xref: /linux/arch/x86/kernel/cpu/common.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14 
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <linux/topology.h>
22 #include <linux/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <asm/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
27 #include <asm/apic.h>
28 #include <asm/desc.h>
29 #include <asm/i387.h>
30 #include <asm/mtrr.h>
31 #include <linux/numa.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/mce.h>
35 #include <asm/msr.h>
36 #include <asm/pat.h>
37 
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
40 #endif
41 
42 #include "cpu.h"
43 
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
48 
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
51 
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
54 {
55 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
57 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
58 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59 }
60 
61 static void __cpuinit default_init(struct cpuinfo_x86 *c)
62 {
63 #ifdef CONFIG_X86_64
64 	cpu_detect_cache_sizes(c);
65 #else
66 	/* Not much we can do here... */
67 	/* Check if at least it has cpuid */
68 	if (c->cpuid_level == -1) {
69 		/* No cpuid. It must be an ancient CPU */
70 		if (c->x86 == 4)
71 			strcpy(c->x86_model_id, "486");
72 		else if (c->x86 == 3)
73 			strcpy(c->x86_model_id, "386");
74 	}
75 #endif
76 }
77 
78 static const struct cpu_dev __cpuinitconst default_cpu = {
79 	.c_init		= default_init,
80 	.c_vendor	= "Unknown",
81 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
82 };
83 
84 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
85 
86 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
87 #ifdef CONFIG_X86_64
88 	/*
89 	 * We need valid kernel segments for data and code in long mode too
90 	 * IRET will check the segment types  kkeil 2000/10/28
91 	 * Also sysret mandates a special GDT layout
92 	 *
93 	 * TLS descriptors are currently at a different place compared to i386.
94 	 * Hopefully nobody expects them at a fixed place (Wine?)
95 	 */
96 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
102 #else
103 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
107 	/*
108 	 * Segments used for calling PnP BIOS have byte granularity.
109 	 * They code segments and data segments have fixed 64k limits,
110 	 * the transfer segment sizes are set at run time.
111 	 */
112 	/* 32-bit code */
113 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
114 	/* 16-bit code */
115 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
116 	/* 16-bit data */
117 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
118 	/* 16-bit data */
119 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
120 	/* 16-bit data */
121 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
122 	/*
123 	 * The APM segments have byte granularity and their bases
124 	 * are set at run time.  All have 64k limits.
125 	 */
126 	/* 32-bit code */
127 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128 	/* 16-bit code */
129 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130 	/* data */
131 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
132 
133 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 	GDT_STACK_CANARY_INIT
136 #endif
137 } };
138 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
139 
140 static int __init x86_xsave_setup(char *s)
141 {
142 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
143 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
144 	return 1;
145 }
146 __setup("noxsave", x86_xsave_setup);
147 
148 static int __init x86_xsaveopt_setup(char *s)
149 {
150 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
151 	return 1;
152 }
153 __setup("noxsaveopt", x86_xsaveopt_setup);
154 
155 #ifdef CONFIG_X86_32
156 static int cachesize_override __cpuinitdata = -1;
157 static int disable_x86_serial_nr __cpuinitdata = 1;
158 
159 static int __init cachesize_setup(char *str)
160 {
161 	get_option(&str, &cachesize_override);
162 	return 1;
163 }
164 __setup("cachesize=", cachesize_setup);
165 
166 static int __init x86_fxsr_setup(char *s)
167 {
168 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
169 	setup_clear_cpu_cap(X86_FEATURE_XMM);
170 	return 1;
171 }
172 __setup("nofxsr", x86_fxsr_setup);
173 
174 static int __init x86_sep_setup(char *s)
175 {
176 	setup_clear_cpu_cap(X86_FEATURE_SEP);
177 	return 1;
178 }
179 __setup("nosep", x86_sep_setup);
180 
181 /* Standard macro to see if a specific flag is changeable */
182 static inline int flag_is_changeable_p(u32 flag)
183 {
184 	u32 f1, f2;
185 
186 	/*
187 	 * Cyrix and IDT cpus allow disabling of CPUID
188 	 * so the code below may return different results
189 	 * when it is executed before and after enabling
190 	 * the CPUID. Add "volatile" to not allow gcc to
191 	 * optimize the subsequent calls to this function.
192 	 */
193 	asm volatile ("pushfl		\n\t"
194 		      "pushfl		\n\t"
195 		      "popl %0		\n\t"
196 		      "movl %0, %1	\n\t"
197 		      "xorl %2, %0	\n\t"
198 		      "pushl %0		\n\t"
199 		      "popfl		\n\t"
200 		      "pushfl		\n\t"
201 		      "popl %0		\n\t"
202 		      "popfl		\n\t"
203 
204 		      : "=&r" (f1), "=&r" (f2)
205 		      : "ir" (flag));
206 
207 	return ((f1^f2) & flag) != 0;
208 }
209 
210 /* Probe for the CPUID instruction */
211 static int __cpuinit have_cpuid_p(void)
212 {
213 	return flag_is_changeable_p(X86_EFLAGS_ID);
214 }
215 
216 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
217 {
218 	unsigned long lo, hi;
219 
220 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
221 		return;
222 
223 	/* Disable processor serial number: */
224 
225 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
226 	lo |= 0x200000;
227 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228 
229 	printk(KERN_NOTICE "CPU serial number disabled.\n");
230 	clear_cpu_cap(c, X86_FEATURE_PN);
231 
232 	/* Disabling the serial number may affect the cpuid level */
233 	c->cpuid_level = cpuid_eax(0);
234 }
235 
236 static int __init x86_serial_nr_setup(char *s)
237 {
238 	disable_x86_serial_nr = 0;
239 	return 1;
240 }
241 __setup("serialnumber", x86_serial_nr_setup);
242 #else
243 static inline int flag_is_changeable_p(u32 flag)
244 {
245 	return 1;
246 }
247 /* Probe for the CPUID instruction */
248 static inline int have_cpuid_p(void)
249 {
250 	return 1;
251 }
252 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
253 {
254 }
255 #endif
256 
257 static int disable_smep __cpuinitdata;
258 static __init int setup_disable_smep(char *arg)
259 {
260 	disable_smep = 1;
261 	return 1;
262 }
263 __setup("nosmep", setup_disable_smep);
264 
265 static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
266 {
267 	if (cpu_has(c, X86_FEATURE_SMEP)) {
268 		if (unlikely(disable_smep)) {
269 			setup_clear_cpu_cap(X86_FEATURE_SMEP);
270 			clear_in_cr4(X86_CR4_SMEP);
271 		} else
272 			set_in_cr4(X86_CR4_SMEP);
273 	}
274 }
275 
276 /*
277  * Some CPU features depend on higher CPUID levels, which may not always
278  * be available due to CPUID level capping or broken virtualization
279  * software.  Add those features to this table to auto-disable them.
280  */
281 struct cpuid_dependent_feature {
282 	u32 feature;
283 	u32 level;
284 };
285 
286 static const struct cpuid_dependent_feature __cpuinitconst
287 cpuid_dependent_features[] = {
288 	{ X86_FEATURE_MWAIT,		0x00000005 },
289 	{ X86_FEATURE_DCA,		0x00000009 },
290 	{ X86_FEATURE_XSAVE,		0x0000000d },
291 	{ 0, 0 }
292 };
293 
294 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
295 {
296 	const struct cpuid_dependent_feature *df;
297 
298 	for (df = cpuid_dependent_features; df->feature; df++) {
299 
300 		if (!cpu_has(c, df->feature))
301 			continue;
302 		/*
303 		 * Note: cpuid_level is set to -1 if unavailable, but
304 		 * extended_extended_level is set to 0 if unavailable
305 		 * and the legitimate extended levels are all negative
306 		 * when signed; hence the weird messing around with
307 		 * signs here...
308 		 */
309 		if (!((s32)df->level < 0 ?
310 		     (u32)df->level > (u32)c->extended_cpuid_level :
311 		     (s32)df->level > (s32)c->cpuid_level))
312 			continue;
313 
314 		clear_cpu_cap(c, df->feature);
315 		if (!warn)
316 			continue;
317 
318 		printk(KERN_WARNING
319 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
320 				x86_cap_flags[df->feature], df->level);
321 	}
322 }
323 
324 /*
325  * Naming convention should be: <Name> [(<Codename>)]
326  * This table only is used unless init_<vendor>() below doesn't set it;
327  * in particular, if CPUID levels 0x80000002..4 are supported, this
328  * isn't used
329  */
330 
331 /* Look up CPU names by table lookup. */
332 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
333 {
334 	const struct cpu_model_info *info;
335 
336 	if (c->x86_model >= 16)
337 		return NULL;	/* Range check */
338 
339 	if (!this_cpu)
340 		return NULL;
341 
342 	info = this_cpu->c_models;
343 
344 	while (info && info->family) {
345 		if (info->family == c->x86)
346 			return info->model_names[c->x86_model];
347 		info++;
348 	}
349 	return NULL;		/* Not found */
350 }
351 
352 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
353 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
354 
355 void load_percpu_segment(int cpu)
356 {
357 #ifdef CONFIG_X86_32
358 	loadsegment(fs, __KERNEL_PERCPU);
359 #else
360 	loadsegment(gs, 0);
361 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
362 #endif
363 	load_stack_canary_segment();
364 }
365 
366 /*
367  * Current gdt points %fs at the "master" per-cpu area: after this,
368  * it's on the real one.
369  */
370 void switch_to_new_gdt(int cpu)
371 {
372 	struct desc_ptr gdt_descr;
373 
374 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
375 	gdt_descr.size = GDT_SIZE - 1;
376 	load_gdt(&gdt_descr);
377 	/* Reload the per-cpu base */
378 
379 	load_percpu_segment(cpu);
380 }
381 
382 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
383 
384 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
385 {
386 	unsigned int *v;
387 	char *p, *q;
388 
389 	if (c->extended_cpuid_level < 0x80000004)
390 		return;
391 
392 	v = (unsigned int *)c->x86_model_id;
393 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
394 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
395 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
396 	c->x86_model_id[48] = 0;
397 
398 	/*
399 	 * Intel chips right-justify this string for some dumb reason;
400 	 * undo that brain damage:
401 	 */
402 	p = q = &c->x86_model_id[0];
403 	while (*p == ' ')
404 		p++;
405 	if (p != q) {
406 		while (*p)
407 			*q++ = *p++;
408 		while (q <= &c->x86_model_id[48])
409 			*q++ = '\0';	/* Zero-pad the rest */
410 	}
411 }
412 
413 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
414 {
415 	unsigned int n, dummy, ebx, ecx, edx, l2size;
416 
417 	n = c->extended_cpuid_level;
418 
419 	if (n >= 0x80000005) {
420 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
421 		c->x86_cache_size = (ecx>>24) + (edx>>24);
422 #ifdef CONFIG_X86_64
423 		/* On K8 L1 TLB is inclusive, so don't count it */
424 		c->x86_tlbsize = 0;
425 #endif
426 	}
427 
428 	if (n < 0x80000006)	/* Some chips just has a large L1. */
429 		return;
430 
431 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
432 	l2size = ecx >> 16;
433 
434 #ifdef CONFIG_X86_64
435 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
436 #else
437 	/* do processor-specific cache resizing */
438 	if (this_cpu->c_size_cache)
439 		l2size = this_cpu->c_size_cache(c, l2size);
440 
441 	/* Allow user to override all this if necessary. */
442 	if (cachesize_override != -1)
443 		l2size = cachesize_override;
444 
445 	if (l2size == 0)
446 		return;		/* Again, no L2 cache is possible */
447 #endif
448 
449 	c->x86_cache_size = l2size;
450 }
451 
452 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
453 {
454 #ifdef CONFIG_X86_HT
455 	u32 eax, ebx, ecx, edx;
456 	int index_msb, core_bits;
457 	static bool printed;
458 
459 	if (!cpu_has(c, X86_FEATURE_HT))
460 		return;
461 
462 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
463 		goto out;
464 
465 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
466 		return;
467 
468 	cpuid(1, &eax, &ebx, &ecx, &edx);
469 
470 	smp_num_siblings = (ebx & 0xff0000) >> 16;
471 
472 	if (smp_num_siblings == 1) {
473 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
474 		goto out;
475 	}
476 
477 	if (smp_num_siblings <= 1)
478 		goto out;
479 
480 	if (smp_num_siblings > nr_cpu_ids) {
481 		pr_warning("CPU: Unsupported number of siblings %d",
482 			   smp_num_siblings);
483 		smp_num_siblings = 1;
484 		return;
485 	}
486 
487 	index_msb = get_count_order(smp_num_siblings);
488 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
489 
490 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
491 
492 	index_msb = get_count_order(smp_num_siblings);
493 
494 	core_bits = get_count_order(c->x86_max_cores);
495 
496 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
497 				       ((1 << core_bits) - 1);
498 
499 out:
500 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
501 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
502 		       c->phys_proc_id);
503 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
504 		       c->cpu_core_id);
505 		printed = 1;
506 	}
507 #endif
508 }
509 
510 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
511 {
512 	char *v = c->x86_vendor_id;
513 	int i;
514 
515 	for (i = 0; i < X86_VENDOR_NUM; i++) {
516 		if (!cpu_devs[i])
517 			break;
518 
519 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
520 		    (cpu_devs[i]->c_ident[1] &&
521 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
522 
523 			this_cpu = cpu_devs[i];
524 			c->x86_vendor = this_cpu->c_x86_vendor;
525 			return;
526 		}
527 	}
528 
529 	printk_once(KERN_ERR
530 			"CPU: vendor_id '%s' unknown, using generic init.\n" \
531 			"CPU: Your system may be unstable.\n", v);
532 
533 	c->x86_vendor = X86_VENDOR_UNKNOWN;
534 	this_cpu = &default_cpu;
535 }
536 
537 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
538 {
539 	/* Get vendor name */
540 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
541 	      (unsigned int *)&c->x86_vendor_id[0],
542 	      (unsigned int *)&c->x86_vendor_id[8],
543 	      (unsigned int *)&c->x86_vendor_id[4]);
544 
545 	c->x86 = 4;
546 	/* Intel-defined flags: level 0x00000001 */
547 	if (c->cpuid_level >= 0x00000001) {
548 		u32 junk, tfms, cap0, misc;
549 
550 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
551 		c->x86 = (tfms >> 8) & 0xf;
552 		c->x86_model = (tfms >> 4) & 0xf;
553 		c->x86_mask = tfms & 0xf;
554 
555 		if (c->x86 == 0xf)
556 			c->x86 += (tfms >> 20) & 0xff;
557 		if (c->x86 >= 0x6)
558 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
559 
560 		if (cap0 & (1<<19)) {
561 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
562 			c->x86_cache_alignment = c->x86_clflush_size;
563 		}
564 	}
565 }
566 
567 void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
568 {
569 	u32 tfms, xlvl;
570 	u32 ebx;
571 
572 	/* Intel-defined flags: level 0x00000001 */
573 	if (c->cpuid_level >= 0x00000001) {
574 		u32 capability, excap;
575 
576 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
577 		c->x86_capability[0] = capability;
578 		c->x86_capability[4] = excap;
579 	}
580 
581 	/* Additional Intel-defined flags: level 0x00000007 */
582 	if (c->cpuid_level >= 0x00000007) {
583 		u32 eax, ebx, ecx, edx;
584 
585 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
586 
587 		c->x86_capability[9] = ebx;
588 	}
589 
590 	/* AMD-defined flags: level 0x80000001 */
591 	xlvl = cpuid_eax(0x80000000);
592 	c->extended_cpuid_level = xlvl;
593 
594 	if ((xlvl & 0xffff0000) == 0x80000000) {
595 		if (xlvl >= 0x80000001) {
596 			c->x86_capability[1] = cpuid_edx(0x80000001);
597 			c->x86_capability[6] = cpuid_ecx(0x80000001);
598 		}
599 	}
600 
601 	if (c->extended_cpuid_level >= 0x80000008) {
602 		u32 eax = cpuid_eax(0x80000008);
603 
604 		c->x86_virt_bits = (eax >> 8) & 0xff;
605 		c->x86_phys_bits = eax & 0xff;
606 	}
607 #ifdef CONFIG_X86_32
608 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
609 		c->x86_phys_bits = 36;
610 #endif
611 
612 	if (c->extended_cpuid_level >= 0x80000007)
613 		c->x86_power = cpuid_edx(0x80000007);
614 
615 	init_scattered_cpuid_features(c);
616 }
617 
618 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
619 {
620 #ifdef CONFIG_X86_32
621 	int i;
622 
623 	/*
624 	 * First of all, decide if this is a 486 or higher
625 	 * It's a 486 if we can modify the AC flag
626 	 */
627 	if (flag_is_changeable_p(X86_EFLAGS_AC))
628 		c->x86 = 4;
629 	else
630 		c->x86 = 3;
631 
632 	for (i = 0; i < X86_VENDOR_NUM; i++)
633 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
634 			c->x86_vendor_id[0] = 0;
635 			cpu_devs[i]->c_identify(c);
636 			if (c->x86_vendor_id[0]) {
637 				get_cpu_vendor(c);
638 				break;
639 			}
640 		}
641 #endif
642 }
643 
644 /*
645  * Do minimum CPU detection early.
646  * Fields really needed: vendor, cpuid_level, family, model, mask,
647  * cache alignment.
648  * The others are not touched to avoid unwanted side effects.
649  *
650  * WARNING: this function is only called on the BP.  Don't add code here
651  * that is supposed to run on all CPUs.
652  */
653 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
654 {
655 #ifdef CONFIG_X86_64
656 	c->x86_clflush_size = 64;
657 	c->x86_phys_bits = 36;
658 	c->x86_virt_bits = 48;
659 #else
660 	c->x86_clflush_size = 32;
661 	c->x86_phys_bits = 32;
662 	c->x86_virt_bits = 32;
663 #endif
664 	c->x86_cache_alignment = c->x86_clflush_size;
665 
666 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
667 	c->extended_cpuid_level = 0;
668 
669 	if (!have_cpuid_p())
670 		identify_cpu_without_cpuid(c);
671 
672 	/* cyrix could have cpuid enabled via c_identify()*/
673 	if (!have_cpuid_p())
674 		return;
675 
676 	cpu_detect(c);
677 
678 	get_cpu_vendor(c);
679 
680 	get_cpu_cap(c);
681 
682 	if (this_cpu->c_early_init)
683 		this_cpu->c_early_init(c);
684 
685 #ifdef CONFIG_SMP
686 	c->cpu_index = 0;
687 #endif
688 	filter_cpuid_features(c, false);
689 
690 	setup_smep(c);
691 }
692 
693 void __init early_cpu_init(void)
694 {
695 	const struct cpu_dev *const *cdev;
696 	int count = 0;
697 
698 #ifdef CONFIG_PROCESSOR_SELECT
699 	printk(KERN_INFO "KERNEL supported cpus:\n");
700 #endif
701 
702 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
703 		const struct cpu_dev *cpudev = *cdev;
704 
705 		if (count >= X86_VENDOR_NUM)
706 			break;
707 		cpu_devs[count] = cpudev;
708 		count++;
709 
710 #ifdef CONFIG_PROCESSOR_SELECT
711 		{
712 			unsigned int j;
713 
714 			for (j = 0; j < 2; j++) {
715 				if (!cpudev->c_ident[j])
716 					continue;
717 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
718 					cpudev->c_ident[j]);
719 			}
720 		}
721 #endif
722 	}
723 	early_identify_cpu(&boot_cpu_data);
724 }
725 
726 /*
727  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
728  * unfortunately, that's not true in practice because of early VIA
729  * chips and (more importantly) broken virtualizers that are not easy
730  * to detect. In the latter case it doesn't even *fail* reliably, so
731  * probing for it doesn't even work. Disable it completely on 32-bit
732  * unless we can find a reliable way to detect all the broken cases.
733  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
734  */
735 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
736 {
737 #ifdef CONFIG_X86_32
738 	clear_cpu_cap(c, X86_FEATURE_NOPL);
739 #else
740 	set_cpu_cap(c, X86_FEATURE_NOPL);
741 #endif
742 }
743 
744 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
745 {
746 	c->extended_cpuid_level = 0;
747 
748 	if (!have_cpuid_p())
749 		identify_cpu_without_cpuid(c);
750 
751 	/* cyrix could have cpuid enabled via c_identify()*/
752 	if (!have_cpuid_p())
753 		return;
754 
755 	cpu_detect(c);
756 
757 	get_cpu_vendor(c);
758 
759 	get_cpu_cap(c);
760 
761 	if (c->cpuid_level >= 0x00000001) {
762 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
763 #ifdef CONFIG_X86_32
764 # ifdef CONFIG_X86_HT
765 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
766 # else
767 		c->apicid = c->initial_apicid;
768 # endif
769 #endif
770 
771 #ifdef CONFIG_X86_HT
772 		c->phys_proc_id = c->initial_apicid;
773 #endif
774 	}
775 
776 	setup_smep(c);
777 
778 	get_model_name(c); /* Default name */
779 
780 	detect_nopl(c);
781 }
782 
783 /*
784  * This does the hard work of actually picking apart the CPU stuff...
785  */
786 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
787 {
788 	int i;
789 
790 	c->loops_per_jiffy = loops_per_jiffy;
791 	c->x86_cache_size = -1;
792 	c->x86_vendor = X86_VENDOR_UNKNOWN;
793 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
794 	c->x86_vendor_id[0] = '\0'; /* Unset */
795 	c->x86_model_id[0] = '\0';  /* Unset */
796 	c->x86_max_cores = 1;
797 	c->x86_coreid_bits = 0;
798 #ifdef CONFIG_X86_64
799 	c->x86_clflush_size = 64;
800 	c->x86_phys_bits = 36;
801 	c->x86_virt_bits = 48;
802 #else
803 	c->cpuid_level = -1;	/* CPUID not detected */
804 	c->x86_clflush_size = 32;
805 	c->x86_phys_bits = 32;
806 	c->x86_virt_bits = 32;
807 #endif
808 	c->x86_cache_alignment = c->x86_clflush_size;
809 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
810 
811 	generic_identify(c);
812 
813 	if (this_cpu->c_identify)
814 		this_cpu->c_identify(c);
815 
816 	/* Clear/Set all flags overriden by options, after probe */
817 	for (i = 0; i < NCAPINTS; i++) {
818 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
819 		c->x86_capability[i] |= cpu_caps_set[i];
820 	}
821 
822 #ifdef CONFIG_X86_64
823 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
824 #endif
825 
826 	/*
827 	 * Vendor-specific initialization.  In this section we
828 	 * canonicalize the feature flags, meaning if there are
829 	 * features a certain CPU supports which CPUID doesn't
830 	 * tell us, CPUID claiming incorrect flags, or other bugs,
831 	 * we handle them here.
832 	 *
833 	 * At the end of this section, c->x86_capability better
834 	 * indicate the features this CPU genuinely supports!
835 	 */
836 	if (this_cpu->c_init)
837 		this_cpu->c_init(c);
838 
839 	/* Disable the PN if appropriate */
840 	squash_the_stupid_serial_number(c);
841 
842 	/*
843 	 * The vendor-specific functions might have changed features.
844 	 * Now we do "generic changes."
845 	 */
846 
847 	/* Filter out anything that depends on CPUID levels we don't have */
848 	filter_cpuid_features(c, true);
849 
850 	/* If the model name is still unset, do table lookup. */
851 	if (!c->x86_model_id[0]) {
852 		const char *p;
853 		p = table_lookup_model(c);
854 		if (p)
855 			strcpy(c->x86_model_id, p);
856 		else
857 			/* Last resort... */
858 			sprintf(c->x86_model_id, "%02x/%02x",
859 				c->x86, c->x86_model);
860 	}
861 
862 #ifdef CONFIG_X86_64
863 	detect_ht(c);
864 #endif
865 
866 	init_hypervisor(c);
867 
868 	/*
869 	 * Clear/Set all flags overriden by options, need do it
870 	 * before following smp all cpus cap AND.
871 	 */
872 	for (i = 0; i < NCAPINTS; i++) {
873 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
874 		c->x86_capability[i] |= cpu_caps_set[i];
875 	}
876 
877 	/*
878 	 * On SMP, boot_cpu_data holds the common feature set between
879 	 * all CPUs; so make sure that we indicate which features are
880 	 * common between the CPUs.  The first time this routine gets
881 	 * executed, c == &boot_cpu_data.
882 	 */
883 	if (c != &boot_cpu_data) {
884 		/* AND the already accumulated flags with these */
885 		for (i = 0; i < NCAPINTS; i++)
886 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
887 	}
888 
889 	/* Init Machine Check Exception if available. */
890 	mcheck_cpu_init(c);
891 
892 	select_idle_routine(c);
893 
894 #ifdef CONFIG_NUMA
895 	numa_add_cpu(smp_processor_id());
896 #endif
897 }
898 
899 #ifdef CONFIG_X86_64
900 static void vgetcpu_set_mode(void)
901 {
902 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
903 		vgetcpu_mode = VGETCPU_RDTSCP;
904 	else
905 		vgetcpu_mode = VGETCPU_LSL;
906 }
907 #endif
908 
909 void __init identify_boot_cpu(void)
910 {
911 	identify_cpu(&boot_cpu_data);
912 	init_c1e_mask();
913 #ifdef CONFIG_X86_32
914 	sysenter_setup();
915 	enable_sep_cpu();
916 #else
917 	vgetcpu_set_mode();
918 #endif
919 }
920 
921 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
922 {
923 	BUG_ON(c == &boot_cpu_data);
924 	identify_cpu(c);
925 #ifdef CONFIG_X86_32
926 	enable_sep_cpu();
927 #endif
928 	mtrr_ap_init();
929 }
930 
931 struct msr_range {
932 	unsigned	min;
933 	unsigned	max;
934 };
935 
936 static const struct msr_range msr_range_array[] __cpuinitconst = {
937 	{ 0x00000000, 0x00000418},
938 	{ 0xc0000000, 0xc000040b},
939 	{ 0xc0010000, 0xc0010142},
940 	{ 0xc0011000, 0xc001103b},
941 };
942 
943 static void __cpuinit print_cpu_msr(void)
944 {
945 	unsigned index_min, index_max;
946 	unsigned index;
947 	u64 val;
948 	int i;
949 
950 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
951 		index_min = msr_range_array[i].min;
952 		index_max = msr_range_array[i].max;
953 
954 		for (index = index_min; index < index_max; index++) {
955 			if (rdmsrl_amd_safe(index, &val))
956 				continue;
957 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
958 		}
959 	}
960 }
961 
962 static int show_msr __cpuinitdata;
963 
964 static __init int setup_show_msr(char *arg)
965 {
966 	int num;
967 
968 	get_option(&arg, &num);
969 
970 	if (num > 0)
971 		show_msr = num;
972 	return 1;
973 }
974 __setup("show_msr=", setup_show_msr);
975 
976 static __init int setup_noclflush(char *arg)
977 {
978 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
979 	return 1;
980 }
981 __setup("noclflush", setup_noclflush);
982 
983 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
984 {
985 	const char *vendor = NULL;
986 
987 	if (c->x86_vendor < X86_VENDOR_NUM) {
988 		vendor = this_cpu->c_vendor;
989 	} else {
990 		if (c->cpuid_level >= 0)
991 			vendor = c->x86_vendor_id;
992 	}
993 
994 	if (vendor && !strstr(c->x86_model_id, vendor))
995 		printk(KERN_CONT "%s ", vendor);
996 
997 	if (c->x86_model_id[0])
998 		printk(KERN_CONT "%s", c->x86_model_id);
999 	else
1000 		printk(KERN_CONT "%d86", c->x86);
1001 
1002 	if (c->x86_mask || c->cpuid_level >= 0)
1003 		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1004 	else
1005 		printk(KERN_CONT "\n");
1006 
1007 #ifdef CONFIG_SMP
1008 	if (c->cpu_index < show_msr)
1009 		print_cpu_msr();
1010 #else
1011 	if (show_msr)
1012 		print_cpu_msr();
1013 #endif
1014 }
1015 
1016 static __init int setup_disablecpuid(char *arg)
1017 {
1018 	int bit;
1019 
1020 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1021 		setup_clear_cpu_cap(bit);
1022 	else
1023 		return 0;
1024 
1025 	return 1;
1026 }
1027 __setup("clearcpuid=", setup_disablecpuid);
1028 
1029 #ifdef CONFIG_X86_64
1030 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1031 
1032 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1033 		     irq_stack_union) __aligned(PAGE_SIZE);
1034 
1035 /*
1036  * The following four percpu variables are hot.  Align current_task to
1037  * cacheline size such that all four fall in the same cacheline.
1038  */
1039 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1040 	&init_task;
1041 EXPORT_PER_CPU_SYMBOL(current_task);
1042 
1043 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1044 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1045 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1046 
1047 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1048 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1049 
1050 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1051 
1052 /*
1053  * Special IST stacks which the CPU switches to when it calls
1054  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1055  * limit), all of them are 4K, except the debug stack which
1056  * is 8K.
1057  */
1058 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1059 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1060 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1061 };
1062 
1063 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1064 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1065 
1066 /* May not be marked __init: used by software suspend */
1067 void syscall_init(void)
1068 {
1069 	/*
1070 	 * LSTAR and STAR live in a bit strange symbiosis.
1071 	 * They both write to the same internal register. STAR allows to
1072 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1073 	 */
1074 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1075 	wrmsrl(MSR_LSTAR, system_call);
1076 	wrmsrl(MSR_CSTAR, ignore_sysret);
1077 
1078 #ifdef CONFIG_IA32_EMULATION
1079 	syscall32_cpu_init();
1080 #endif
1081 
1082 	/* Flags to clear on syscall */
1083 	wrmsrl(MSR_SYSCALL_MASK,
1084 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1085 }
1086 
1087 unsigned long kernel_eflags;
1088 
1089 /*
1090  * Copies of the original ist values from the tss are only accessed during
1091  * debugging, no special alignment required.
1092  */
1093 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1094 
1095 #else	/* CONFIG_X86_64 */
1096 
1097 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1098 EXPORT_PER_CPU_SYMBOL(current_task);
1099 
1100 #ifdef CONFIG_CC_STACKPROTECTOR
1101 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1102 #endif
1103 
1104 /* Make sure %fs and %gs are initialized properly in idle threads */
1105 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1106 {
1107 	memset(regs, 0, sizeof(struct pt_regs));
1108 	regs->fs = __KERNEL_PERCPU;
1109 	regs->gs = __KERNEL_STACK_CANARY;
1110 
1111 	return regs;
1112 }
1113 #endif	/* CONFIG_X86_64 */
1114 
1115 /*
1116  * Clear all 6 debug registers:
1117  */
1118 static void clear_all_debug_regs(void)
1119 {
1120 	int i;
1121 
1122 	for (i = 0; i < 8; i++) {
1123 		/* Ignore db4, db5 */
1124 		if ((i == 4) || (i == 5))
1125 			continue;
1126 
1127 		set_debugreg(0, i);
1128 	}
1129 }
1130 
1131 #ifdef CONFIG_KGDB
1132 /*
1133  * Restore debug regs if using kgdbwait and you have a kernel debugger
1134  * connection established.
1135  */
1136 static void dbg_restore_debug_regs(void)
1137 {
1138 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1139 		arch_kgdb_ops.correct_hw_break();
1140 }
1141 #else /* ! CONFIG_KGDB */
1142 #define dbg_restore_debug_regs()
1143 #endif /* ! CONFIG_KGDB */
1144 
1145 /*
1146  * cpu_init() initializes state that is per-CPU. Some data is already
1147  * initialized (naturally) in the bootstrap process, such as the GDT
1148  * and IDT. We reload them nevertheless, this function acts as a
1149  * 'CPU state barrier', nothing should get across.
1150  * A lot of state is already set up in PDA init for 64 bit
1151  */
1152 #ifdef CONFIG_X86_64
1153 
1154 void __cpuinit cpu_init(void)
1155 {
1156 	struct orig_ist *oist;
1157 	struct task_struct *me;
1158 	struct tss_struct *t;
1159 	unsigned long v;
1160 	int cpu;
1161 	int i;
1162 
1163 	cpu = stack_smp_processor_id();
1164 	t = &per_cpu(init_tss, cpu);
1165 	oist = &per_cpu(orig_ist, cpu);
1166 
1167 #ifdef CONFIG_NUMA
1168 	if (cpu != 0 && percpu_read(numa_node) == 0 &&
1169 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1170 		set_numa_node(early_cpu_to_node(cpu));
1171 #endif
1172 
1173 	me = current;
1174 
1175 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1176 		panic("CPU#%d already initialized!\n", cpu);
1177 
1178 	pr_debug("Initializing CPU#%d\n", cpu);
1179 
1180 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1181 
1182 	/*
1183 	 * Initialize the per-CPU GDT with the boot GDT,
1184 	 * and set up the GDT descriptor:
1185 	 */
1186 
1187 	switch_to_new_gdt(cpu);
1188 	loadsegment(fs, 0);
1189 
1190 	load_idt((const struct desc_ptr *)&idt_descr);
1191 
1192 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1193 	syscall_init();
1194 
1195 	wrmsrl(MSR_FS_BASE, 0);
1196 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1197 	barrier();
1198 
1199 	x86_configure_nx();
1200 	if (cpu != 0)
1201 		enable_x2apic();
1202 
1203 	/*
1204 	 * set up and load the per-CPU TSS
1205 	 */
1206 	if (!oist->ist[0]) {
1207 		char *estacks = per_cpu(exception_stacks, cpu);
1208 
1209 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1210 			estacks += exception_stack_sizes[v];
1211 			oist->ist[v] = t->x86_tss.ist[v] =
1212 					(unsigned long)estacks;
1213 		}
1214 	}
1215 
1216 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1217 
1218 	/*
1219 	 * <= is required because the CPU will access up to
1220 	 * 8 bits beyond the end of the IO permission bitmap.
1221 	 */
1222 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1223 		t->io_bitmap[i] = ~0UL;
1224 
1225 	atomic_inc(&init_mm.mm_count);
1226 	me->active_mm = &init_mm;
1227 	BUG_ON(me->mm);
1228 	enter_lazy_tlb(&init_mm, me);
1229 
1230 	load_sp0(t, &current->thread);
1231 	set_tss_desc(cpu, t);
1232 	load_TR_desc();
1233 	load_LDT(&init_mm.context);
1234 
1235 	clear_all_debug_regs();
1236 	dbg_restore_debug_regs();
1237 
1238 	fpu_init();
1239 	xsave_init();
1240 
1241 	raw_local_save_flags(kernel_eflags);
1242 
1243 	if (is_uv_system())
1244 		uv_cpu_init();
1245 }
1246 
1247 #else
1248 
1249 void __cpuinit cpu_init(void)
1250 {
1251 	int cpu = smp_processor_id();
1252 	struct task_struct *curr = current;
1253 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1254 	struct thread_struct *thread = &curr->thread;
1255 
1256 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1257 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1258 		for (;;)
1259 			local_irq_enable();
1260 	}
1261 
1262 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1263 
1264 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1265 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1266 
1267 	load_idt(&idt_descr);
1268 	switch_to_new_gdt(cpu);
1269 
1270 	/*
1271 	 * Set up and load the per-CPU TSS and LDT
1272 	 */
1273 	atomic_inc(&init_mm.mm_count);
1274 	curr->active_mm = &init_mm;
1275 	BUG_ON(curr->mm);
1276 	enter_lazy_tlb(&init_mm, curr);
1277 
1278 	load_sp0(t, thread);
1279 	set_tss_desc(cpu, t);
1280 	load_TR_desc();
1281 	load_LDT(&init_mm.context);
1282 
1283 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1284 
1285 #ifdef CONFIG_DOUBLEFAULT
1286 	/* Set up doublefault TSS pointer in the GDT */
1287 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1288 #endif
1289 
1290 	clear_all_debug_regs();
1291 	dbg_restore_debug_regs();
1292 
1293 	fpu_init();
1294 	xsave_init();
1295 }
1296 #endif
1297