xref: /linux/arch/x86/kernel/cpu/common.c (revision 5b9b41617bf3e1282cc60f07d3d52e62399aa4ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/ia32.h>
66 #include <asm/set_memory.h>
67 #include <asm/traps.h>
68 #include <asm/sev.h>
69 
70 #include "cpu.h"
71 
72 u32 elf_hwcap2 __read_mostly;
73 
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77 
78 static struct ppin_info {
79 	int	feature;
80 	int	msr_ppin_ctl;
81 	int	msr_ppin;
82 } ppin_info[] = {
83 	[X86_VENDOR_INTEL] = {
84 		.feature = X86_FEATURE_INTEL_PPIN,
85 		.msr_ppin_ctl = MSR_PPIN_CTL,
86 		.msr_ppin = MSR_PPIN
87 	},
88 	[X86_VENDOR_AMD] = {
89 		.feature = X86_FEATURE_AMD_PPIN,
90 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
91 		.msr_ppin = MSR_AMD_PPIN
92 	},
93 };
94 
95 static const struct x86_cpu_id ppin_cpuids[] = {
96 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
97 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
98 
99 	/* Legacy models without CPUID enumeration */
100 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
101 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
102 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
103 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
104 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
105 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
107 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
108 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
110 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
111 
112 	{}
113 };
114 
115 static void ppin_init(struct cpuinfo_x86 *c)
116 {
117 	const struct x86_cpu_id *id;
118 	unsigned long long val;
119 	struct ppin_info *info;
120 
121 	id = x86_match_cpu(ppin_cpuids);
122 	if (!id)
123 		return;
124 
125 	/*
126 	 * Testing the presence of the MSR is not enough. Need to check
127 	 * that the PPIN_CTL allows reading of the PPIN.
128 	 */
129 	info = (struct ppin_info *)id->driver_data;
130 
131 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
132 		goto clear_ppin;
133 
134 	if ((val & 3UL) == 1UL) {
135 		/* PPIN locked in disabled mode */
136 		goto clear_ppin;
137 	}
138 
139 	/* If PPIN is disabled, try to enable */
140 	if (!(val & 2UL)) {
141 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
142 		rdmsrl_safe(info->msr_ppin_ctl, &val);
143 	}
144 
145 	/* Is the enable bit set? */
146 	if (val & 2UL) {
147 		c->ppin = __rdmsr(info->msr_ppin);
148 		set_cpu_cap(c, info->feature);
149 		return;
150 	}
151 
152 clear_ppin:
153 	clear_cpu_cap(c, info->feature);
154 }
155 
156 static void default_init(struct cpuinfo_x86 *c)
157 {
158 #ifdef CONFIG_X86_64
159 	cpu_detect_cache_sizes(c);
160 #else
161 	/* Not much we can do here... */
162 	/* Check if at least it has cpuid */
163 	if (c->cpuid_level == -1) {
164 		/* No cpuid. It must be an ancient CPU */
165 		if (c->x86 == 4)
166 			strcpy(c->x86_model_id, "486");
167 		else if (c->x86 == 3)
168 			strcpy(c->x86_model_id, "386");
169 	}
170 #endif
171 }
172 
173 static const struct cpu_dev default_cpu = {
174 	.c_init		= default_init,
175 	.c_vendor	= "Unknown",
176 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
177 };
178 
179 static const struct cpu_dev *this_cpu = &default_cpu;
180 
181 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
182 #ifdef CONFIG_X86_64
183 	/*
184 	 * We need valid kernel segments for data and code in long mode too
185 	 * IRET will check the segment types  kkeil 2000/10/28
186 	 * Also sysret mandates a special GDT layout
187 	 *
188 	 * TLS descriptors are currently at a different place compared to i386.
189 	 * Hopefully nobody expects them at a fixed place (Wine?)
190 	 */
191 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
192 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
193 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
194 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
195 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
196 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
197 #else
198 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
199 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
200 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
201 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
202 	/*
203 	 * Segments used for calling PnP BIOS have byte granularity.
204 	 * They code segments and data segments have fixed 64k limits,
205 	 * the transfer segment sizes are set at run time.
206 	 */
207 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
208 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
209 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
210 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
211 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
212 	/*
213 	 * The APM segments have byte granularity and their bases
214 	 * are set at run time.  All have 64k limits.
215 	 */
216 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
217 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
218 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
219 
220 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
221 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
222 #endif
223 } };
224 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
225 
226 #ifdef CONFIG_X86_64
227 static int __init x86_nopcid_setup(char *s)
228 {
229 	/* nopcid doesn't accept parameters */
230 	if (s)
231 		return -EINVAL;
232 
233 	/* do not emit a message if the feature is not present */
234 	if (!boot_cpu_has(X86_FEATURE_PCID))
235 		return 0;
236 
237 	setup_clear_cpu_cap(X86_FEATURE_PCID);
238 	pr_info("nopcid: PCID feature disabled\n");
239 	return 0;
240 }
241 early_param("nopcid", x86_nopcid_setup);
242 #endif
243 
244 static int __init x86_noinvpcid_setup(char *s)
245 {
246 	/* noinvpcid doesn't accept parameters */
247 	if (s)
248 		return -EINVAL;
249 
250 	/* do not emit a message if the feature is not present */
251 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
252 		return 0;
253 
254 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
255 	pr_info("noinvpcid: INVPCID feature disabled\n");
256 	return 0;
257 }
258 early_param("noinvpcid", x86_noinvpcid_setup);
259 
260 #ifdef CONFIG_X86_32
261 static int cachesize_override = -1;
262 static int disable_x86_serial_nr = 1;
263 
264 static int __init cachesize_setup(char *str)
265 {
266 	get_option(&str, &cachesize_override);
267 	return 1;
268 }
269 __setup("cachesize=", cachesize_setup);
270 
271 /* Standard macro to see if a specific flag is changeable */
272 static inline int flag_is_changeable_p(u32 flag)
273 {
274 	u32 f1, f2;
275 
276 	/*
277 	 * Cyrix and IDT cpus allow disabling of CPUID
278 	 * so the code below may return different results
279 	 * when it is executed before and after enabling
280 	 * the CPUID. Add "volatile" to not allow gcc to
281 	 * optimize the subsequent calls to this function.
282 	 */
283 	asm volatile ("pushfl		\n\t"
284 		      "pushfl		\n\t"
285 		      "popl %0		\n\t"
286 		      "movl %0, %1	\n\t"
287 		      "xorl %2, %0	\n\t"
288 		      "pushl %0		\n\t"
289 		      "popfl		\n\t"
290 		      "pushfl		\n\t"
291 		      "popl %0		\n\t"
292 		      "popfl		\n\t"
293 
294 		      : "=&r" (f1), "=&r" (f2)
295 		      : "ir" (flag));
296 
297 	return ((f1^f2) & flag) != 0;
298 }
299 
300 /* Probe for the CPUID instruction */
301 int have_cpuid_p(void)
302 {
303 	return flag_is_changeable_p(X86_EFLAGS_ID);
304 }
305 
306 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
307 {
308 	unsigned long lo, hi;
309 
310 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
311 		return;
312 
313 	/* Disable processor serial number: */
314 
315 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
316 	lo |= 0x200000;
317 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
318 
319 	pr_notice("CPU serial number disabled.\n");
320 	clear_cpu_cap(c, X86_FEATURE_PN);
321 
322 	/* Disabling the serial number may affect the cpuid level */
323 	c->cpuid_level = cpuid_eax(0);
324 }
325 
326 static int __init x86_serial_nr_setup(char *s)
327 {
328 	disable_x86_serial_nr = 0;
329 	return 1;
330 }
331 __setup("serialnumber", x86_serial_nr_setup);
332 #else
333 static inline int flag_is_changeable_p(u32 flag)
334 {
335 	return 1;
336 }
337 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
338 {
339 }
340 #endif
341 
342 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
343 {
344 	if (cpu_has(c, X86_FEATURE_SMEP))
345 		cr4_set_bits(X86_CR4_SMEP);
346 }
347 
348 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
349 {
350 	unsigned long eflags = native_save_fl();
351 
352 	/* This should have been cleared long ago */
353 	BUG_ON(eflags & X86_EFLAGS_AC);
354 
355 	if (cpu_has(c, X86_FEATURE_SMAP))
356 		cr4_set_bits(X86_CR4_SMAP);
357 }
358 
359 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
360 {
361 	/* Check the boot processor, plus build option for UMIP. */
362 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
363 		goto out;
364 
365 	/* Check the current processor's cpuid bits. */
366 	if (!cpu_has(c, X86_FEATURE_UMIP))
367 		goto out;
368 
369 	cr4_set_bits(X86_CR4_UMIP);
370 
371 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
372 
373 	return;
374 
375 out:
376 	/*
377 	 * Make sure UMIP is disabled in case it was enabled in a
378 	 * previous boot (e.g., via kexec).
379 	 */
380 	cr4_clear_bits(X86_CR4_UMIP);
381 }
382 
383 /* These bits should not change their value after CPU init is finished. */
384 static const unsigned long cr4_pinned_mask =
385 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
386 	X86_CR4_FSGSBASE | X86_CR4_CET;
387 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
388 static unsigned long cr4_pinned_bits __ro_after_init;
389 
390 void native_write_cr0(unsigned long val)
391 {
392 	unsigned long bits_missing = 0;
393 
394 set_register:
395 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
396 
397 	if (static_branch_likely(&cr_pinning)) {
398 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
399 			bits_missing = X86_CR0_WP;
400 			val |= bits_missing;
401 			goto set_register;
402 		}
403 		/* Warn after we've set the missing bits. */
404 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
405 	}
406 }
407 EXPORT_SYMBOL(native_write_cr0);
408 
409 void __no_profile native_write_cr4(unsigned long val)
410 {
411 	unsigned long bits_changed = 0;
412 
413 set_register:
414 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
415 
416 	if (static_branch_likely(&cr_pinning)) {
417 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
418 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
419 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
420 			goto set_register;
421 		}
422 		/* Warn after we've corrected the changed bits. */
423 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
424 			  bits_changed);
425 	}
426 }
427 #if IS_MODULE(CONFIG_LKDTM)
428 EXPORT_SYMBOL_GPL(native_write_cr4);
429 #endif
430 
431 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
432 {
433 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
434 
435 	lockdep_assert_irqs_disabled();
436 
437 	newval = (cr4 & ~clear) | set;
438 	if (newval != cr4) {
439 		this_cpu_write(cpu_tlbstate.cr4, newval);
440 		__write_cr4(newval);
441 	}
442 }
443 EXPORT_SYMBOL(cr4_update_irqsoff);
444 
445 /* Read the CR4 shadow. */
446 unsigned long cr4_read_shadow(void)
447 {
448 	return this_cpu_read(cpu_tlbstate.cr4);
449 }
450 EXPORT_SYMBOL_GPL(cr4_read_shadow);
451 
452 void cr4_init(void)
453 {
454 	unsigned long cr4 = __read_cr4();
455 
456 	if (boot_cpu_has(X86_FEATURE_PCID))
457 		cr4 |= X86_CR4_PCIDE;
458 	if (static_branch_likely(&cr_pinning))
459 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
460 
461 	__write_cr4(cr4);
462 
463 	/* Initialize cr4 shadow for this CPU. */
464 	this_cpu_write(cpu_tlbstate.cr4, cr4);
465 }
466 
467 /*
468  * Once CPU feature detection is finished (and boot params have been
469  * parsed), record any of the sensitive CR bits that are set, and
470  * enable CR pinning.
471  */
472 static void __init setup_cr_pinning(void)
473 {
474 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
475 	static_key_enable(&cr_pinning.key);
476 }
477 
478 static __init int x86_nofsgsbase_setup(char *arg)
479 {
480 	/* Require an exact match without trailing characters. */
481 	if (strlen(arg))
482 		return 0;
483 
484 	/* Do not emit a message if the feature is not present. */
485 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
486 		return 1;
487 
488 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
489 	pr_info("FSGSBASE disabled via kernel command line\n");
490 	return 1;
491 }
492 __setup("nofsgsbase", x86_nofsgsbase_setup);
493 
494 /*
495  * Protection Keys are not available in 32-bit mode.
496  */
497 static bool pku_disabled;
498 
499 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
500 {
501 	if (c == &boot_cpu_data) {
502 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
503 			return;
504 		/*
505 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
506 		 * bit to be set.  Enforce it.
507 		 */
508 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
509 
510 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
511 		return;
512 	}
513 
514 	cr4_set_bits(X86_CR4_PKE);
515 	/* Load the default PKRU value */
516 	pkru_write_default();
517 }
518 
519 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
520 static __init int setup_disable_pku(char *arg)
521 {
522 	/*
523 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
524 	 * runtime checks are against OSPKE so clearing the
525 	 * bit does nothing.
526 	 *
527 	 * This way, we will see "pku" in cpuinfo, but not
528 	 * "ospke", which is exactly what we want.  It shows
529 	 * that the CPU has PKU, but the OS has not enabled it.
530 	 * This happens to be exactly how a system would look
531 	 * if we disabled the config option.
532 	 */
533 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
534 	pku_disabled = true;
535 	return 1;
536 }
537 __setup("nopku", setup_disable_pku);
538 #endif
539 
540 #ifdef CONFIG_X86_KERNEL_IBT
541 
542 __noendbr u64 ibt_save(bool disable)
543 {
544 	u64 msr = 0;
545 
546 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
547 		rdmsrl(MSR_IA32_S_CET, msr);
548 		if (disable)
549 			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
550 	}
551 
552 	return msr;
553 }
554 
555 __noendbr void ibt_restore(u64 save)
556 {
557 	u64 msr;
558 
559 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
560 		rdmsrl(MSR_IA32_S_CET, msr);
561 		msr &= ~CET_ENDBR_EN;
562 		msr |= (save & CET_ENDBR_EN);
563 		wrmsrl(MSR_IA32_S_CET, msr);
564 	}
565 }
566 
567 #endif
568 
569 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
570 {
571 	bool user_shstk, kernel_ibt;
572 
573 	if (!IS_ENABLED(CONFIG_X86_CET))
574 		return;
575 
576 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
577 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
578 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
579 
580 	if (!kernel_ibt && !user_shstk)
581 		return;
582 
583 	if (user_shstk)
584 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
585 
586 	if (kernel_ibt)
587 		wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
588 	else
589 		wrmsrl(MSR_IA32_S_CET, 0);
590 
591 	cr4_set_bits(X86_CR4_CET);
592 
593 	if (kernel_ibt && ibt_selftest()) {
594 		pr_err("IBT selftest: Failed!\n");
595 		wrmsrl(MSR_IA32_S_CET, 0);
596 		setup_clear_cpu_cap(X86_FEATURE_IBT);
597 	}
598 }
599 
600 __noendbr void cet_disable(void)
601 {
602 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
603 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
604 		return;
605 
606 	wrmsrl(MSR_IA32_S_CET, 0);
607 	wrmsrl(MSR_IA32_U_CET, 0);
608 }
609 
610 /*
611  * Some CPU features depend on higher CPUID levels, which may not always
612  * be available due to CPUID level capping or broken virtualization
613  * software.  Add those features to this table to auto-disable them.
614  */
615 struct cpuid_dependent_feature {
616 	u32 feature;
617 	u32 level;
618 };
619 
620 static const struct cpuid_dependent_feature
621 cpuid_dependent_features[] = {
622 	{ X86_FEATURE_MWAIT,		0x00000005 },
623 	{ X86_FEATURE_DCA,		0x00000009 },
624 	{ X86_FEATURE_XSAVE,		0x0000000d },
625 	{ 0, 0 }
626 };
627 
628 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
629 {
630 	const struct cpuid_dependent_feature *df;
631 
632 	for (df = cpuid_dependent_features; df->feature; df++) {
633 
634 		if (!cpu_has(c, df->feature))
635 			continue;
636 		/*
637 		 * Note: cpuid_level is set to -1 if unavailable, but
638 		 * extended_extended_level is set to 0 if unavailable
639 		 * and the legitimate extended levels are all negative
640 		 * when signed; hence the weird messing around with
641 		 * signs here...
642 		 */
643 		if (!((s32)df->level < 0 ?
644 		     (u32)df->level > (u32)c->extended_cpuid_level :
645 		     (s32)df->level > (s32)c->cpuid_level))
646 			continue;
647 
648 		clear_cpu_cap(c, df->feature);
649 		if (!warn)
650 			continue;
651 
652 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
653 			x86_cap_flag(df->feature), df->level);
654 	}
655 }
656 
657 /*
658  * Naming convention should be: <Name> [(<Codename>)]
659  * This table only is used unless init_<vendor>() below doesn't set it;
660  * in particular, if CPUID levels 0x80000002..4 are supported, this
661  * isn't used
662  */
663 
664 /* Look up CPU names by table lookup. */
665 static const char *table_lookup_model(struct cpuinfo_x86 *c)
666 {
667 #ifdef CONFIG_X86_32
668 	const struct legacy_cpu_model_info *info;
669 
670 	if (c->x86_model >= 16)
671 		return NULL;	/* Range check */
672 
673 	if (!this_cpu)
674 		return NULL;
675 
676 	info = this_cpu->legacy_models;
677 
678 	while (info->family) {
679 		if (info->family == c->x86)
680 			return info->model_names[c->x86_model];
681 		info++;
682 	}
683 #endif
684 	return NULL;		/* Not found */
685 }
686 
687 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
688 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
689 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
690 
691 #ifdef CONFIG_X86_32
692 /* The 32-bit entry code needs to find cpu_entry_area. */
693 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
694 #endif
695 
696 /* Load the original GDT from the per-cpu structure */
697 void load_direct_gdt(int cpu)
698 {
699 	struct desc_ptr gdt_descr;
700 
701 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
702 	gdt_descr.size = GDT_SIZE - 1;
703 	load_gdt(&gdt_descr);
704 }
705 EXPORT_SYMBOL_GPL(load_direct_gdt);
706 
707 /* Load a fixmap remapping of the per-cpu GDT */
708 void load_fixmap_gdt(int cpu)
709 {
710 	struct desc_ptr gdt_descr;
711 
712 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
713 	gdt_descr.size = GDT_SIZE - 1;
714 	load_gdt(&gdt_descr);
715 }
716 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
717 
718 /**
719  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
720  * @cpu:	The CPU number for which this is invoked
721  *
722  * Invoked during early boot to switch from early GDT and early per CPU to
723  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
724  * switch is implicit by loading the direct GDT. On 64bit this requires
725  * to update GSBASE.
726  */
727 void __init switch_gdt_and_percpu_base(int cpu)
728 {
729 	load_direct_gdt(cpu);
730 
731 #ifdef CONFIG_X86_64
732 	/*
733 	 * No need to load %gs. It is already correct.
734 	 *
735 	 * Writing %gs on 64bit would zero GSBASE which would make any per
736 	 * CPU operation up to the point of the wrmsrl() fault.
737 	 *
738 	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
739 	 * early mapping is still valid. That means the GSBASE update will
740 	 * lose any prior per CPU data which was not copied over in
741 	 * setup_per_cpu_areas().
742 	 *
743 	 * This works even with stackprotector enabled because the
744 	 * per CPU stack canary is 0 in both per CPU areas.
745 	 */
746 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
747 #else
748 	/*
749 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
750 	 * it is required to load FS again so that the 'hidden' part is
751 	 * updated from the new GDT. Up to this point the early per CPU
752 	 * translation is active. Any content of the early per CPU data
753 	 * which was not copied over in setup_per_cpu_areas() is lost.
754 	 */
755 	loadsegment(fs, __KERNEL_PERCPU);
756 #endif
757 }
758 
759 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
760 
761 static void get_model_name(struct cpuinfo_x86 *c)
762 {
763 	unsigned int *v;
764 	char *p, *q, *s;
765 
766 	if (c->extended_cpuid_level < 0x80000004)
767 		return;
768 
769 	v = (unsigned int *)c->x86_model_id;
770 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
771 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
772 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
773 	c->x86_model_id[48] = 0;
774 
775 	/* Trim whitespace */
776 	p = q = s = &c->x86_model_id[0];
777 
778 	while (*p == ' ')
779 		p++;
780 
781 	while (*p) {
782 		/* Note the last non-whitespace index */
783 		if (!isspace(*p))
784 			s = q;
785 
786 		*q++ = *p++;
787 	}
788 
789 	*(s + 1) = '\0';
790 }
791 
792 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
793 {
794 	unsigned int eax, ebx, ecx, edx;
795 
796 	c->x86_max_cores = 1;
797 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
798 		return;
799 
800 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
801 	if (eax & 0x1f)
802 		c->x86_max_cores = (eax >> 26) + 1;
803 }
804 
805 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
806 {
807 	unsigned int n, dummy, ebx, ecx, edx, l2size;
808 
809 	n = c->extended_cpuid_level;
810 
811 	if (n >= 0x80000005) {
812 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
813 		c->x86_cache_size = (ecx>>24) + (edx>>24);
814 #ifdef CONFIG_X86_64
815 		/* On K8 L1 TLB is inclusive, so don't count it */
816 		c->x86_tlbsize = 0;
817 #endif
818 	}
819 
820 	if (n < 0x80000006)	/* Some chips just has a large L1. */
821 		return;
822 
823 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
824 	l2size = ecx >> 16;
825 
826 #ifdef CONFIG_X86_64
827 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
828 #else
829 	/* do processor-specific cache resizing */
830 	if (this_cpu->legacy_cache_size)
831 		l2size = this_cpu->legacy_cache_size(c, l2size);
832 
833 	/* Allow user to override all this if necessary. */
834 	if (cachesize_override != -1)
835 		l2size = cachesize_override;
836 
837 	if (l2size == 0)
838 		return;		/* Again, no L2 cache is possible */
839 #endif
840 
841 	c->x86_cache_size = l2size;
842 }
843 
844 u16 __read_mostly tlb_lli_4k[NR_INFO];
845 u16 __read_mostly tlb_lli_2m[NR_INFO];
846 u16 __read_mostly tlb_lli_4m[NR_INFO];
847 u16 __read_mostly tlb_lld_4k[NR_INFO];
848 u16 __read_mostly tlb_lld_2m[NR_INFO];
849 u16 __read_mostly tlb_lld_4m[NR_INFO];
850 u16 __read_mostly tlb_lld_1g[NR_INFO];
851 
852 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
853 {
854 	if (this_cpu->c_detect_tlb)
855 		this_cpu->c_detect_tlb(c);
856 
857 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
858 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
859 		tlb_lli_4m[ENTRIES]);
860 
861 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
862 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
863 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
864 }
865 
866 int detect_ht_early(struct cpuinfo_x86 *c)
867 {
868 #ifdef CONFIG_SMP
869 	u32 eax, ebx, ecx, edx;
870 
871 	if (!cpu_has(c, X86_FEATURE_HT))
872 		return -1;
873 
874 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
875 		return -1;
876 
877 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
878 		return -1;
879 
880 	cpuid(1, &eax, &ebx, &ecx, &edx);
881 
882 	smp_num_siblings = (ebx & 0xff0000) >> 16;
883 	if (smp_num_siblings == 1)
884 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
885 #endif
886 	return 0;
887 }
888 
889 void detect_ht(struct cpuinfo_x86 *c)
890 {
891 #ifdef CONFIG_SMP
892 	int index_msb, core_bits;
893 
894 	if (detect_ht_early(c) < 0)
895 		return;
896 
897 	index_msb = get_count_order(smp_num_siblings);
898 	c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
899 
900 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
901 
902 	index_msb = get_count_order(smp_num_siblings);
903 
904 	core_bits = get_count_order(c->x86_max_cores);
905 
906 	c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
907 		((1 << core_bits) - 1);
908 #endif
909 }
910 
911 static void get_cpu_vendor(struct cpuinfo_x86 *c)
912 {
913 	char *v = c->x86_vendor_id;
914 	int i;
915 
916 	for (i = 0; i < X86_VENDOR_NUM; i++) {
917 		if (!cpu_devs[i])
918 			break;
919 
920 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
921 		    (cpu_devs[i]->c_ident[1] &&
922 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
923 
924 			this_cpu = cpu_devs[i];
925 			c->x86_vendor = this_cpu->c_x86_vendor;
926 			return;
927 		}
928 	}
929 
930 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
931 		    "CPU: Your system may be unstable.\n", v);
932 
933 	c->x86_vendor = X86_VENDOR_UNKNOWN;
934 	this_cpu = &default_cpu;
935 }
936 
937 void cpu_detect(struct cpuinfo_x86 *c)
938 {
939 	/* Get vendor name */
940 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
941 	      (unsigned int *)&c->x86_vendor_id[0],
942 	      (unsigned int *)&c->x86_vendor_id[8],
943 	      (unsigned int *)&c->x86_vendor_id[4]);
944 
945 	c->x86 = 4;
946 	/* Intel-defined flags: level 0x00000001 */
947 	if (c->cpuid_level >= 0x00000001) {
948 		u32 junk, tfms, cap0, misc;
949 
950 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
951 		c->x86		= x86_family(tfms);
952 		c->x86_model	= x86_model(tfms);
953 		c->x86_stepping	= x86_stepping(tfms);
954 
955 		if (cap0 & (1<<19)) {
956 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
957 			c->x86_cache_alignment = c->x86_clflush_size;
958 		}
959 	}
960 }
961 
962 static void apply_forced_caps(struct cpuinfo_x86 *c)
963 {
964 	int i;
965 
966 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
967 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
968 		c->x86_capability[i] |= cpu_caps_set[i];
969 	}
970 }
971 
972 static void init_speculation_control(struct cpuinfo_x86 *c)
973 {
974 	/*
975 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
976 	 * and they also have a different bit for STIBP support. Also,
977 	 * a hypervisor might have set the individual AMD bits even on
978 	 * Intel CPUs, for finer-grained selection of what's available.
979 	 */
980 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
981 		set_cpu_cap(c, X86_FEATURE_IBRS);
982 		set_cpu_cap(c, X86_FEATURE_IBPB);
983 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
984 	}
985 
986 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
987 		set_cpu_cap(c, X86_FEATURE_STIBP);
988 
989 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
990 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
991 		set_cpu_cap(c, X86_FEATURE_SSBD);
992 
993 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
994 		set_cpu_cap(c, X86_FEATURE_IBRS);
995 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
996 	}
997 
998 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
999 		set_cpu_cap(c, X86_FEATURE_IBPB);
1000 
1001 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1002 		set_cpu_cap(c, X86_FEATURE_STIBP);
1003 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1004 	}
1005 
1006 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1007 		set_cpu_cap(c, X86_FEATURE_SSBD);
1008 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1009 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1010 	}
1011 }
1012 
1013 void get_cpu_cap(struct cpuinfo_x86 *c)
1014 {
1015 	u32 eax, ebx, ecx, edx;
1016 
1017 	/* Intel-defined flags: level 0x00000001 */
1018 	if (c->cpuid_level >= 0x00000001) {
1019 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1020 
1021 		c->x86_capability[CPUID_1_ECX] = ecx;
1022 		c->x86_capability[CPUID_1_EDX] = edx;
1023 	}
1024 
1025 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1026 	if (c->cpuid_level >= 0x00000006)
1027 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1028 
1029 	/* Additional Intel-defined flags: level 0x00000007 */
1030 	if (c->cpuid_level >= 0x00000007) {
1031 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1032 		c->x86_capability[CPUID_7_0_EBX] = ebx;
1033 		c->x86_capability[CPUID_7_ECX] = ecx;
1034 		c->x86_capability[CPUID_7_EDX] = edx;
1035 
1036 		/* Check valid sub-leaf index before accessing it */
1037 		if (eax >= 1) {
1038 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1039 			c->x86_capability[CPUID_7_1_EAX] = eax;
1040 		}
1041 	}
1042 
1043 	/* Extended state features: level 0x0000000d */
1044 	if (c->cpuid_level >= 0x0000000d) {
1045 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1046 
1047 		c->x86_capability[CPUID_D_1_EAX] = eax;
1048 	}
1049 
1050 	/* AMD-defined flags: level 0x80000001 */
1051 	eax = cpuid_eax(0x80000000);
1052 	c->extended_cpuid_level = eax;
1053 
1054 	if ((eax & 0xffff0000) == 0x80000000) {
1055 		if (eax >= 0x80000001) {
1056 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1057 
1058 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1059 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1060 		}
1061 	}
1062 
1063 	if (c->extended_cpuid_level >= 0x80000007) {
1064 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1065 
1066 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1067 		c->x86_power = edx;
1068 	}
1069 
1070 	if (c->extended_cpuid_level >= 0x80000008) {
1071 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1072 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1073 	}
1074 
1075 	if (c->extended_cpuid_level >= 0x8000000a)
1076 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1077 
1078 	if (c->extended_cpuid_level >= 0x8000001f)
1079 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1080 
1081 	if (c->extended_cpuid_level >= 0x80000021)
1082 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1083 
1084 	init_scattered_cpuid_features(c);
1085 	init_speculation_control(c);
1086 
1087 	/*
1088 	 * Clear/Set all flags overridden by options, after probe.
1089 	 * This needs to happen each time we re-probe, which may happen
1090 	 * several times during CPU initialization.
1091 	 */
1092 	apply_forced_caps(c);
1093 }
1094 
1095 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1096 {
1097 	u32 eax, ebx, ecx, edx;
1098 	bool vp_bits_from_cpuid = true;
1099 
1100 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1101 	    (c->extended_cpuid_level < 0x80000008))
1102 		vp_bits_from_cpuid = false;
1103 
1104 	if (vp_bits_from_cpuid) {
1105 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1106 
1107 		c->x86_virt_bits = (eax >> 8) & 0xff;
1108 		c->x86_phys_bits = eax & 0xff;
1109 	} else {
1110 		if (IS_ENABLED(CONFIG_X86_64)) {
1111 			c->x86_clflush_size = 64;
1112 			c->x86_phys_bits = 36;
1113 			c->x86_virt_bits = 48;
1114 		} else {
1115 			c->x86_clflush_size = 32;
1116 			c->x86_virt_bits = 32;
1117 			c->x86_phys_bits = 32;
1118 
1119 			if (cpu_has(c, X86_FEATURE_PAE) ||
1120 			    cpu_has(c, X86_FEATURE_PSE36))
1121 				c->x86_phys_bits = 36;
1122 		}
1123 	}
1124 	c->x86_cache_bits = c->x86_phys_bits;
1125 	c->x86_cache_alignment = c->x86_clflush_size;
1126 }
1127 
1128 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1129 {
1130 #ifdef CONFIG_X86_32
1131 	int i;
1132 
1133 	/*
1134 	 * First of all, decide if this is a 486 or higher
1135 	 * It's a 486 if we can modify the AC flag
1136 	 */
1137 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1138 		c->x86 = 4;
1139 	else
1140 		c->x86 = 3;
1141 
1142 	for (i = 0; i < X86_VENDOR_NUM; i++)
1143 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1144 			c->x86_vendor_id[0] = 0;
1145 			cpu_devs[i]->c_identify(c);
1146 			if (c->x86_vendor_id[0]) {
1147 				get_cpu_vendor(c);
1148 				break;
1149 			}
1150 		}
1151 #endif
1152 }
1153 
1154 #define NO_SPECULATION		BIT(0)
1155 #define NO_MELTDOWN		BIT(1)
1156 #define NO_SSB			BIT(2)
1157 #define NO_L1TF			BIT(3)
1158 #define NO_MDS			BIT(4)
1159 #define MSBDS_ONLY		BIT(5)
1160 #define NO_SWAPGS		BIT(6)
1161 #define NO_ITLB_MULTIHIT	BIT(7)
1162 #define NO_SPECTRE_V2		BIT(8)
1163 #define NO_MMIO			BIT(9)
1164 #define NO_EIBRS_PBRSB		BIT(10)
1165 
1166 #define VULNWL(vendor, family, model, whitelist)	\
1167 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1168 
1169 #define VULNWL_INTEL(model, whitelist)		\
1170 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1171 
1172 #define VULNWL_AMD(family, whitelist)		\
1173 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1174 
1175 #define VULNWL_HYGON(family, whitelist)		\
1176 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1177 
1178 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1179 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1180 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1181 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1182 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1183 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1184 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1185 
1186 	/* Intel Family 6 */
1187 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1188 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1189 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1190 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1191 
1192 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1193 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1194 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1195 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1196 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1197 
1198 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 
1205 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1206 
1207 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1208 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209 
1210 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1211 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1212 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1213 
1214 	/*
1215 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1216 	 * being documented as such in the APM).  But according to AMD, %gs is
1217 	 * updated non-speculatively, and the issuing of %gs-relative memory
1218 	 * operands will be blocked until the %gs update completes, which is
1219 	 * good enough for our purposes.
1220 	 */
1221 
1222 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1223 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1224 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1225 
1226 	/* AMD Family 0xf - 0x12 */
1227 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1228 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1229 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231 
1232 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1233 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1234 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1235 
1236 	/* Zhaoxin Family 7 */
1237 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1238 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1239 	{}
1240 };
1241 
1242 #define VULNBL(vendor, family, model, blacklist)	\
1243 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1244 
1245 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1246 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1247 					    INTEL_FAM6_##model, steppings, \
1248 					    X86_FEATURE_ANY, issues)
1249 
1250 #define VULNBL_AMD(family, blacklist)		\
1251 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1252 
1253 #define VULNBL_HYGON(family, blacklist)		\
1254 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1255 
1256 #define SRBDS		BIT(0)
1257 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1258 #define MMIO		BIT(1)
1259 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1260 #define MMIO_SBDS	BIT(2)
1261 /* CPU is affected by RETbleed, speculating where you would not expect it */
1262 #define RETBLEED	BIT(3)
1263 /* CPU is affected by SMT (cross-thread) return predictions */
1264 #define SMT_RSB		BIT(4)
1265 /* CPU is affected by SRSO */
1266 #define SRSO		BIT(5)
1267 /* CPU is affected by GDS */
1268 #define GDS		BIT(6)
1269 
1270 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1271 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1272 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1273 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1274 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1275 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1276 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1277 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1278 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1279 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1280 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1281 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1282 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1283 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1284 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1285 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1286 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1287 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1288 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1289 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1290 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1291 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1292 	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1293 	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1294 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1295 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1296 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1297 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1298 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1299 
1300 	VULNBL_AMD(0x15, RETBLEED),
1301 	VULNBL_AMD(0x16, RETBLEED),
1302 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1303 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1304 	VULNBL_AMD(0x19, SRSO),
1305 	{}
1306 };
1307 
1308 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1309 {
1310 	const struct x86_cpu_id *m = x86_match_cpu(table);
1311 
1312 	return m && !!(m->driver_data & which);
1313 }
1314 
1315 u64 x86_read_arch_cap_msr(void)
1316 {
1317 	u64 ia32_cap = 0;
1318 
1319 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1320 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1321 
1322 	return ia32_cap;
1323 }
1324 
1325 static bool arch_cap_mmio_immune(u64 ia32_cap)
1326 {
1327 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1328 		ia32_cap & ARCH_CAP_PSDP_NO &&
1329 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1330 }
1331 
1332 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1333 {
1334 	u64 ia32_cap = x86_read_arch_cap_msr();
1335 
1336 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1337 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1338 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1339 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1340 
1341 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1342 		return;
1343 
1344 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1345 
1346 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1347 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1348 
1349 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1350 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1351 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1352 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1353 
1354 	/*
1355 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1356 	 * flag and protect from vendor-specific bugs via the whitelist.
1357 	 */
1358 	if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1359 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1360 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1361 		    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1362 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1363 	}
1364 
1365 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1366 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1367 		setup_force_cpu_bug(X86_BUG_MDS);
1368 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1369 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1370 	}
1371 
1372 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1373 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1374 
1375 	/*
1376 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1377 	 *	- TSX is supported or
1378 	 *	- TSX_CTRL is present
1379 	 *
1380 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1381 	 * the kernel boot e.g. kexec.
1382 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1383 	 * update is not present or running as guest that don't get TSX_CTRL.
1384 	 */
1385 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1386 	    (cpu_has(c, X86_FEATURE_RTM) ||
1387 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1388 		setup_force_cpu_bug(X86_BUG_TAA);
1389 
1390 	/*
1391 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1392 	 * in the vulnerability blacklist.
1393 	 *
1394 	 * Some of the implications and mitigation of Shared Buffers Data
1395 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1396 	 * SRBDS.
1397 	 */
1398 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1399 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1400 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1401 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1402 
1403 	/*
1404 	 * Processor MMIO Stale Data bug enumeration
1405 	 *
1406 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1407 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1408 	 * not want the guest to enumerate the bug.
1409 	 *
1410 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1411 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1412 	 */
1413 	if (!arch_cap_mmio_immune(ia32_cap)) {
1414 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1415 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1416 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1417 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1418 	}
1419 
1420 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1421 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1422 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1423 	}
1424 
1425 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1426 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1427 
1428 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1429 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1430 			setup_force_cpu_bug(X86_BUG_SRSO);
1431 	}
1432 
1433 	/*
1434 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1435 	 * an affected processor, the VMM may have disabled the use of GATHER by
1436 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1437 	 * which means that AVX will be disabled.
1438 	 */
1439 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1440 	    boot_cpu_has(X86_FEATURE_AVX))
1441 		setup_force_cpu_bug(X86_BUG_GDS);
1442 
1443 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1444 		return;
1445 
1446 	/* Rogue Data Cache Load? No! */
1447 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1448 		return;
1449 
1450 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1451 
1452 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1453 		return;
1454 
1455 	setup_force_cpu_bug(X86_BUG_L1TF);
1456 }
1457 
1458 /*
1459  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1460  * unfortunately, that's not true in practice because of early VIA
1461  * chips and (more importantly) broken virtualizers that are not easy
1462  * to detect. In the latter case it doesn't even *fail* reliably, so
1463  * probing for it doesn't even work. Disable it completely on 32-bit
1464  * unless we can find a reliable way to detect all the broken cases.
1465  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1466  */
1467 static void detect_nopl(void)
1468 {
1469 #ifdef CONFIG_X86_32
1470 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1471 #else
1472 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1473 #endif
1474 }
1475 
1476 /*
1477  * We parse cpu parameters early because fpu__init_system() is executed
1478  * before parse_early_param().
1479  */
1480 static void __init cpu_parse_early_param(void)
1481 {
1482 	char arg[128];
1483 	char *argptr = arg, *opt;
1484 	int arglen, taint = 0;
1485 
1486 #ifdef CONFIG_X86_32
1487 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1488 #ifdef CONFIG_MATH_EMULATION
1489 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1490 #else
1491 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1492 #endif
1493 
1494 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1495 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1496 #endif
1497 
1498 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1499 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1500 
1501 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1502 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1503 
1504 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1505 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1506 
1507 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1508 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1509 
1510 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1511 	if (arglen <= 0)
1512 		return;
1513 
1514 	pr_info("Clearing CPUID bits:");
1515 
1516 	while (argptr) {
1517 		bool found __maybe_unused = false;
1518 		unsigned int bit;
1519 
1520 		opt = strsep(&argptr, ",");
1521 
1522 		/*
1523 		 * Handle naked numbers first for feature flags which don't
1524 		 * have names.
1525 		 */
1526 		if (!kstrtouint(opt, 10, &bit)) {
1527 			if (bit < NCAPINTS * 32) {
1528 
1529 				/* empty-string, i.e., ""-defined feature flags */
1530 				if (!x86_cap_flags[bit])
1531 					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1532 				else
1533 					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1534 
1535 				setup_clear_cpu_cap(bit);
1536 				taint++;
1537 			}
1538 			/*
1539 			 * The assumption is that there are no feature names with only
1540 			 * numbers in the name thus go to the next argument.
1541 			 */
1542 			continue;
1543 		}
1544 
1545 		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1546 			if (!x86_cap_flag(bit))
1547 				continue;
1548 
1549 			if (strcmp(x86_cap_flag(bit), opt))
1550 				continue;
1551 
1552 			pr_cont(" %s", opt);
1553 			setup_clear_cpu_cap(bit);
1554 			taint++;
1555 			found = true;
1556 			break;
1557 		}
1558 
1559 		if (!found)
1560 			pr_cont(" (unknown: %s)", opt);
1561 	}
1562 	pr_cont("\n");
1563 
1564 	if (taint)
1565 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1566 }
1567 
1568 /*
1569  * Do minimum CPU detection early.
1570  * Fields really needed: vendor, cpuid_level, family, model, mask,
1571  * cache alignment.
1572  * The others are not touched to avoid unwanted side effects.
1573  *
1574  * WARNING: this function is only called on the boot CPU.  Don't add code
1575  * here that is supposed to run on all CPUs.
1576  */
1577 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1578 {
1579 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1580 	c->extended_cpuid_level = 0;
1581 
1582 	if (!have_cpuid_p())
1583 		identify_cpu_without_cpuid(c);
1584 
1585 	/* cyrix could have cpuid enabled via c_identify()*/
1586 	if (have_cpuid_p()) {
1587 		cpu_detect(c);
1588 		get_cpu_vendor(c);
1589 		get_cpu_cap(c);
1590 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1591 		cpu_parse_early_param();
1592 
1593 		if (this_cpu->c_early_init)
1594 			this_cpu->c_early_init(c);
1595 
1596 		c->cpu_index = 0;
1597 		filter_cpuid_features(c, false);
1598 
1599 		if (this_cpu->c_bsp_init)
1600 			this_cpu->c_bsp_init(c);
1601 	} else {
1602 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1603 	}
1604 
1605 	get_cpu_address_sizes(c);
1606 
1607 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1608 
1609 	cpu_set_bug_bits(c);
1610 
1611 	sld_setup(c);
1612 
1613 #ifdef CONFIG_X86_32
1614 	/*
1615 	 * Regardless of whether PCID is enumerated, the SDM says
1616 	 * that it can't be enabled in 32-bit mode.
1617 	 */
1618 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1619 #endif
1620 
1621 	/*
1622 	 * Later in the boot process pgtable_l5_enabled() relies on
1623 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1624 	 * enabled by this point we need to clear the feature bit to avoid
1625 	 * false-positives at the later stage.
1626 	 *
1627 	 * pgtable_l5_enabled() can be false here for several reasons:
1628 	 *  - 5-level paging is disabled compile-time;
1629 	 *  - it's 32-bit kernel;
1630 	 *  - machine doesn't support 5-level paging;
1631 	 *  - user specified 'no5lvl' in kernel command line.
1632 	 */
1633 	if (!pgtable_l5_enabled())
1634 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1635 
1636 	detect_nopl();
1637 }
1638 
1639 void __init early_cpu_init(void)
1640 {
1641 	const struct cpu_dev *const *cdev;
1642 	int count = 0;
1643 
1644 #ifdef CONFIG_PROCESSOR_SELECT
1645 	pr_info("KERNEL supported cpus:\n");
1646 #endif
1647 
1648 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1649 		const struct cpu_dev *cpudev = *cdev;
1650 
1651 		if (count >= X86_VENDOR_NUM)
1652 			break;
1653 		cpu_devs[count] = cpudev;
1654 		count++;
1655 
1656 #ifdef CONFIG_PROCESSOR_SELECT
1657 		{
1658 			unsigned int j;
1659 
1660 			for (j = 0; j < 2; j++) {
1661 				if (!cpudev->c_ident[j])
1662 					continue;
1663 				pr_info("  %s %s\n", cpudev->c_vendor,
1664 					cpudev->c_ident[j]);
1665 			}
1666 		}
1667 #endif
1668 	}
1669 	early_identify_cpu(&boot_cpu_data);
1670 }
1671 
1672 static bool detect_null_seg_behavior(void)
1673 {
1674 	/*
1675 	 * Empirically, writing zero to a segment selector on AMD does
1676 	 * not clear the base, whereas writing zero to a segment
1677 	 * selector on Intel does clear the base.  Intel's behavior
1678 	 * allows slightly faster context switches in the common case
1679 	 * where GS is unused by the prev and next threads.
1680 	 *
1681 	 * Since neither vendor documents this anywhere that I can see,
1682 	 * detect it directly instead of hard-coding the choice by
1683 	 * vendor.
1684 	 *
1685 	 * I've designated AMD's behavior as the "bug" because it's
1686 	 * counterintuitive and less friendly.
1687 	 */
1688 
1689 	unsigned long old_base, tmp;
1690 	rdmsrl(MSR_FS_BASE, old_base);
1691 	wrmsrl(MSR_FS_BASE, 1);
1692 	loadsegment(fs, 0);
1693 	rdmsrl(MSR_FS_BASE, tmp);
1694 	wrmsrl(MSR_FS_BASE, old_base);
1695 	return tmp == 0;
1696 }
1697 
1698 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1699 {
1700 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1701 	if (!IS_ENABLED(CONFIG_X86_64))
1702 		return;
1703 
1704 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1705 		return;
1706 
1707 	/*
1708 	 * CPUID bit above wasn't set. If this kernel is still running
1709 	 * as a HV guest, then the HV has decided not to advertize
1710 	 * that CPUID bit for whatever reason.	For example, one
1711 	 * member of the migration pool might be vulnerable.  Which
1712 	 * means, the bug is present: set the BUG flag and return.
1713 	 */
1714 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1715 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1716 		return;
1717 	}
1718 
1719 	/*
1720 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1721 	 * 0x18 is the respective family for Hygon.
1722 	 */
1723 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1724 	    detect_null_seg_behavior())
1725 		return;
1726 
1727 	/* All the remaining ones are affected */
1728 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1729 }
1730 
1731 static void generic_identify(struct cpuinfo_x86 *c)
1732 {
1733 	c->extended_cpuid_level = 0;
1734 
1735 	if (!have_cpuid_p())
1736 		identify_cpu_without_cpuid(c);
1737 
1738 	/* cyrix could have cpuid enabled via c_identify()*/
1739 	if (!have_cpuid_p())
1740 		return;
1741 
1742 	cpu_detect(c);
1743 
1744 	get_cpu_vendor(c);
1745 
1746 	get_cpu_cap(c);
1747 
1748 	get_cpu_address_sizes(c);
1749 
1750 	if (c->cpuid_level >= 0x00000001) {
1751 		c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1752 #ifdef CONFIG_X86_32
1753 # ifdef CONFIG_SMP
1754 		c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1755 # else
1756 		c->topo.apicid = c->topo.initial_apicid;
1757 # endif
1758 #endif
1759 		c->topo.pkg_id = c->topo.initial_apicid;
1760 	}
1761 
1762 	get_model_name(c); /* Default name */
1763 
1764 	/*
1765 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1766 	 * systems that run Linux at CPL > 0 may or may not have the
1767 	 * issue, but, even if they have the issue, there's absolutely
1768 	 * nothing we can do about it because we can't use the real IRET
1769 	 * instruction.
1770 	 *
1771 	 * NB: For the time being, only 32-bit kernels support
1772 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1773 	 * whether to apply espfix using paravirt hooks.  If any
1774 	 * non-paravirt system ever shows up that does *not* have the
1775 	 * ESPFIX issue, we can change this.
1776 	 */
1777 #ifdef CONFIG_X86_32
1778 	set_cpu_bug(c, X86_BUG_ESPFIX);
1779 #endif
1780 }
1781 
1782 /*
1783  * Validate that ACPI/mptables have the same information about the
1784  * effective APIC id and update the package map.
1785  */
1786 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1787 {
1788 #ifdef CONFIG_SMP
1789 	unsigned int cpu = smp_processor_id();
1790 	u32 apicid;
1791 
1792 	apicid = apic->cpu_present_to_apicid(cpu);
1793 
1794 	if (apicid != c->topo.apicid) {
1795 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1796 		       cpu, apicid, c->topo.initial_apicid);
1797 	}
1798 	BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1799 	BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1800 #else
1801 	c->topo.logical_pkg_id = 0;
1802 #endif
1803 }
1804 
1805 /*
1806  * This does the hard work of actually picking apart the CPU stuff...
1807  */
1808 static void identify_cpu(struct cpuinfo_x86 *c)
1809 {
1810 	int i;
1811 
1812 	c->loops_per_jiffy = loops_per_jiffy;
1813 	c->x86_cache_size = 0;
1814 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1815 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1816 	c->x86_vendor_id[0] = '\0'; /* Unset */
1817 	c->x86_model_id[0] = '\0';  /* Unset */
1818 	c->x86_max_cores = 1;
1819 	c->x86_coreid_bits = 0;
1820 	c->topo.cu_id = 0xff;
1821 	c->topo.llc_id = BAD_APICID;
1822 	c->topo.l2c_id = BAD_APICID;
1823 #ifdef CONFIG_X86_64
1824 	c->x86_clflush_size = 64;
1825 	c->x86_phys_bits = 36;
1826 	c->x86_virt_bits = 48;
1827 #else
1828 	c->cpuid_level = -1;	/* CPUID not detected */
1829 	c->x86_clflush_size = 32;
1830 	c->x86_phys_bits = 32;
1831 	c->x86_virt_bits = 32;
1832 #endif
1833 	c->x86_cache_alignment = c->x86_clflush_size;
1834 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1835 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1836 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1837 #endif
1838 
1839 	generic_identify(c);
1840 
1841 	if (this_cpu->c_identify)
1842 		this_cpu->c_identify(c);
1843 
1844 	/* Clear/Set all flags overridden by options, after probe */
1845 	apply_forced_caps(c);
1846 
1847 #ifdef CONFIG_X86_64
1848 	c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1849 #endif
1850 
1851 
1852 	/*
1853 	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1854 	 * Hygon will clear it in ->c_init() below.
1855 	 */
1856 	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1857 
1858 	/*
1859 	 * Vendor-specific initialization.  In this section we
1860 	 * canonicalize the feature flags, meaning if there are
1861 	 * features a certain CPU supports which CPUID doesn't
1862 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1863 	 * we handle them here.
1864 	 *
1865 	 * At the end of this section, c->x86_capability better
1866 	 * indicate the features this CPU genuinely supports!
1867 	 */
1868 	if (this_cpu->c_init)
1869 		this_cpu->c_init(c);
1870 
1871 	/* Disable the PN if appropriate */
1872 	squash_the_stupid_serial_number(c);
1873 
1874 	/* Set up SMEP/SMAP/UMIP */
1875 	setup_smep(c);
1876 	setup_smap(c);
1877 	setup_umip(c);
1878 
1879 	/* Enable FSGSBASE instructions if available. */
1880 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1881 		cr4_set_bits(X86_CR4_FSGSBASE);
1882 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1883 	}
1884 
1885 	/*
1886 	 * The vendor-specific functions might have changed features.
1887 	 * Now we do "generic changes."
1888 	 */
1889 
1890 	/* Filter out anything that depends on CPUID levels we don't have */
1891 	filter_cpuid_features(c, true);
1892 
1893 	/* If the model name is still unset, do table lookup. */
1894 	if (!c->x86_model_id[0]) {
1895 		const char *p;
1896 		p = table_lookup_model(c);
1897 		if (p)
1898 			strcpy(c->x86_model_id, p);
1899 		else
1900 			/* Last resort... */
1901 			sprintf(c->x86_model_id, "%02x/%02x",
1902 				c->x86, c->x86_model);
1903 	}
1904 
1905 #ifdef CONFIG_X86_64
1906 	detect_ht(c);
1907 #endif
1908 
1909 	x86_init_rdrand(c);
1910 	setup_pku(c);
1911 	setup_cet(c);
1912 
1913 	/*
1914 	 * Clear/Set all flags overridden by options, need do it
1915 	 * before following smp all cpus cap AND.
1916 	 */
1917 	apply_forced_caps(c);
1918 
1919 	/*
1920 	 * On SMP, boot_cpu_data holds the common feature set between
1921 	 * all CPUs; so make sure that we indicate which features are
1922 	 * common between the CPUs.  The first time this routine gets
1923 	 * executed, c == &boot_cpu_data.
1924 	 */
1925 	if (c != &boot_cpu_data) {
1926 		/* AND the already accumulated flags with these */
1927 		for (i = 0; i < NCAPINTS; i++)
1928 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1929 
1930 		/* OR, i.e. replicate the bug flags */
1931 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1932 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1933 	}
1934 
1935 	ppin_init(c);
1936 
1937 	/* Init Machine Check Exception if available. */
1938 	mcheck_cpu_init(c);
1939 
1940 	select_idle_routine(c);
1941 
1942 #ifdef CONFIG_NUMA
1943 	numa_add_cpu(smp_processor_id());
1944 #endif
1945 }
1946 
1947 /*
1948  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1949  * on 32-bit kernels:
1950  */
1951 #ifdef CONFIG_X86_32
1952 void enable_sep_cpu(void)
1953 {
1954 	struct tss_struct *tss;
1955 	int cpu;
1956 
1957 	if (!boot_cpu_has(X86_FEATURE_SEP))
1958 		return;
1959 
1960 	cpu = get_cpu();
1961 	tss = &per_cpu(cpu_tss_rw, cpu);
1962 
1963 	/*
1964 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1965 	 * see the big comment in struct x86_hw_tss's definition.
1966 	 */
1967 
1968 	tss->x86_tss.ss1 = __KERNEL_CS;
1969 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1970 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1971 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1972 
1973 	put_cpu();
1974 }
1975 #endif
1976 
1977 static __init void identify_boot_cpu(void)
1978 {
1979 	identify_cpu(&boot_cpu_data);
1980 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1981 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1982 #ifdef CONFIG_X86_32
1983 	enable_sep_cpu();
1984 #endif
1985 	cpu_detect_tlb(&boot_cpu_data);
1986 	setup_cr_pinning();
1987 
1988 	tsx_init();
1989 	lkgs_init();
1990 }
1991 
1992 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1993 {
1994 	BUG_ON(c == &boot_cpu_data);
1995 	identify_cpu(c);
1996 #ifdef CONFIG_X86_32
1997 	enable_sep_cpu();
1998 #endif
1999 	validate_apic_and_package_id(c);
2000 	x86_spec_ctrl_setup_ap();
2001 	update_srbds_msr();
2002 	if (boot_cpu_has_bug(X86_BUG_GDS))
2003 		update_gds_msr();
2004 
2005 	tsx_ap_init();
2006 }
2007 
2008 void print_cpu_info(struct cpuinfo_x86 *c)
2009 {
2010 	const char *vendor = NULL;
2011 
2012 	if (c->x86_vendor < X86_VENDOR_NUM) {
2013 		vendor = this_cpu->c_vendor;
2014 	} else {
2015 		if (c->cpuid_level >= 0)
2016 			vendor = c->x86_vendor_id;
2017 	}
2018 
2019 	if (vendor && !strstr(c->x86_model_id, vendor))
2020 		pr_cont("%s ", vendor);
2021 
2022 	if (c->x86_model_id[0])
2023 		pr_cont("%s", c->x86_model_id);
2024 	else
2025 		pr_cont("%d86", c->x86);
2026 
2027 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2028 
2029 	if (c->x86_stepping || c->cpuid_level >= 0)
2030 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2031 	else
2032 		pr_cont(")\n");
2033 }
2034 
2035 /*
2036  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2037  * function prevents it from becoming an environment variable for init.
2038  */
2039 static __init int setup_clearcpuid(char *arg)
2040 {
2041 	return 1;
2042 }
2043 __setup("clearcpuid=", setup_clearcpuid);
2044 
2045 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2046 	.current_task	= &init_task,
2047 	.preempt_count	= INIT_PREEMPT_COUNT,
2048 	.top_of_stack	= TOP_OF_INIT_STACK,
2049 };
2050 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2051 
2052 #ifdef CONFIG_X86_64
2053 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2054 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2055 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2056 
2057 static void wrmsrl_cstar(unsigned long val)
2058 {
2059 	/*
2060 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2061 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2062 	 * guest. Avoid the pointless write on all Intel CPUs.
2063 	 */
2064 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2065 		wrmsrl(MSR_CSTAR, val);
2066 }
2067 
2068 /* May not be marked __init: used by software suspend */
2069 void syscall_init(void)
2070 {
2071 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2072 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2073 
2074 	if (ia32_enabled()) {
2075 		wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2076 		/*
2077 		 * This only works on Intel CPUs.
2078 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2079 		 * This does not cause SYSENTER to jump to the wrong location, because
2080 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2081 		 */
2082 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2083 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2084 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2085 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2086 	} else {
2087 		wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2088 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2089 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2090 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2091 	}
2092 
2093 	/*
2094 	 * Flags to clear on syscall; clear as much as possible
2095 	 * to minimize user space-kernel interference.
2096 	 */
2097 	wrmsrl(MSR_SYSCALL_MASK,
2098 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2099 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2100 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2101 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2102 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2103 }
2104 
2105 #else	/* CONFIG_X86_64 */
2106 
2107 #ifdef CONFIG_STACKPROTECTOR
2108 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2109 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2110 #endif
2111 
2112 #endif	/* CONFIG_X86_64 */
2113 
2114 /*
2115  * Clear all 6 debug registers:
2116  */
2117 static void clear_all_debug_regs(void)
2118 {
2119 	int i;
2120 
2121 	for (i = 0; i < 8; i++) {
2122 		/* Ignore db4, db5 */
2123 		if ((i == 4) || (i == 5))
2124 			continue;
2125 
2126 		set_debugreg(0, i);
2127 	}
2128 }
2129 
2130 #ifdef CONFIG_KGDB
2131 /*
2132  * Restore debug regs if using kgdbwait and you have a kernel debugger
2133  * connection established.
2134  */
2135 static void dbg_restore_debug_regs(void)
2136 {
2137 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2138 		arch_kgdb_ops.correct_hw_break();
2139 }
2140 #else /* ! CONFIG_KGDB */
2141 #define dbg_restore_debug_regs()
2142 #endif /* ! CONFIG_KGDB */
2143 
2144 static inline void setup_getcpu(int cpu)
2145 {
2146 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2147 	struct desc_struct d = { };
2148 
2149 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2150 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2151 
2152 	/* Store CPU and node number in limit. */
2153 	d.limit0 = cpudata;
2154 	d.limit1 = cpudata >> 16;
2155 
2156 	d.type = 5;		/* RO data, expand down, accessed */
2157 	d.dpl = 3;		/* Visible to user code */
2158 	d.s = 1;		/* Not a system segment */
2159 	d.p = 1;		/* Present */
2160 	d.d = 1;		/* 32-bit */
2161 
2162 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2163 }
2164 
2165 #ifdef CONFIG_X86_64
2166 static inline void tss_setup_ist(struct tss_struct *tss)
2167 {
2168 	/* Set up the per-CPU TSS IST stacks */
2169 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2170 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2171 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2172 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2173 	/* Only mapped when SEV-ES is active */
2174 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2175 }
2176 #else /* CONFIG_X86_64 */
2177 static inline void tss_setup_ist(struct tss_struct *tss) { }
2178 #endif /* !CONFIG_X86_64 */
2179 
2180 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2181 {
2182 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2183 
2184 #ifdef CONFIG_X86_IOPL_IOPERM
2185 	tss->io_bitmap.prev_max = 0;
2186 	tss->io_bitmap.prev_sequence = 0;
2187 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2188 	/*
2189 	 * Invalidate the extra array entry past the end of the all
2190 	 * permission bitmap as required by the hardware.
2191 	 */
2192 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2193 #endif
2194 }
2195 
2196 /*
2197  * Setup everything needed to handle exceptions from the IDT, including the IST
2198  * exceptions which use paranoid_entry().
2199  */
2200 void cpu_init_exception_handling(void)
2201 {
2202 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2203 	int cpu = raw_smp_processor_id();
2204 
2205 	/* paranoid_entry() gets the CPU number from the GDT */
2206 	setup_getcpu(cpu);
2207 
2208 	/* IST vectors need TSS to be set up. */
2209 	tss_setup_ist(tss);
2210 	tss_setup_io_bitmap(tss);
2211 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2212 
2213 	load_TR_desc();
2214 
2215 	/* GHCB needs to be setup to handle #VC. */
2216 	setup_ghcb();
2217 
2218 	/* Finally load the IDT */
2219 	load_current_idt();
2220 }
2221 
2222 /*
2223  * cpu_init() initializes state that is per-CPU. Some data is already
2224  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2225  * reload it nevertheless, this function acts as a 'CPU state barrier',
2226  * nothing should get across.
2227  */
2228 void cpu_init(void)
2229 {
2230 	struct task_struct *cur = current;
2231 	int cpu = raw_smp_processor_id();
2232 
2233 #ifdef CONFIG_NUMA
2234 	if (this_cpu_read(numa_node) == 0 &&
2235 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2236 		set_numa_node(early_cpu_to_node(cpu));
2237 #endif
2238 	pr_debug("Initializing CPU#%d\n", cpu);
2239 
2240 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2241 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2242 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2243 
2244 	if (IS_ENABLED(CONFIG_X86_64)) {
2245 		loadsegment(fs, 0);
2246 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2247 		syscall_init();
2248 
2249 		wrmsrl(MSR_FS_BASE, 0);
2250 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2251 		barrier();
2252 
2253 		x2apic_setup();
2254 	}
2255 
2256 	mmgrab(&init_mm);
2257 	cur->active_mm = &init_mm;
2258 	BUG_ON(cur->mm);
2259 	initialize_tlbstate_and_flush();
2260 	enter_lazy_tlb(&init_mm, cur);
2261 
2262 	/*
2263 	 * sp0 points to the entry trampoline stack regardless of what task
2264 	 * is running.
2265 	 */
2266 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2267 
2268 	load_mm_ldt(&init_mm);
2269 
2270 	clear_all_debug_regs();
2271 	dbg_restore_debug_regs();
2272 
2273 	doublefault_init_cpu_tss();
2274 
2275 	if (is_uv_system())
2276 		uv_cpu_init();
2277 
2278 	load_fixmap_gdt(cpu);
2279 }
2280 
2281 #ifdef CONFIG_MICROCODE_LATE_LOADING
2282 /**
2283  * store_cpu_caps() - Store a snapshot of CPU capabilities
2284  * @curr_info: Pointer where to store it
2285  *
2286  * Returns: None
2287  */
2288 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2289 {
2290 	/* Reload CPUID max function as it might've changed. */
2291 	curr_info->cpuid_level = cpuid_eax(0);
2292 
2293 	/* Copy all capability leafs and pick up the synthetic ones. */
2294 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2295 	       sizeof(curr_info->x86_capability));
2296 
2297 	/* Get the hardware CPUID leafs */
2298 	get_cpu_cap(curr_info);
2299 }
2300 
2301 /**
2302  * microcode_check() - Check if any CPU capabilities changed after an update.
2303  * @prev_info:	CPU capabilities stored before an update.
2304  *
2305  * The microcode loader calls this upon late microcode load to recheck features,
2306  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2307  *
2308  * Return: None
2309  */
2310 void microcode_check(struct cpuinfo_x86 *prev_info)
2311 {
2312 	struct cpuinfo_x86 curr_info;
2313 
2314 	perf_check_microcode();
2315 
2316 	amd_check_microcode();
2317 
2318 	store_cpu_caps(&curr_info);
2319 
2320 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2321 		    sizeof(prev_info->x86_capability)))
2322 		return;
2323 
2324 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2325 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2326 }
2327 #endif
2328 
2329 /*
2330  * Invoked from core CPU hotplug code after hotplug operations
2331  */
2332 void arch_smt_update(void)
2333 {
2334 	/* Handle the speculative execution misfeatures */
2335 	cpu_bugs_smt_update();
2336 	/* Check whether IPI broadcasting can be enabled */
2337 	apic_smt_update();
2338 }
2339 
2340 void __init arch_cpu_finalize_init(void)
2341 {
2342 	identify_boot_cpu();
2343 
2344 	/*
2345 	 * identify_boot_cpu() initialized SMT support information, let the
2346 	 * core code know.
2347 	 */
2348 	cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2349 
2350 	if (!IS_ENABLED(CONFIG_SMP)) {
2351 		pr_info("CPU: ");
2352 		print_cpu_info(&boot_cpu_data);
2353 	}
2354 
2355 	cpu_select_mitigations();
2356 
2357 	arch_smt_update();
2358 
2359 	if (IS_ENABLED(CONFIG_X86_32)) {
2360 		/*
2361 		 * Check whether this is a real i386 which is not longer
2362 		 * supported and fixup the utsname.
2363 		 */
2364 		if (boot_cpu_data.x86 < 4)
2365 			panic("Kernel requires i486+ for 'invlpg' and other features");
2366 
2367 		init_utsname()->machine[1] =
2368 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2369 	}
2370 
2371 	/*
2372 	 * Must be before alternatives because it might set or clear
2373 	 * feature bits.
2374 	 */
2375 	fpu__init_system();
2376 	fpu__init_cpu();
2377 
2378 	alternative_instructions();
2379 
2380 	if (IS_ENABLED(CONFIG_X86_64)) {
2381 		/*
2382 		 * Make sure the first 2MB area is not mapped by huge pages
2383 		 * There are typically fixed size MTRRs in there and overlapping
2384 		 * MTRRs into large pages causes slow downs.
2385 		 *
2386 		 * Right now we don't do that with gbpages because there seems
2387 		 * very little benefit for that case.
2388 		 */
2389 		if (!direct_gbpages)
2390 			set_memory_4k((unsigned long)__va(0), 1);
2391 	} else {
2392 		fpu__init_check_bugs();
2393 	}
2394 
2395 	/*
2396 	 * This needs to be called before any devices perform DMA
2397 	 * operations that might use the SWIOTLB bounce buffers. It will
2398 	 * mark the bounce buffers as decrypted so that their usage will
2399 	 * not cause "plain-text" data to be decrypted when accessed. It
2400 	 * must be called after late_time_init() so that Hyper-V x86/x64
2401 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2402 	 */
2403 	mem_encrypt_init();
2404 }
2405