c->x86_phys_bits = 32;
724 	c->x86_virt_bits = 32;
725 #endif
726 	c->x86_cache_alignment = c->x86_clflush_size;
727 
728 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
729 	c->extended_cpuid_level = 0;
730 
731 	if (!have_cpuid_p())
732 		identify_cpu_without_cpuid(c);
733 
734 	/* cyrix could have cpuid enabled via c_identify()*/
735 	if (!have_cpuid_p())
736 		return;
737 
738 	cpu_detect(c);
739 	get_cpu_vendor(c);
740 	get_cpu_cap(c);
741 
742 	if (this_cpu->c_early_init)
743 		this_cpu->c_early_init(c);
744 
745 	c->cpu_index = 0;
746 	filter_cpuid_features(c, false);
747 
748 	if (this_cpu->c_bsp_init)
749 		this_cpu->c_bsp_init(c);
750 
751 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
752 	fpu__init_system(c);
753 }
754 
755 void __init early_cpu_init(void)
756 {
757 	const struct cpu_dev *const *cdev;
758 	int count = 0;
759 
760 #ifdef CONFIG_PROCESSOR_SELECT
761 	pr_info("KERNEL supported cpus:\n");
762 #endif
763 
764 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
765 		const struct cpu_dev *cpudev = *cdev;
766 
767 		if (count >= X86_VENDOR_NUM)
768 			break;
769 		cpu_devs[count] = cpudev;
770 		count++;
771 
772 #ifdef CONFIG_PROCESSOR_SELECT
773 		{
774 			unsigned int j;
775 
776 			for (j = 0; j < 2; j++) {
777 				if (!cpudev->c_ident[j])
778 					continue;
779 				pr_info("  %s %s\n", cpudev->c_vendor,
780 					cpudev->c_ident[j]);
781 			}
782 		}
783 #endif
784 	}
785 	early_identify_cpu(&boot_cpu_data);
786 }
787 
788 /*
789  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
790  * unfortunately, that's not true in practice because of early VIA
791  * chips and (more importantly) broken virtualizers that are not easy
792  * to detect. In the latter case it doesn't even *fail* reliably, so
793  * probing for it doesn't even work. Disable it completely on 32-bit
794  * unless we can find a reliable way to detect all the broken cases.
795  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
796  */
797 static void detect_nopl(struct cpuinfo_x86 *c)
798 {
799 #ifdef CONFIG_X86_32
800 	clear_cpu_cap(c, X86_FEATURE_NOPL);
801 #else
802 	set_cpu_cap(c, X86_FEATURE_NOPL);
803 #endif
804 }
805 
806 static void generic_identify(struct cpuinfo_x86 *c)
807 {
808 	c->extended_cpuid_level = 0;
809 
810 	if (!have_cpuid_p())
811 		identify_cpu_without_cpuid(c);
812 
813 	/* cyrix could have cpuid enabled via c_identify()*/
814 	if (!have_cpuid_p())
815 		return;
816 
817 	cpu_detect(c);
818 
819 	get_cpu_vendor(c);
820 
821 	get_cpu_cap(c);
822 
823 	if (c->cpuid_level >= 0x00000001) {
824 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
825 #ifdef CONFIG_X86_32
826 # ifdef CONFIG_SMP
827 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
828 # else
829 		c->apicid = c->initial_apicid;
830 # endif
831 #endif
832 		c->phys_proc_id = c->initial_apicid;
833 	}
834 
835 	get_model_name(c); /* Default name */
836 
837 	detect_nopl(c);
838 }
839 
840 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
841 {
842 	/*
843 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
844 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
845 	 * in case CQM bits really aren't there in this CPU.
846 	 */
847 	if (c != &boot_cpu_data) {
848 		boot_cpu_data.x86_cache_max_rmid =
849 			min(boot_cpu_data.x86_cache_max_rmid,
850 			    c->x86_cache_max_rmid);
851 	}
852 }
853 
854 /*
855  * This does the hard work of actually picking apart the CPU stuff...
856  */
857 static void identify_cpu(struct cpuinfo_x86 *c)
858 {
859 	int i;
860 
861 	c->loops_per_jiffy = loops_per_jiffy;
862 	c->x86_cache_size = -1;
863 	c->x86_vendor = X86_VENDOR_UNKNOWN;
864 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
865 	c->x86_vendor_id[0] = '\0'; /* Unset */
866 	c->x86_model_id[0] = '\0';  /* Unset */
867 	c->x86_max_cores = 1;
868 	c->x86_coreid_bits = 0;
869 #ifdef CONFIG_X86_64
870 	c->x86_clflush_size = 64;
871 	c->x86_phys_bits = 36;
872 	c->x86_virt_bits = 48;
873 #else
874 	c->cpuid_level = -1;	/* CPUID not detected */
875 	c->x86_clflush_size = 32;
876 	c->x86_phys_bits = 32;
877 	c->x86_virt_bits = 32;
878 #endif
879 	c->x86_cache_alignment = c->x86_clflush_size;
880 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
881 
882 	generic_identify(c);
883 
884 	if (this_cpu->c_identify)
885 		this_cpu->c_identify(c);
886 
887 	/* Clear/Set all flags overriden by options, after probe */
888 	for (i = 0; i < NCAPINTS; i++) {
889 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
890 		c->x86_capability[i] |= cpu_caps_set[i];
891 	}
892 
893 #ifdef CONFIG_X86_64
894 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
895 #endif
896 
897 	/*
898 	 * Vendor-specific initialization.  In this section we
899 	 * canonicalize the feature flags, meaning if there are
900 	 * features a certain CPU supports which CPUID doesn't
901 	 * tell us, CPUID claiming incorrect flags, or other bugs,
902 	 * we handle them here.
903 	 *
904 	 * At the end of this section, c->x86_capability better
905 	 * indicate the features this CPU genuinely supports!
906 	 */
907 	if (this_cpu->c_init)
908 		this_cpu->c_init(c);
909 
910 	/* Disable the PN if appropriate */
911 	squash_the_stupid_serial_number(c);
912 
913 	/* Set up SMEP/SMAP */
914 	setup_smep(c);
915 	setup_smap(c);
916 
917 	/*
918 	 * The vendor-specific functions might have changed features.
919 	 * Now we do "generic changes."
920 	 */
921 
922 	/* Filter out anything that depends on CPUID levels we don't have */
923 	filter_cpuid_features(c, true);
924 
925 	/* If the model name is still unset, do table lookup. */
926 	if (!c->x86_model_id[0]) {
927 		const char *p;
928 		p = table_lookup_model(c);
929 		if (p)
930 			strcpy(c->x86_model_id, p);
931 		else
932 			/* Last resort... */
933 			sprintf(c->x86_model_id, "%02x/%02x",
934 				c->x86, c->x86_model);
935 	}
936 
937 #ifdef CONFIG_X86_64
938 	detect_ht(c);
939 #endif
940 
941 	init_hypervisor(c);
942 	x86_init_rdrand(c);
943 	x86_init_cache_qos(c);
944 
945 	/*
946 	 * Clear/Set all flags overriden by options, need do it
947 	 * before following smp all cpus cap AND.
948 	 */
949 	for (i = 0; i < NCAPINTS; i++) {
950 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
951 		c->x86_capability[i] |= cpu_caps_set[i];
952 	}
953 
954 	/*
955 	 * On SMP, boot_cpu_data holds the common feature set between
956 	 * all CPUs; so make sure that we indicate which features are
957 	 * common between the CPUs.  The first time this routine gets
958 	 * executed, c == &boot_cpu_data.
959 	 */
960 	if (c != &boot_cpu_data) {
961 		/* AND the already accumulated flags with these */
962 		for (i = 0; i < NCAPINTS; i++)
963 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
964 
965 		/* OR, i.e. replicate the bug flags */
966 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
967 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
968 	}
969 
970 	/* Init Machine Check Exception if available. */
971 	mcheck_cpu_init(c);
972 
973 	select_idle_routine(c);
974 
975 #ifdef CONFIG_NUMA
976 	numa_add_cpu(smp_processor_id());
977 #endif
978 }
979 
980 /*
981  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
982  * on 32-bit kernels:
983  */
984 #ifdef CONFIG_X86_32
985 void enable_sep_cpu(void)
986 {
987 	struct tss_struct *tss;
988 	int cpu;
989 
990 	cpu = get_cpu();
991 	tss = &per_cpu(cpu_tss, cpu);
992 
993 	if (!boot_cpu_has(X86_FEATURE_SEP))
994 		goto out;
995 
996 	/*
997 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
998 	 * see the big comment in struct x86_hw_tss's definition.
999 	 */
1000 
1001 	tss->x86_tss.ss1 = __KERNEL_CS;
1002 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1003 
1004 	wrmsr(MSR_IA32_SYSENTER_ESP,
1005 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1006 	      0);
1007 
1008 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1009 
1010 out:
1011 	put_cpu();
1012 }
1013 #endif
1014 
1015 void __init identify_boot_cpu(void)
1016 {
1017 	identify_cpu(&boot_cpu_data);
1018 	init_amd_e400_c1e_mask();
1019 #ifdef CONFIG_X86_32
1020 	sysenter_setup();
1021 	enable_sep_cpu();
1022 #endif
1023 	cpu_detect_tlb(&boot_cpu_data);
1024 }
1025 
1026 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1027 {
1028 	BUG_ON(c == &boot_cpu_data);
1029 	identify_cpu(c);
1030 #ifdef CONFIG_X86_32
1031 	enable_sep_cpu();
1032 #endif
1033 	mtrr_ap_init();
1034 }
1035 
1036 struct msr_range {
1037 	unsigned	min;
1038 	unsigned	max;
1039 };
1040 
1041 static const struct msr_range msr_range_array[] = {
1042 	{ 0x00000000, 0x00000418},
1043 	{ 0xc0000000, 0xc000040b},
1044 	{ 0xc0010000, 0xc0010142},
1045 	{ 0xc0011000, 0xc001103b},
1046 };
1047 
1048 static void __print_cpu_msr(void)
1049 {
1050 	unsigned index_min, index_max;
1051 	unsigned index;
1052 	u64 val;
1053 	int i;
1054 
1055 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1056 		index_min = msr_range_array[i].min;
1057 		index_max = msr_range_array[i].max;
1058 
1059 		for (index = index_min; index < index_max; index++) {
1060 			if (rdmsrl_safe(index, &val))
1061 				continue;
1062 			pr_info(" MSR%08x: %016llx\n", index, val);
1063 		}
1064 	}
1065 }
1066 
1067 static int show_msr;
1068 
1069 static __init int setup_show_msr(char *arg)
1070 {
1071 	int num;
1072 
1073 	get_option(&arg, &num);
1074 
1075 	if (num > 0)
1076 		show_msr = num;
1077 	return 1;
1078 }
1079 __setup("show_msr=", setup_show_msr);
1080 
1081 static __init int setup_noclflush(char *arg)
1082 {
1083 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1084 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1085 	return 1;
1086 }
1087 __setup("noclflush", setup_noclflush);
1088 
1089 void print_cpu_info(struct cpuinfo_x86 *c)
1090 {
1091 	const char *vendor = NULL;
1092 
1093 	if (c->x86_vendor < X86_VENDOR_NUM) {
1094 		vendor = this_cpu->c_vendor;
1095 	} else {
1096 		if (c->cpuid_level >= 0)
1097 			vendor = c->x86_vendor_id;
1098 	}
1099 
1100 	if (vendor && !strstr(c->x86_model_id, vendor))
1101 		pr_cont("%s ", vendor);
1102 
1103 	if (c->x86_model_id[0])
1104 		pr_cont("%s", c->x86_model_id);
1105 	else
1106 		pr_cont("%d86", c->x86);
1107 
1108 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1109 
1110 	if (c->x86_mask || c->cpuid_level >= 0)
1111 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1112 	else
1113 		pr_cont(")\n");
1114 
1115 	print_cpu_msr(c);
1116 }
1117 
1118 void print_cpu_msr(struct cpuinfo_x86 *c)
1119 {
1120 	if (c->cpu_index < show_msr)
1121 		__print_cpu_msr();
1122 }
1123 
1124 static __init int setup_disablecpuid(char *arg)
1125 {
1126 	int bit;
1127 
1128 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1129 		setup_clear_cpu_cap(bit);
1130 	else
1131 		return 0;
1132 
1133 	return 1;
1134 }
1135 __setup("clearcpuid=", setup_disablecpuid);
1136 
1137 #ifdef CONFIG_X86_64
1138 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1139 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1140 				    (unsigned long) debug_idt_table };
1141 
1142 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1143 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1144 
1145 /*
1146  * The following percpu variables are hot.  Align current_task to
1147  * cacheline size such that they fall in the same cacheline.
1148  */
1149 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1150 	&init_task;
1151 EXPORT_PER_CPU_SYMBOL(current_task);
1152 
1153 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1154 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1155 
1156 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1157 
1158 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1159 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1160 
1161 /*
1162  * Special IST stacks which the CPU switches to when it calls
1163  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1164  * limit), all of them are 4K, except the debug stack which
1165  * is 8K.
1166  */
1167 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1168 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1169 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1170 };
1171 
1172 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1173 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1174 
1175 /* May not be marked __init: used by software suspend */
1176 void syscall_init(void)
1177 {
1178 	/*
1179 	 * LSTAR and STAR live in a bit strange symbiosis.
1180 	 * They both write to the same internal register. STAR allows to
1181 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1182 	 */
1183 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1184 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1185 
1186 #ifdef CONFIG_IA32_EMULATION
1187 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1188 	/*
1189 	 * This only works on Intel CPUs.
1190 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1191 	 * This does not cause SYSENTER to jump to the wrong location, because
1192 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1193 	 */
1194 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1195 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1196 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1197 #else
1198 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1199 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1200 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1201 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1202 #endif
1203 
1204 	/* Flags to clear on syscall */
1205 	wrmsrl(MSR_SYSCALL_MASK,
1206 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1207 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1208 }
1209 
1210 /*
1211  * Copies of the original ist values from the tss are only accessed during
1212  * debugging, no special alignment required.
1213  */
1214 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1215 
1216 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1217 DEFINE_PER_CPU(int, debug_stack_usage);
1218 
1219 int is_debug_stack(unsigned long addr)
1220 {
1221 	return __this_cpu_read(debug_stack_usage) ||
1222 		(addr <= __this_cpu_read(debug_stack_addr) &&
1223 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1224 }
1225 NOKPROBE_SYMBOL(is_debug_stack);
1226 
1227 DEFINE_PER_CPU(u32, debug_idt_ctr);
1228 
1229 void debug_stack_set_zero(void)
1230 {
1231 	this_cpu_inc(debug_idt_ctr);
1232 	load_current_idt();
1233 }
1234 NOKPROBE_SYMBOL(debug_stack_set_zero);
1235 
1236 void debug_stack_reset(void)
1237 {
1238 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1239 		return;
1240 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1241 		load_current_idt();
1242 }
1243 NOKPROBE_SYMBOL(debug_stack_reset);
1244 
1245 #else	/* CONFIG_X86_64 */
1246 
1247 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1248 EXPORT_PER_CPU_SYMBOL(current_task);
1249 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1250 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1251 
1252 /*
1253  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1254  * the top of the kernel stack.  Use an extra percpu variable to track the
1255  * top of the kernel stack directly.
1256  */
1257 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1258 	(unsigned long)&init_thread_union + THREAD_SIZE;
1259 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1260 
1261 #ifdef CONFIG_CC_STACKPROTECTOR
1262 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1263 #endif
1264 
1265 #endif	/* CONFIG_X86_64 */
1266 
1267 /*
1268  * Clear all 6 debug registers:
1269  */
1270 static void clear_all_debug_regs(void)
1271 {
1272 	int i;
1273 
1274 	for (i = 0; i < 8; i++) {
1275 		/* Ignore db4, db5 */
1276 		if ((i == 4) || (i == 5))
1277 			continue;
1278 
1279 		set_debugreg(0, i);
1280 	}
1281 }
1282 
1283 #ifdef CONFIG_KGDB
1284 /*
1285  * Restore debug regs if using kgdbwait and you have a kernel debugger
1286  * connection established.
1287  */
1288 static void dbg_restore_debug_regs(void)
1289 {
1290 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1291 		arch_kgdb_ops.correct_hw_break();
1292 }
1293 #else /* ! CONFIG_KGDB */
1294 #define dbg_restore_debug_regs()
1295 #endif /* ! CONFIG_KGDB */
1296 
1297 static void wait_for_master_cpu(int cpu)
1298 {
1299 #ifdef CONFIG_SMP
1300 	/*
1301 	 * wait for ACK from master CPU before continuing
1302 	 * with AP initialization
1303 	 */
1304 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1305 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1306 		cpu_relax();
1307 #endif
1308 }
1309 
1310 /*
1311  * cpu_init() initializes state that is per-CPU. Some data is already
1312  * initialized (naturally) in the bootstrap process, such as the GDT
1313  * and IDT. We reload them nevertheless, this function acts as a
1314  * 'CPU state barrier', nothing should get across.
1315  * A lot of state is already set up in PDA init for 64 bit
1316  */
1317 #ifdef CONFIG_X86_64
1318 
1319 void cpu_init(void)
1320 {
1321 	struct orig_ist *oist;
1322 	struct task_struct *me;
1323 	struct tss_struct *t;
1324 	unsigned long v;
1325 	int cpu = stack_smp_processor_id();
1326 	int i;
1327 
1328 	wait_for_master_cpu(cpu);
1329 
1330 	/*
1331 	 * Initialize the CR4 shadow before doing anything that could
1332 	 * try to read it.
1333 	 */
1334 	cr4_init_shadow();
1335 
1336 	/*
1337 	 * Load microcode on this cpu if a valid microcode is available.
1338 	 * This is early microcode loading procedure.
1339 	 */
1340 	load_ucode_ap();
1341 
1342 	t = &per_cpu(cpu_tss, cpu);
1343 	oist = &per_cpu(orig_ist, cpu);
1344 
1345 #ifdef CONFIG_NUMA
1346 	if (this_cpu_read(numa_node) == 0 &&
1347 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1348 		set_numa_node(early_cpu_to_node(cpu));
1349 #endif
1350 
1351 	me = current;
1352 
1353 	pr_debug("Initializing CPU#%d\n", cpu);
1354 
1355 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1356 
1357 	/*
1358 	 * Initialize the per-CPU GDT with the boot GDT,
1359 	 * and set up the GDT descriptor:
1360 	 */
1361 
1362 	switch_to_new_gdt(cpu);
1363 	loadsegment(fs, 0);
1364 
1365 	load_current_idt();
1366 
1367 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1368 	syscall_init();
1369 
1370 	wrmsrl(MSR_FS_BASE, 0);
1371 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1372 	barrier();
1373 
1374 	x86_configure_nx();
1375 	x2apic_setup();
1376 
1377 	/*
1378 	 * set up and load the per-CPU TSS
1379 	 */
1380 	if (!oist->ist[0]) {
1381 		char *estacks = per_cpu(exception_stacks, cpu);
1382 
1383 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1384 			estacks += exception_stack_sizes[v];
1385 			oist->ist[v] = t->x86_tss.ist[v] =
1386 					(unsigned long)estacks;
1387 			if (v == DEBUG_STACK-1)
1388 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1389 		}
1390 	}
1391 
1392 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1393 
1394 	/*
1395 	 * <= is required because the CPU will access up to
1396 	 * 8 bits beyond the end of the IO permission bitmap.
1397 	 */
1398 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1399 		t->io_bitmap[i] = ~0UL;
1400 
1401 	atomic_inc(&init_mm.mm_count);
1402 	me->active_mm = &init_mm;
1403 	BUG_ON(me->mm);
1404 	enter_lazy_tlb(&init_mm, me);
1405 
1406 	load_sp0(t, &current->thread);
1407 	set_tss_desc(cpu, t);
1408 	load_TR_desc();
1409 	load_mm_ldt(&init_mm);
1410 
1411 	clear_all_debug_regs();
1412 	dbg_restore_debug_regs();
1413 
1414 	fpu__init_cpu();
1415 
1416 	if (is_uv_system())
1417 		uv_cpu_init();
1418 }
1419 
1420 #else
1421 
1422 void cpu_init(void)
1423 {
1424 	int cpu = smp_processor_id();
1425 	struct task_struct *curr = current;
1426 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1427 	struct thread_struct *thread = &curr->thread;
1428 
1429 	wait_for_master_cpu(cpu);
1430 
1431 	/*
1432 	 * Initialize the CR4 shadow before doing anything that could
1433 	 * try to read it.
1434 	 */
1435 	cr4_init_shadow();
1436 
1437 	show_ucode_info_early();
1438 
1439 	pr_info("Initializing CPU#%d\n", cpu);
1440 
1441 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1442 	    cpu_has_tsc ||
1443 	    boot_cpu_has(X86_FEATURE_DE))
1444 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1445 
1446 	load_current_idt();
1447 	switch_to_new_gdt(cpu);
1448 
1449 	/*
1450 	 * Set up and load the per-CPU TSS and LDT
1451 	 */
1452 	atomic_inc(&init_mm.mm_count);
1453 	curr->active_mm = &init_mm;
1454 	BUG_ON(curr->mm);
1455 	enter_lazy_tlb(&init_mm, curr);
1456 
1457 	load_sp0(t, thread);
1458 	set_tss_desc(cpu, t);
1459 	load_TR_desc();
1460 	load_mm_ldt(&init_mm);
1461 
1462 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1463 
1464 #ifdef CONFIG_DOUBLEFAULT
1465 	/* Set up doublefault TSS pointer in the GDT */
1466 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1467 #endif
1468 
1469 	clear_all_debug_regs();
1470 	dbg_restore_debug_regs();
1471 
1472 	fpu__init_cpu();
1473 }
1474 #endif
1475 
1476 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1477 void warn_pre_alternatives(void)
1478 {
1479 	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1480 }
1481 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1482 #endif
1483 
1484 inline bool __static_cpu_has_safe(u16 bit)
1485 {
1486 	return boot_cpu_has(bit);
1487 }
1488 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1489 
1490 static void bsp_resume(void)
1491 {
1492 	if (this_cpu->c_bsp_resume)
1493 		this_cpu->c_bsp_resume(&boot_cpu_data);
1494 }
1495 
1496 static struct syscore_ops cpu_syscore_ops = {
1497 	.resume		= bsp_resume,
1498 };
1499 
1500 static int __init init_cpu_syscore(void)
1501 {
1502 	register_syscore_ops(&cpu_syscore_ops);
1503 	return 0;
1504 }
1505 core_initcall(init_cpu_syscore);
1506