xref: /linux/arch/x86/kernel/cpu/common.c (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62 #include <asm/traps.h>
63 
64 #include "cpu.h"
65 
66 u32 elf_hwcap2 __read_mostly;
67 
68 /* all of these masks are initialized in setup_cpu_local_masks() */
69 cpumask_var_t cpu_initialized_mask;
70 cpumask_var_t cpu_callout_mask;
71 cpumask_var_t cpu_callin_mask;
72 
73 /* representing cpus for which sibling maps can be computed */
74 cpumask_var_t cpu_sibling_setup_mask;
75 
76 /* Number of siblings per CPU package */
77 int smp_num_siblings = 1;
78 EXPORT_SYMBOL(smp_num_siblings);
79 
80 /* Last level cache ID of each logical CPU */
81 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
82 
83 u16 get_llc_id(unsigned int cpu)
84 {
85 	return per_cpu(cpu_llc_id, cpu);
86 }
87 EXPORT_SYMBOL_GPL(get_llc_id);
88 
89 /* L2 cache ID of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
91 
92 static struct ppin_info {
93 	int	feature;
94 	int	msr_ppin_ctl;
95 	int	msr_ppin;
96 } ppin_info[] = {
97 	[X86_VENDOR_INTEL] = {
98 		.feature = X86_FEATURE_INTEL_PPIN,
99 		.msr_ppin_ctl = MSR_PPIN_CTL,
100 		.msr_ppin = MSR_PPIN
101 	},
102 	[X86_VENDOR_AMD] = {
103 		.feature = X86_FEATURE_AMD_PPIN,
104 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
105 		.msr_ppin = MSR_AMD_PPIN
106 	},
107 };
108 
109 static const struct x86_cpu_id ppin_cpuids[] = {
110 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
111 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
112 
113 	/* Legacy models without CPUID enumeration */
114 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
115 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
116 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
117 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
118 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
119 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
120 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
121 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
122 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
123 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
124 
125 	{}
126 };
127 
128 static void ppin_init(struct cpuinfo_x86 *c)
129 {
130 	const struct x86_cpu_id *id;
131 	unsigned long long val;
132 	struct ppin_info *info;
133 
134 	id = x86_match_cpu(ppin_cpuids);
135 	if (!id)
136 		return;
137 
138 	/*
139 	 * Testing the presence of the MSR is not enough. Need to check
140 	 * that the PPIN_CTL allows reading of the PPIN.
141 	 */
142 	info = (struct ppin_info *)id->driver_data;
143 
144 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
145 		goto clear_ppin;
146 
147 	if ((val & 3UL) == 1UL) {
148 		/* PPIN locked in disabled mode */
149 		goto clear_ppin;
150 	}
151 
152 	/* If PPIN is disabled, try to enable */
153 	if (!(val & 2UL)) {
154 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
155 		rdmsrl_safe(info->msr_ppin_ctl, &val);
156 	}
157 
158 	/* Is the enable bit set? */
159 	if (val & 2UL) {
160 		c->ppin = __rdmsr(info->msr_ppin);
161 		set_cpu_cap(c, info->feature);
162 		return;
163 	}
164 
165 clear_ppin:
166 	clear_cpu_cap(c, info->feature);
167 }
168 
169 /* correctly size the local cpu masks */
170 void __init setup_cpu_local_masks(void)
171 {
172 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
173 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
174 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
175 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
176 }
177 
178 static void default_init(struct cpuinfo_x86 *c)
179 {
180 #ifdef CONFIG_X86_64
181 	cpu_detect_cache_sizes(c);
182 #else
183 	/* Not much we can do here... */
184 	/* Check if at least it has cpuid */
185 	if (c->cpuid_level == -1) {
186 		/* No cpuid. It must be an ancient CPU */
187 		if (c->x86 == 4)
188 			strcpy(c->x86_model_id, "486");
189 		else if (c->x86 == 3)
190 			strcpy(c->x86_model_id, "386");
191 	}
192 #endif
193 }
194 
195 static const struct cpu_dev default_cpu = {
196 	.c_init		= default_init,
197 	.c_vendor	= "Unknown",
198 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
199 };
200 
201 static const struct cpu_dev *this_cpu = &default_cpu;
202 
203 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
204 #ifdef CONFIG_X86_64
205 	/*
206 	 * We need valid kernel segments for data and code in long mode too
207 	 * IRET will check the segment types  kkeil 2000/10/28
208 	 * Also sysret mandates a special GDT layout
209 	 *
210 	 * TLS descriptors are currently at a different place compared to i386.
211 	 * Hopefully nobody expects them at a fixed place (Wine?)
212 	 */
213 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
214 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
215 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
216 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
217 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
218 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
219 #else
220 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
221 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
222 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
223 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
224 	/*
225 	 * Segments used for calling PnP BIOS have byte granularity.
226 	 * They code segments and data segments have fixed 64k limits,
227 	 * the transfer segment sizes are set at run time.
228 	 */
229 	/* 32-bit code */
230 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
231 	/* 16-bit code */
232 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
233 	/* 16-bit data */
234 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
235 	/* 16-bit data */
236 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
237 	/* 16-bit data */
238 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
239 	/*
240 	 * The APM segments have byte granularity and their bases
241 	 * are set at run time.  All have 64k limits.
242 	 */
243 	/* 32-bit code */
244 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
245 	/* 16-bit code */
246 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
247 	/* data */
248 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
249 
250 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
251 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
252 #endif
253 } };
254 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
255 
256 #ifdef CONFIG_X86_64
257 static int __init x86_nopcid_setup(char *s)
258 {
259 	/* nopcid doesn't accept parameters */
260 	if (s)
261 		return -EINVAL;
262 
263 	/* do not emit a message if the feature is not present */
264 	if (!boot_cpu_has(X86_FEATURE_PCID))
265 		return 0;
266 
267 	setup_clear_cpu_cap(X86_FEATURE_PCID);
268 	pr_info("nopcid: PCID feature disabled\n");
269 	return 0;
270 }
271 early_param("nopcid", x86_nopcid_setup);
272 #endif
273 
274 static int __init x86_noinvpcid_setup(char *s)
275 {
276 	/* noinvpcid doesn't accept parameters */
277 	if (s)
278 		return -EINVAL;
279 
280 	/* do not emit a message if the feature is not present */
281 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
282 		return 0;
283 
284 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
285 	pr_info("noinvpcid: INVPCID feature disabled\n");
286 	return 0;
287 }
288 early_param("noinvpcid", x86_noinvpcid_setup);
289 
290 #ifdef CONFIG_X86_32
291 static int cachesize_override = -1;
292 static int disable_x86_serial_nr = 1;
293 
294 static int __init cachesize_setup(char *str)
295 {
296 	get_option(&str, &cachesize_override);
297 	return 1;
298 }
299 __setup("cachesize=", cachesize_setup);
300 
301 static int __init x86_sep_setup(char *s)
302 {
303 	setup_clear_cpu_cap(X86_FEATURE_SEP);
304 	return 1;
305 }
306 __setup("nosep", x86_sep_setup);
307 
308 /* Standard macro to see if a specific flag is changeable */
309 static inline int flag_is_changeable_p(u32 flag)
310 {
311 	u32 f1, f2;
312 
313 	/*
314 	 * Cyrix and IDT cpus allow disabling of CPUID
315 	 * so the code below may return different results
316 	 * when it is executed before and after enabling
317 	 * the CPUID. Add "volatile" to not allow gcc to
318 	 * optimize the subsequent calls to this function.
319 	 */
320 	asm volatile ("pushfl		\n\t"
321 		      "pushfl		\n\t"
322 		      "popl %0		\n\t"
323 		      "movl %0, %1	\n\t"
324 		      "xorl %2, %0	\n\t"
325 		      "pushl %0		\n\t"
326 		      "popfl		\n\t"
327 		      "pushfl		\n\t"
328 		      "popl %0		\n\t"
329 		      "popfl		\n\t"
330 
331 		      : "=&r" (f1), "=&r" (f2)
332 		      : "ir" (flag));
333 
334 	return ((f1^f2) & flag) != 0;
335 }
336 
337 /* Probe for the CPUID instruction */
338 int have_cpuid_p(void)
339 {
340 	return flag_is_changeable_p(X86_EFLAGS_ID);
341 }
342 
343 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
344 {
345 	unsigned long lo, hi;
346 
347 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
348 		return;
349 
350 	/* Disable processor serial number: */
351 
352 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
353 	lo |= 0x200000;
354 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
355 
356 	pr_notice("CPU serial number disabled.\n");
357 	clear_cpu_cap(c, X86_FEATURE_PN);
358 
359 	/* Disabling the serial number may affect the cpuid level */
360 	c->cpuid_level = cpuid_eax(0);
361 }
362 
363 static int __init x86_serial_nr_setup(char *s)
364 {
365 	disable_x86_serial_nr = 0;
366 	return 1;
367 }
368 __setup("serialnumber", x86_serial_nr_setup);
369 #else
370 static inline int flag_is_changeable_p(u32 flag)
371 {
372 	return 1;
373 }
374 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
375 {
376 }
377 #endif
378 
379 static __init int setup_disable_smep(char *arg)
380 {
381 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
382 	return 1;
383 }
384 __setup("nosmep", setup_disable_smep);
385 
386 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
387 {
388 	if (cpu_has(c, X86_FEATURE_SMEP))
389 		cr4_set_bits(X86_CR4_SMEP);
390 }
391 
392 static __init int setup_disable_smap(char *arg)
393 {
394 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
395 	return 1;
396 }
397 __setup("nosmap", setup_disable_smap);
398 
399 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
400 {
401 	unsigned long eflags = native_save_fl();
402 
403 	/* This should have been cleared long ago */
404 	BUG_ON(eflags & X86_EFLAGS_AC);
405 
406 	if (cpu_has(c, X86_FEATURE_SMAP)) {
407 #ifdef CONFIG_X86_SMAP
408 		cr4_set_bits(X86_CR4_SMAP);
409 #else
410 		clear_cpu_cap(c, X86_FEATURE_SMAP);
411 		cr4_clear_bits(X86_CR4_SMAP);
412 #endif
413 	}
414 }
415 
416 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
417 {
418 	/* Check the boot processor, plus build option for UMIP. */
419 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
420 		goto out;
421 
422 	/* Check the current processor's cpuid bits. */
423 	if (!cpu_has(c, X86_FEATURE_UMIP))
424 		goto out;
425 
426 	cr4_set_bits(X86_CR4_UMIP);
427 
428 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
429 
430 	return;
431 
432 out:
433 	/*
434 	 * Make sure UMIP is disabled in case it was enabled in a
435 	 * previous boot (e.g., via kexec).
436 	 */
437 	cr4_clear_bits(X86_CR4_UMIP);
438 }
439 
440 /* These bits should not change their value after CPU init is finished. */
441 static const unsigned long cr4_pinned_mask =
442 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
443 	X86_CR4_FSGSBASE | X86_CR4_CET;
444 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
445 static unsigned long cr4_pinned_bits __ro_after_init;
446 
447 void native_write_cr0(unsigned long val)
448 {
449 	unsigned long bits_missing = 0;
450 
451 set_register:
452 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
453 
454 	if (static_branch_likely(&cr_pinning)) {
455 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
456 			bits_missing = X86_CR0_WP;
457 			val |= bits_missing;
458 			goto set_register;
459 		}
460 		/* Warn after we've set the missing bits. */
461 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
462 	}
463 }
464 EXPORT_SYMBOL(native_write_cr0);
465 
466 void __no_profile native_write_cr4(unsigned long val)
467 {
468 	unsigned long bits_changed = 0;
469 
470 set_register:
471 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
472 
473 	if (static_branch_likely(&cr_pinning)) {
474 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
475 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
476 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
477 			goto set_register;
478 		}
479 		/* Warn after we've corrected the changed bits. */
480 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
481 			  bits_changed);
482 	}
483 }
484 #if IS_MODULE(CONFIG_LKDTM)
485 EXPORT_SYMBOL_GPL(native_write_cr4);
486 #endif
487 
488 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
489 {
490 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
491 
492 	lockdep_assert_irqs_disabled();
493 
494 	newval = (cr4 & ~clear) | set;
495 	if (newval != cr4) {
496 		this_cpu_write(cpu_tlbstate.cr4, newval);
497 		__write_cr4(newval);
498 	}
499 }
500 EXPORT_SYMBOL(cr4_update_irqsoff);
501 
502 /* Read the CR4 shadow. */
503 unsigned long cr4_read_shadow(void)
504 {
505 	return this_cpu_read(cpu_tlbstate.cr4);
506 }
507 EXPORT_SYMBOL_GPL(cr4_read_shadow);
508 
509 void cr4_init(void)
510 {
511 	unsigned long cr4 = __read_cr4();
512 
513 	if (boot_cpu_has(X86_FEATURE_PCID))
514 		cr4 |= X86_CR4_PCIDE;
515 	if (static_branch_likely(&cr_pinning))
516 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
517 
518 	__write_cr4(cr4);
519 
520 	/* Initialize cr4 shadow for this CPU. */
521 	this_cpu_write(cpu_tlbstate.cr4, cr4);
522 }
523 
524 /*
525  * Once CPU feature detection is finished (and boot params have been
526  * parsed), record any of the sensitive CR bits that are set, and
527  * enable CR pinning.
528  */
529 static void __init setup_cr_pinning(void)
530 {
531 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
532 	static_key_enable(&cr_pinning.key);
533 }
534 
535 static __init int x86_nofsgsbase_setup(char *arg)
536 {
537 	/* Require an exact match without trailing characters. */
538 	if (strlen(arg))
539 		return 0;
540 
541 	/* Do not emit a message if the feature is not present. */
542 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
543 		return 1;
544 
545 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
546 	pr_info("FSGSBASE disabled via kernel command line\n");
547 	return 1;
548 }
549 __setup("nofsgsbase", x86_nofsgsbase_setup);
550 
551 /*
552  * Protection Keys are not available in 32-bit mode.
553  */
554 static bool pku_disabled;
555 
556 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
557 {
558 	if (c == &boot_cpu_data) {
559 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
560 			return;
561 		/*
562 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
563 		 * bit to be set.  Enforce it.
564 		 */
565 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
566 
567 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
568 		return;
569 	}
570 
571 	cr4_set_bits(X86_CR4_PKE);
572 	/* Load the default PKRU value */
573 	pkru_write_default();
574 }
575 
576 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
577 static __init int setup_disable_pku(char *arg)
578 {
579 	/*
580 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
581 	 * runtime checks are against OSPKE so clearing the
582 	 * bit does nothing.
583 	 *
584 	 * This way, we will see "pku" in cpuinfo, but not
585 	 * "ospke", which is exactly what we want.  It shows
586 	 * that the CPU has PKU, but the OS has not enabled it.
587 	 * This happens to be exactly how a system would look
588 	 * if we disabled the config option.
589 	 */
590 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
591 	pku_disabled = true;
592 	return 1;
593 }
594 __setup("nopku", setup_disable_pku);
595 #endif /* CONFIG_X86_64 */
596 
597 #ifdef CONFIG_X86_KERNEL_IBT
598 
599 __noendbr u64 ibt_save(void)
600 {
601 	u64 msr = 0;
602 
603 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
604 		rdmsrl(MSR_IA32_S_CET, msr);
605 		wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
606 	}
607 
608 	return msr;
609 }
610 
611 __noendbr void ibt_restore(u64 save)
612 {
613 	u64 msr;
614 
615 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
616 		rdmsrl(MSR_IA32_S_CET, msr);
617 		msr &= ~CET_ENDBR_EN;
618 		msr |= (save & CET_ENDBR_EN);
619 		wrmsrl(MSR_IA32_S_CET, msr);
620 	}
621 }
622 
623 #endif
624 
625 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
626 {
627 	u64 msr = CET_ENDBR_EN;
628 
629 	if (!HAS_KERNEL_IBT ||
630 	    !cpu_feature_enabled(X86_FEATURE_IBT))
631 		return;
632 
633 	wrmsrl(MSR_IA32_S_CET, msr);
634 	cr4_set_bits(X86_CR4_CET);
635 
636 	if (!ibt_selftest()) {
637 		pr_err("IBT selftest: Failed!\n");
638 		setup_clear_cpu_cap(X86_FEATURE_IBT);
639 		return;
640 	}
641 }
642 
643 __noendbr void cet_disable(void)
644 {
645 	if (cpu_feature_enabled(X86_FEATURE_IBT))
646 		wrmsrl(MSR_IA32_S_CET, 0);
647 }
648 
649 /*
650  * Some CPU features depend on higher CPUID levels, which may not always
651  * be available due to CPUID level capping or broken virtualization
652  * software.  Add those features to this table to auto-disable them.
653  */
654 struct cpuid_dependent_feature {
655 	u32 feature;
656 	u32 level;
657 };
658 
659 static const struct cpuid_dependent_feature
660 cpuid_dependent_features[] = {
661 	{ X86_FEATURE_MWAIT,		0x00000005 },
662 	{ X86_FEATURE_DCA,		0x00000009 },
663 	{ X86_FEATURE_XSAVE,		0x0000000d },
664 	{ 0, 0 }
665 };
666 
667 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
668 {
669 	const struct cpuid_dependent_feature *df;
670 
671 	for (df = cpuid_dependent_features; df->feature; df++) {
672 
673 		if (!cpu_has(c, df->feature))
674 			continue;
675 		/*
676 		 * Note: cpuid_level is set to -1 if unavailable, but
677 		 * extended_extended_level is set to 0 if unavailable
678 		 * and the legitimate extended levels are all negative
679 		 * when signed; hence the weird messing around with
680 		 * signs here...
681 		 */
682 		if (!((s32)df->level < 0 ?
683 		     (u32)df->level > (u32)c->extended_cpuid_level :
684 		     (s32)df->level > (s32)c->cpuid_level))
685 			continue;
686 
687 		clear_cpu_cap(c, df->feature);
688 		if (!warn)
689 			continue;
690 
691 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
692 			x86_cap_flag(df->feature), df->level);
693 	}
694 }
695 
696 /*
697  * Naming convention should be: <Name> [(<Codename>)]
698  * This table only is used unless init_<vendor>() below doesn't set it;
699  * in particular, if CPUID levels 0x80000002..4 are supported, this
700  * isn't used
701  */
702 
703 /* Look up CPU names by table lookup. */
704 static const char *table_lookup_model(struct cpuinfo_x86 *c)
705 {
706 #ifdef CONFIG_X86_32
707 	const struct legacy_cpu_model_info *info;
708 
709 	if (c->x86_model >= 16)
710 		return NULL;	/* Range check */
711 
712 	if (!this_cpu)
713 		return NULL;
714 
715 	info = this_cpu->legacy_models;
716 
717 	while (info->family) {
718 		if (info->family == c->x86)
719 			return info->model_names[c->x86_model];
720 		info++;
721 	}
722 #endif
723 	return NULL;		/* Not found */
724 }
725 
726 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
727 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
728 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
729 
730 void load_percpu_segment(int cpu)
731 {
732 #ifdef CONFIG_X86_32
733 	loadsegment(fs, __KERNEL_PERCPU);
734 #else
735 	__loadsegment_simple(gs, 0);
736 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
737 #endif
738 }
739 
740 #ifdef CONFIG_X86_32
741 /* The 32-bit entry code needs to find cpu_entry_area. */
742 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
743 #endif
744 
745 /* Load the original GDT from the per-cpu structure */
746 void load_direct_gdt(int cpu)
747 {
748 	struct desc_ptr gdt_descr;
749 
750 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
751 	gdt_descr.size = GDT_SIZE - 1;
752 	load_gdt(&gdt_descr);
753 }
754 EXPORT_SYMBOL_GPL(load_direct_gdt);
755 
756 /* Load a fixmap remapping of the per-cpu GDT */
757 void load_fixmap_gdt(int cpu)
758 {
759 	struct desc_ptr gdt_descr;
760 
761 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
762 	gdt_descr.size = GDT_SIZE - 1;
763 	load_gdt(&gdt_descr);
764 }
765 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
766 
767 /*
768  * Current gdt points %fs at the "master" per-cpu area: after this,
769  * it's on the real one.
770  */
771 void switch_to_new_gdt(int cpu)
772 {
773 	/* Load the original GDT */
774 	load_direct_gdt(cpu);
775 	/* Reload the per-cpu base */
776 	load_percpu_segment(cpu);
777 }
778 
779 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
780 
781 static void get_model_name(struct cpuinfo_x86 *c)
782 {
783 	unsigned int *v;
784 	char *p, *q, *s;
785 
786 	if (c->extended_cpuid_level < 0x80000004)
787 		return;
788 
789 	v = (unsigned int *)c->x86_model_id;
790 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
791 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
792 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
793 	c->x86_model_id[48] = 0;
794 
795 	/* Trim whitespace */
796 	p = q = s = &c->x86_model_id[0];
797 
798 	while (*p == ' ')
799 		p++;
800 
801 	while (*p) {
802 		/* Note the last non-whitespace index */
803 		if (!isspace(*p))
804 			s = q;
805 
806 		*q++ = *p++;
807 	}
808 
809 	*(s + 1) = '\0';
810 }
811 
812 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
813 {
814 	unsigned int eax, ebx, ecx, edx;
815 
816 	c->x86_max_cores = 1;
817 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
818 		return;
819 
820 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
821 	if (eax & 0x1f)
822 		c->x86_max_cores = (eax >> 26) + 1;
823 }
824 
825 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
826 {
827 	unsigned int n, dummy, ebx, ecx, edx, l2size;
828 
829 	n = c->extended_cpuid_level;
830 
831 	if (n >= 0x80000005) {
832 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
833 		c->x86_cache_size = (ecx>>24) + (edx>>24);
834 #ifdef CONFIG_X86_64
835 		/* On K8 L1 TLB is inclusive, so don't count it */
836 		c->x86_tlbsize = 0;
837 #endif
838 	}
839 
840 	if (n < 0x80000006)	/* Some chips just has a large L1. */
841 		return;
842 
843 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
844 	l2size = ecx >> 16;
845 
846 #ifdef CONFIG_X86_64
847 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
848 #else
849 	/* do processor-specific cache resizing */
850 	if (this_cpu->legacy_cache_size)
851 		l2size = this_cpu->legacy_cache_size(c, l2size);
852 
853 	/* Allow user to override all this if necessary. */
854 	if (cachesize_override != -1)
855 		l2size = cachesize_override;
856 
857 	if (l2size == 0)
858 		return;		/* Again, no L2 cache is possible */
859 #endif
860 
861 	c->x86_cache_size = l2size;
862 }
863 
864 u16 __read_mostly tlb_lli_4k[NR_INFO];
865 u16 __read_mostly tlb_lli_2m[NR_INFO];
866 u16 __read_mostly tlb_lli_4m[NR_INFO];
867 u16 __read_mostly tlb_lld_4k[NR_INFO];
868 u16 __read_mostly tlb_lld_2m[NR_INFO];
869 u16 __read_mostly tlb_lld_4m[NR_INFO];
870 u16 __read_mostly tlb_lld_1g[NR_INFO];
871 
872 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
873 {
874 	if (this_cpu->c_detect_tlb)
875 		this_cpu->c_detect_tlb(c);
876 
877 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
878 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
879 		tlb_lli_4m[ENTRIES]);
880 
881 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
882 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
883 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
884 }
885 
886 int detect_ht_early(struct cpuinfo_x86 *c)
887 {
888 #ifdef CONFIG_SMP
889 	u32 eax, ebx, ecx, edx;
890 
891 	if (!cpu_has(c, X86_FEATURE_HT))
892 		return -1;
893 
894 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
895 		return -1;
896 
897 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
898 		return -1;
899 
900 	cpuid(1, &eax, &ebx, &ecx, &edx);
901 
902 	smp_num_siblings = (ebx & 0xff0000) >> 16;
903 	if (smp_num_siblings == 1)
904 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
905 #endif
906 	return 0;
907 }
908 
909 void detect_ht(struct cpuinfo_x86 *c)
910 {
911 #ifdef CONFIG_SMP
912 	int index_msb, core_bits;
913 
914 	if (detect_ht_early(c) < 0)
915 		return;
916 
917 	index_msb = get_count_order(smp_num_siblings);
918 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
919 
920 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
921 
922 	index_msb = get_count_order(smp_num_siblings);
923 
924 	core_bits = get_count_order(c->x86_max_cores);
925 
926 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
927 				       ((1 << core_bits) - 1);
928 #endif
929 }
930 
931 static void get_cpu_vendor(struct cpuinfo_x86 *c)
932 {
933 	char *v = c->x86_vendor_id;
934 	int i;
935 
936 	for (i = 0; i < X86_VENDOR_NUM; i++) {
937 		if (!cpu_devs[i])
938 			break;
939 
940 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
941 		    (cpu_devs[i]->c_ident[1] &&
942 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
943 
944 			this_cpu = cpu_devs[i];
945 			c->x86_vendor = this_cpu->c_x86_vendor;
946 			return;
947 		}
948 	}
949 
950 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
951 		    "CPU: Your system may be unstable.\n", v);
952 
953 	c->x86_vendor = X86_VENDOR_UNKNOWN;
954 	this_cpu = &default_cpu;
955 }
956 
957 void cpu_detect(struct cpuinfo_x86 *c)
958 {
959 	/* Get vendor name */
960 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
961 	      (unsigned int *)&c->x86_vendor_id[0],
962 	      (unsigned int *)&c->x86_vendor_id[8],
963 	      (unsigned int *)&c->x86_vendor_id[4]);
964 
965 	c->x86 = 4;
966 	/* Intel-defined flags: level 0x00000001 */
967 	if (c->cpuid_level >= 0x00000001) {
968 		u32 junk, tfms, cap0, misc;
969 
970 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
971 		c->x86		= x86_family(tfms);
972 		c->x86_model	= x86_model(tfms);
973 		c->x86_stepping	= x86_stepping(tfms);
974 
975 		if (cap0 & (1<<19)) {
976 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
977 			c->x86_cache_alignment = c->x86_clflush_size;
978 		}
979 	}
980 }
981 
982 static void apply_forced_caps(struct cpuinfo_x86 *c)
983 {
984 	int i;
985 
986 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
987 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
988 		c->x86_capability[i] |= cpu_caps_set[i];
989 	}
990 }
991 
992 static void init_speculation_control(struct cpuinfo_x86 *c)
993 {
994 	/*
995 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
996 	 * and they also have a different bit for STIBP support. Also,
997 	 * a hypervisor might have set the individual AMD bits even on
998 	 * Intel CPUs, for finer-grained selection of what's available.
999 	 */
1000 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
1001 		set_cpu_cap(c, X86_FEATURE_IBRS);
1002 		set_cpu_cap(c, X86_FEATURE_IBPB);
1003 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1004 	}
1005 
1006 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1007 		set_cpu_cap(c, X86_FEATURE_STIBP);
1008 
1009 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1010 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
1011 		set_cpu_cap(c, X86_FEATURE_SSBD);
1012 
1013 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1014 		set_cpu_cap(c, X86_FEATURE_IBRS);
1015 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1016 	}
1017 
1018 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1019 		set_cpu_cap(c, X86_FEATURE_IBPB);
1020 
1021 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1022 		set_cpu_cap(c, X86_FEATURE_STIBP);
1023 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1024 	}
1025 
1026 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1027 		set_cpu_cap(c, X86_FEATURE_SSBD);
1028 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1029 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1030 	}
1031 }
1032 
1033 void get_cpu_cap(struct cpuinfo_x86 *c)
1034 {
1035 	u32 eax, ebx, ecx, edx;
1036 
1037 	/* Intel-defined flags: level 0x00000001 */
1038 	if (c->cpuid_level >= 0x00000001) {
1039 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1040 
1041 		c->x86_capability[CPUID_1_ECX] = ecx;
1042 		c->x86_capability[CPUID_1_EDX] = edx;
1043 	}
1044 
1045 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1046 	if (c->cpuid_level >= 0x00000006)
1047 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1048 
1049 	/* Additional Intel-defined flags: level 0x00000007 */
1050 	if (c->cpuid_level >= 0x00000007) {
1051 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1052 		c->x86_capability[CPUID_7_0_EBX] = ebx;
1053 		c->x86_capability[CPUID_7_ECX] = ecx;
1054 		c->x86_capability[CPUID_7_EDX] = edx;
1055 
1056 		/* Check valid sub-leaf index before accessing it */
1057 		if (eax >= 1) {
1058 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1059 			c->x86_capability[CPUID_7_1_EAX] = eax;
1060 		}
1061 	}
1062 
1063 	/* Extended state features: level 0x0000000d */
1064 	if (c->cpuid_level >= 0x0000000d) {
1065 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1066 
1067 		c->x86_capability[CPUID_D_1_EAX] = eax;
1068 	}
1069 
1070 	/* AMD-defined flags: level 0x80000001 */
1071 	eax = cpuid_eax(0x80000000);
1072 	c->extended_cpuid_level = eax;
1073 
1074 	if ((eax & 0xffff0000) == 0x80000000) {
1075 		if (eax >= 0x80000001) {
1076 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1077 
1078 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1079 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1080 		}
1081 	}
1082 
1083 	if (c->extended_cpuid_level >= 0x80000007) {
1084 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1085 
1086 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1087 		c->x86_power = edx;
1088 	}
1089 
1090 	if (c->extended_cpuid_level >= 0x80000008) {
1091 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1092 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1093 	}
1094 
1095 	if (c->extended_cpuid_level >= 0x8000000a)
1096 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1097 
1098 	if (c->extended_cpuid_level >= 0x8000001f)
1099 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1100 
1101 	init_scattered_cpuid_features(c);
1102 	init_speculation_control(c);
1103 
1104 	/*
1105 	 * Clear/Set all flags overridden by options, after probe.
1106 	 * This needs to happen each time we re-probe, which may happen
1107 	 * several times during CPU initialization.
1108 	 */
1109 	apply_forced_caps(c);
1110 }
1111 
1112 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1113 {
1114 	u32 eax, ebx, ecx, edx;
1115 
1116 	if (c->extended_cpuid_level >= 0x80000008) {
1117 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1118 
1119 		c->x86_virt_bits = (eax >> 8) & 0xff;
1120 		c->x86_phys_bits = eax & 0xff;
1121 	}
1122 #ifdef CONFIG_X86_32
1123 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1124 		c->x86_phys_bits = 36;
1125 #endif
1126 	c->x86_cache_bits = c->x86_phys_bits;
1127 }
1128 
1129 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1130 {
1131 #ifdef CONFIG_X86_32
1132 	int i;
1133 
1134 	/*
1135 	 * First of all, decide if this is a 486 or higher
1136 	 * It's a 486 if we can modify the AC flag
1137 	 */
1138 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1139 		c->x86 = 4;
1140 	else
1141 		c->x86 = 3;
1142 
1143 	for (i = 0; i < X86_VENDOR_NUM; i++)
1144 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1145 			c->x86_vendor_id[0] = 0;
1146 			cpu_devs[i]->c_identify(c);
1147 			if (c->x86_vendor_id[0]) {
1148 				get_cpu_vendor(c);
1149 				break;
1150 			}
1151 		}
1152 #endif
1153 }
1154 
1155 #define NO_SPECULATION		BIT(0)
1156 #define NO_MELTDOWN		BIT(1)
1157 #define NO_SSB			BIT(2)
1158 #define NO_L1TF			BIT(3)
1159 #define NO_MDS			BIT(4)
1160 #define MSBDS_ONLY		BIT(5)
1161 #define NO_SWAPGS		BIT(6)
1162 #define NO_ITLB_MULTIHIT	BIT(7)
1163 #define NO_SPECTRE_V2		BIT(8)
1164 
1165 #define VULNWL(vendor, family, model, whitelist)	\
1166 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1167 
1168 #define VULNWL_INTEL(model, whitelist)		\
1169 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1170 
1171 #define VULNWL_AMD(family, whitelist)		\
1172 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1173 
1174 #define VULNWL_HYGON(family, whitelist)		\
1175 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1176 
1177 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1178 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1179 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1180 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1181 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1182 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1183 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1184 
1185 	/* Intel Family 6 */
1186 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1187 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1188 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1189 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1190 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1191 
1192 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1193 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1194 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1197 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1198 
1199 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1200 
1201 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 
1204 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1206 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207 
1208 	/*
1209 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1210 	 * being documented as such in the APM).  But according to AMD, %gs is
1211 	 * updated non-speculatively, and the issuing of %gs-relative memory
1212 	 * operands will be blocked until the %gs update completes, which is
1213 	 * good enough for our purposes.
1214 	 */
1215 
1216 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
1217 
1218 	/* AMD Family 0xf - 0x12 */
1219 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1220 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1221 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1222 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1223 
1224 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1225 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1226 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1227 
1228 	/* Zhaoxin Family 7 */
1229 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1230 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1231 	{}
1232 };
1233 
1234 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1235 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1236 					    INTEL_FAM6_##model, steppings, \
1237 					    X86_FEATURE_ANY, issues)
1238 
1239 #define SRBDS		BIT(0)
1240 
1241 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1242 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1243 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1244 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1245 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1246 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1247 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1248 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS),
1249 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS),
1250 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x0, 0xC),	SRBDS),
1251 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x0, 0xD),	SRBDS),
1252 	{}
1253 };
1254 
1255 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1256 {
1257 	const struct x86_cpu_id *m = x86_match_cpu(table);
1258 
1259 	return m && !!(m->driver_data & which);
1260 }
1261 
1262 u64 x86_read_arch_cap_msr(void)
1263 {
1264 	u64 ia32_cap = 0;
1265 
1266 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1267 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1268 
1269 	return ia32_cap;
1270 }
1271 
1272 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1273 {
1274 	u64 ia32_cap = x86_read_arch_cap_msr();
1275 
1276 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1277 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1278 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1279 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1280 
1281 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1282 		return;
1283 
1284 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1285 
1286 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1287 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1288 
1289 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1290 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1291 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1292 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1293 
1294 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1295 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1296 
1297 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1298 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1299 		setup_force_cpu_bug(X86_BUG_MDS);
1300 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1301 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1302 	}
1303 
1304 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1305 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1306 
1307 	/*
1308 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1309 	 *	- TSX is supported or
1310 	 *	- TSX_CTRL is present
1311 	 *
1312 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1313 	 * the kernel boot e.g. kexec.
1314 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1315 	 * update is not present or running as guest that don't get TSX_CTRL.
1316 	 */
1317 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1318 	    (cpu_has(c, X86_FEATURE_RTM) ||
1319 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1320 		setup_force_cpu_bug(X86_BUG_TAA);
1321 
1322 	/*
1323 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1324 	 * in the vulnerability blacklist.
1325 	 */
1326 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1327 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1328 	    cpu_matches(cpu_vuln_blacklist, SRBDS))
1329 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1330 
1331 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1332 		return;
1333 
1334 	/* Rogue Data Cache Load? No! */
1335 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1336 		return;
1337 
1338 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1339 
1340 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1341 		return;
1342 
1343 	setup_force_cpu_bug(X86_BUG_L1TF);
1344 }
1345 
1346 /*
1347  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1348  * unfortunately, that's not true in practice because of early VIA
1349  * chips and (more importantly) broken virtualizers that are not easy
1350  * to detect. In the latter case it doesn't even *fail* reliably, so
1351  * probing for it doesn't even work. Disable it completely on 32-bit
1352  * unless we can find a reliable way to detect all the broken cases.
1353  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1354  */
1355 static void detect_nopl(void)
1356 {
1357 #ifdef CONFIG_X86_32
1358 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1359 #else
1360 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1361 #endif
1362 }
1363 
1364 /*
1365  * We parse cpu parameters early because fpu__init_system() is executed
1366  * before parse_early_param().
1367  */
1368 static void __init cpu_parse_early_param(void)
1369 {
1370 	char arg[128];
1371 	char *argptr = arg;
1372 	int arglen, res, bit;
1373 
1374 #ifdef CONFIG_X86_32
1375 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1376 #ifdef CONFIG_MATH_EMULATION
1377 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1378 #else
1379 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1380 #endif
1381 
1382 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1383 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1384 #endif
1385 
1386 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1387 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1388 
1389 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1390 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1391 
1392 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1393 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1394 
1395 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1396 	if (arglen <= 0)
1397 		return;
1398 
1399 	pr_info("Clearing CPUID bits:");
1400 	do {
1401 		res = get_option(&argptr, &bit);
1402 		if (res == 0 || res == 3)
1403 			break;
1404 
1405 		/* If the argument was too long, the last bit may be cut off */
1406 		if (res == 1 && arglen >= sizeof(arg))
1407 			break;
1408 
1409 		if (bit >= 0 && bit < NCAPINTS * 32) {
1410 			pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1411 			setup_clear_cpu_cap(bit);
1412 		}
1413 	} while (res == 2);
1414 	pr_cont("\n");
1415 }
1416 
1417 /*
1418  * Do minimum CPU detection early.
1419  * Fields really needed: vendor, cpuid_level, family, model, mask,
1420  * cache alignment.
1421  * The others are not touched to avoid unwanted side effects.
1422  *
1423  * WARNING: this function is only called on the boot CPU.  Don't add code
1424  * here that is supposed to run on all CPUs.
1425  */
1426 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1427 {
1428 #ifdef CONFIG_X86_64
1429 	c->x86_clflush_size = 64;
1430 	c->x86_phys_bits = 36;
1431 	c->x86_virt_bits = 48;
1432 #else
1433 	c->x86_clflush_size = 32;
1434 	c->x86_phys_bits = 32;
1435 	c->x86_virt_bits = 32;
1436 #endif
1437 	c->x86_cache_alignment = c->x86_clflush_size;
1438 
1439 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1440 	c->extended_cpuid_level = 0;
1441 
1442 	if (!have_cpuid_p())
1443 		identify_cpu_without_cpuid(c);
1444 
1445 	/* cyrix could have cpuid enabled via c_identify()*/
1446 	if (have_cpuid_p()) {
1447 		cpu_detect(c);
1448 		get_cpu_vendor(c);
1449 		get_cpu_cap(c);
1450 		get_cpu_address_sizes(c);
1451 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1452 		cpu_parse_early_param();
1453 
1454 		if (this_cpu->c_early_init)
1455 			this_cpu->c_early_init(c);
1456 
1457 		c->cpu_index = 0;
1458 		filter_cpuid_features(c, false);
1459 
1460 		if (this_cpu->c_bsp_init)
1461 			this_cpu->c_bsp_init(c);
1462 	} else {
1463 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1464 	}
1465 
1466 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1467 
1468 	cpu_set_bug_bits(c);
1469 
1470 	sld_setup(c);
1471 
1472 	fpu__init_system(c);
1473 
1474 	init_sigframe_size();
1475 
1476 #ifdef CONFIG_X86_32
1477 	/*
1478 	 * Regardless of whether PCID is enumerated, the SDM says
1479 	 * that it can't be enabled in 32-bit mode.
1480 	 */
1481 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1482 #endif
1483 
1484 	/*
1485 	 * Later in the boot process pgtable_l5_enabled() relies on
1486 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1487 	 * enabled by this point we need to clear the feature bit to avoid
1488 	 * false-positives at the later stage.
1489 	 *
1490 	 * pgtable_l5_enabled() can be false here for several reasons:
1491 	 *  - 5-level paging is disabled compile-time;
1492 	 *  - it's 32-bit kernel;
1493 	 *  - machine doesn't support 5-level paging;
1494 	 *  - user specified 'no5lvl' in kernel command line.
1495 	 */
1496 	if (!pgtable_l5_enabled())
1497 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1498 
1499 	detect_nopl();
1500 }
1501 
1502 void __init early_cpu_init(void)
1503 {
1504 	const struct cpu_dev *const *cdev;
1505 	int count = 0;
1506 
1507 #ifdef CONFIG_PROCESSOR_SELECT
1508 	pr_info("KERNEL supported cpus:\n");
1509 #endif
1510 
1511 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1512 		const struct cpu_dev *cpudev = *cdev;
1513 
1514 		if (count >= X86_VENDOR_NUM)
1515 			break;
1516 		cpu_devs[count] = cpudev;
1517 		count++;
1518 
1519 #ifdef CONFIG_PROCESSOR_SELECT
1520 		{
1521 			unsigned int j;
1522 
1523 			for (j = 0; j < 2; j++) {
1524 				if (!cpudev->c_ident[j])
1525 					continue;
1526 				pr_info("  %s %s\n", cpudev->c_vendor,
1527 					cpudev->c_ident[j]);
1528 			}
1529 		}
1530 #endif
1531 	}
1532 	early_identify_cpu(&boot_cpu_data);
1533 }
1534 
1535 static bool detect_null_seg_behavior(void)
1536 {
1537 	/*
1538 	 * Empirically, writing zero to a segment selector on AMD does
1539 	 * not clear the base, whereas writing zero to a segment
1540 	 * selector on Intel does clear the base.  Intel's behavior
1541 	 * allows slightly faster context switches in the common case
1542 	 * where GS is unused by the prev and next threads.
1543 	 *
1544 	 * Since neither vendor documents this anywhere that I can see,
1545 	 * detect it directly instead of hard-coding the choice by
1546 	 * vendor.
1547 	 *
1548 	 * I've designated AMD's behavior as the "bug" because it's
1549 	 * counterintuitive and less friendly.
1550 	 */
1551 
1552 	unsigned long old_base, tmp;
1553 	rdmsrl(MSR_FS_BASE, old_base);
1554 	wrmsrl(MSR_FS_BASE, 1);
1555 	loadsegment(fs, 0);
1556 	rdmsrl(MSR_FS_BASE, tmp);
1557 	wrmsrl(MSR_FS_BASE, old_base);
1558 	return tmp == 0;
1559 }
1560 
1561 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1562 {
1563 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1564 	if (!IS_ENABLED(CONFIG_X86_64))
1565 		return;
1566 
1567 	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1568 	if (c->extended_cpuid_level >= 0x80000021 &&
1569 	    cpuid_eax(0x80000021) & BIT(6))
1570 		return;
1571 
1572 	/*
1573 	 * CPUID bit above wasn't set. If this kernel is still running
1574 	 * as a HV guest, then the HV has decided not to advertize
1575 	 * that CPUID bit for whatever reason.	For example, one
1576 	 * member of the migration pool might be vulnerable.  Which
1577 	 * means, the bug is present: set the BUG flag and return.
1578 	 */
1579 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1580 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1581 		return;
1582 	}
1583 
1584 	/*
1585 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1586 	 * 0x18 is the respective family for Hygon.
1587 	 */
1588 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1589 	    detect_null_seg_behavior())
1590 		return;
1591 
1592 	/* All the remaining ones are affected */
1593 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1594 }
1595 
1596 static void generic_identify(struct cpuinfo_x86 *c)
1597 {
1598 	c->extended_cpuid_level = 0;
1599 
1600 	if (!have_cpuid_p())
1601 		identify_cpu_without_cpuid(c);
1602 
1603 	/* cyrix could have cpuid enabled via c_identify()*/
1604 	if (!have_cpuid_p())
1605 		return;
1606 
1607 	cpu_detect(c);
1608 
1609 	get_cpu_vendor(c);
1610 
1611 	get_cpu_cap(c);
1612 
1613 	get_cpu_address_sizes(c);
1614 
1615 	if (c->cpuid_level >= 0x00000001) {
1616 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1617 #ifdef CONFIG_X86_32
1618 # ifdef CONFIG_SMP
1619 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1620 # else
1621 		c->apicid = c->initial_apicid;
1622 # endif
1623 #endif
1624 		c->phys_proc_id = c->initial_apicid;
1625 	}
1626 
1627 	get_model_name(c); /* Default name */
1628 
1629 	/*
1630 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1631 	 * systems that run Linux at CPL > 0 may or may not have the
1632 	 * issue, but, even if they have the issue, there's absolutely
1633 	 * nothing we can do about it because we can't use the real IRET
1634 	 * instruction.
1635 	 *
1636 	 * NB: For the time being, only 32-bit kernels support
1637 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1638 	 * whether to apply espfix using paravirt hooks.  If any
1639 	 * non-paravirt system ever shows up that does *not* have the
1640 	 * ESPFIX issue, we can change this.
1641 	 */
1642 #ifdef CONFIG_X86_32
1643 	set_cpu_bug(c, X86_BUG_ESPFIX);
1644 #endif
1645 }
1646 
1647 /*
1648  * Validate that ACPI/mptables have the same information about the
1649  * effective APIC id and update the package map.
1650  */
1651 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1652 {
1653 #ifdef CONFIG_SMP
1654 	unsigned int apicid, cpu = smp_processor_id();
1655 
1656 	apicid = apic->cpu_present_to_apicid(cpu);
1657 
1658 	if (apicid != c->apicid) {
1659 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1660 		       cpu, apicid, c->initial_apicid);
1661 	}
1662 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1663 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1664 #else
1665 	c->logical_proc_id = 0;
1666 #endif
1667 }
1668 
1669 /*
1670  * This does the hard work of actually picking apart the CPU stuff...
1671  */
1672 static void identify_cpu(struct cpuinfo_x86 *c)
1673 {
1674 	int i;
1675 
1676 	c->loops_per_jiffy = loops_per_jiffy;
1677 	c->x86_cache_size = 0;
1678 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1679 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1680 	c->x86_vendor_id[0] = '\0'; /* Unset */
1681 	c->x86_model_id[0] = '\0';  /* Unset */
1682 	c->x86_max_cores = 1;
1683 	c->x86_coreid_bits = 0;
1684 	c->cu_id = 0xff;
1685 #ifdef CONFIG_X86_64
1686 	c->x86_clflush_size = 64;
1687 	c->x86_phys_bits = 36;
1688 	c->x86_virt_bits = 48;
1689 #else
1690 	c->cpuid_level = -1;	/* CPUID not detected */
1691 	c->x86_clflush_size = 32;
1692 	c->x86_phys_bits = 32;
1693 	c->x86_virt_bits = 32;
1694 #endif
1695 	c->x86_cache_alignment = c->x86_clflush_size;
1696 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1697 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1698 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1699 #endif
1700 
1701 	generic_identify(c);
1702 
1703 	if (this_cpu->c_identify)
1704 		this_cpu->c_identify(c);
1705 
1706 	/* Clear/Set all flags overridden by options, after probe */
1707 	apply_forced_caps(c);
1708 
1709 #ifdef CONFIG_X86_64
1710 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1711 #endif
1712 
1713 	/*
1714 	 * Vendor-specific initialization.  In this section we
1715 	 * canonicalize the feature flags, meaning if there are
1716 	 * features a certain CPU supports which CPUID doesn't
1717 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1718 	 * we handle them here.
1719 	 *
1720 	 * At the end of this section, c->x86_capability better
1721 	 * indicate the features this CPU genuinely supports!
1722 	 */
1723 	if (this_cpu->c_init)
1724 		this_cpu->c_init(c);
1725 
1726 	/* Disable the PN if appropriate */
1727 	squash_the_stupid_serial_number(c);
1728 
1729 	/* Set up SMEP/SMAP/UMIP */
1730 	setup_smep(c);
1731 	setup_smap(c);
1732 	setup_umip(c);
1733 
1734 	/* Enable FSGSBASE instructions if available. */
1735 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1736 		cr4_set_bits(X86_CR4_FSGSBASE);
1737 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1738 	}
1739 
1740 	/*
1741 	 * The vendor-specific functions might have changed features.
1742 	 * Now we do "generic changes."
1743 	 */
1744 
1745 	/* Filter out anything that depends on CPUID levels we don't have */
1746 	filter_cpuid_features(c, true);
1747 
1748 	/* If the model name is still unset, do table lookup. */
1749 	if (!c->x86_model_id[0]) {
1750 		const char *p;
1751 		p = table_lookup_model(c);
1752 		if (p)
1753 			strcpy(c->x86_model_id, p);
1754 		else
1755 			/* Last resort... */
1756 			sprintf(c->x86_model_id, "%02x/%02x",
1757 				c->x86, c->x86_model);
1758 	}
1759 
1760 #ifdef CONFIG_X86_64
1761 	detect_ht(c);
1762 #endif
1763 
1764 	x86_init_rdrand(c);
1765 	setup_pku(c);
1766 	setup_cet(c);
1767 
1768 	/*
1769 	 * Clear/Set all flags overridden by options, need do it
1770 	 * before following smp all cpus cap AND.
1771 	 */
1772 	apply_forced_caps(c);
1773 
1774 	/*
1775 	 * On SMP, boot_cpu_data holds the common feature set between
1776 	 * all CPUs; so make sure that we indicate which features are
1777 	 * common between the CPUs.  The first time this routine gets
1778 	 * executed, c == &boot_cpu_data.
1779 	 */
1780 	if (c != &boot_cpu_data) {
1781 		/* AND the already accumulated flags with these */
1782 		for (i = 0; i < NCAPINTS; i++)
1783 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1784 
1785 		/* OR, i.e. replicate the bug flags */
1786 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1787 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1788 	}
1789 
1790 	ppin_init(c);
1791 
1792 	/* Init Machine Check Exception if available. */
1793 	mcheck_cpu_init(c);
1794 
1795 	select_idle_routine(c);
1796 
1797 #ifdef CONFIG_NUMA
1798 	numa_add_cpu(smp_processor_id());
1799 #endif
1800 }
1801 
1802 /*
1803  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1804  * on 32-bit kernels:
1805  */
1806 #ifdef CONFIG_X86_32
1807 void enable_sep_cpu(void)
1808 {
1809 	struct tss_struct *tss;
1810 	int cpu;
1811 
1812 	if (!boot_cpu_has(X86_FEATURE_SEP))
1813 		return;
1814 
1815 	cpu = get_cpu();
1816 	tss = &per_cpu(cpu_tss_rw, cpu);
1817 
1818 	/*
1819 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1820 	 * see the big comment in struct x86_hw_tss's definition.
1821 	 */
1822 
1823 	tss->x86_tss.ss1 = __KERNEL_CS;
1824 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1825 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1826 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1827 
1828 	put_cpu();
1829 }
1830 #endif
1831 
1832 void __init identify_boot_cpu(void)
1833 {
1834 	identify_cpu(&boot_cpu_data);
1835 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1836 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1837 #ifdef CONFIG_X86_32
1838 	sysenter_setup();
1839 	enable_sep_cpu();
1840 #endif
1841 	cpu_detect_tlb(&boot_cpu_data);
1842 	setup_cr_pinning();
1843 
1844 	tsx_init();
1845 }
1846 
1847 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1848 {
1849 	BUG_ON(c == &boot_cpu_data);
1850 	identify_cpu(c);
1851 #ifdef CONFIG_X86_32
1852 	enable_sep_cpu();
1853 #endif
1854 	mtrr_ap_init();
1855 	validate_apic_and_package_id(c);
1856 	x86_spec_ctrl_setup_ap();
1857 	update_srbds_msr();
1858 }
1859 
1860 static __init int setup_noclflush(char *arg)
1861 {
1862 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1863 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1864 	return 1;
1865 }
1866 __setup("noclflush", setup_noclflush);
1867 
1868 void print_cpu_info(struct cpuinfo_x86 *c)
1869 {
1870 	const char *vendor = NULL;
1871 
1872 	if (c->x86_vendor < X86_VENDOR_NUM) {
1873 		vendor = this_cpu->c_vendor;
1874 	} else {
1875 		if (c->cpuid_level >= 0)
1876 			vendor = c->x86_vendor_id;
1877 	}
1878 
1879 	if (vendor && !strstr(c->x86_model_id, vendor))
1880 		pr_cont("%s ", vendor);
1881 
1882 	if (c->x86_model_id[0])
1883 		pr_cont("%s", c->x86_model_id);
1884 	else
1885 		pr_cont("%d86", c->x86);
1886 
1887 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1888 
1889 	if (c->x86_stepping || c->cpuid_level >= 0)
1890 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1891 	else
1892 		pr_cont(")\n");
1893 }
1894 
1895 /*
1896  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1897  * function prevents it from becoming an environment variable for init.
1898  */
1899 static __init int setup_clearcpuid(char *arg)
1900 {
1901 	return 1;
1902 }
1903 __setup("clearcpuid=", setup_clearcpuid);
1904 
1905 #ifdef CONFIG_X86_64
1906 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1907 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1908 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1909 
1910 /*
1911  * The following percpu variables are hot.  Align current_task to
1912  * cacheline size such that they fall in the same cacheline.
1913  */
1914 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1915 	&init_task;
1916 EXPORT_PER_CPU_SYMBOL(current_task);
1917 
1918 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1919 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1920 
1921 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1922 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1923 
1924 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1925 
1926 static void wrmsrl_cstar(unsigned long val)
1927 {
1928 	/*
1929 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
1930 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
1931 	 * guest. Avoid the pointless write on all Intel CPUs.
1932 	 */
1933 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1934 		wrmsrl(MSR_CSTAR, val);
1935 }
1936 
1937 /* May not be marked __init: used by software suspend */
1938 void syscall_init(void)
1939 {
1940 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1941 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1942 
1943 #ifdef CONFIG_IA32_EMULATION
1944 	wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
1945 	/*
1946 	 * This only works on Intel CPUs.
1947 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1948 	 * This does not cause SYSENTER to jump to the wrong location, because
1949 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1950 	 */
1951 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1952 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1953 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1954 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1955 #else
1956 	wrmsrl_cstar((unsigned long)ignore_sysret);
1957 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1958 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1959 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1960 #endif
1961 
1962 	/*
1963 	 * Flags to clear on syscall; clear as much as possible
1964 	 * to minimize user space-kernel interference.
1965 	 */
1966 	wrmsrl(MSR_SYSCALL_MASK,
1967 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1968 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1969 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1970 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1971 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
1972 }
1973 
1974 #else	/* CONFIG_X86_64 */
1975 
1976 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1977 EXPORT_PER_CPU_SYMBOL(current_task);
1978 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1979 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1980 
1981 /*
1982  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1983  * the top of the kernel stack.  Use an extra percpu variable to track the
1984  * top of the kernel stack directly.
1985  */
1986 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1987 	(unsigned long)&init_thread_union + THREAD_SIZE;
1988 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1989 
1990 #ifdef CONFIG_STACKPROTECTOR
1991 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1992 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1993 #endif
1994 
1995 #endif	/* CONFIG_X86_64 */
1996 
1997 /*
1998  * Clear all 6 debug registers:
1999  */
2000 static void clear_all_debug_regs(void)
2001 {
2002 	int i;
2003 
2004 	for (i = 0; i < 8; i++) {
2005 		/* Ignore db4, db5 */
2006 		if ((i == 4) || (i == 5))
2007 			continue;
2008 
2009 		set_debugreg(0, i);
2010 	}
2011 }
2012 
2013 #ifdef CONFIG_KGDB
2014 /*
2015  * Restore debug regs if using kgdbwait and you have a kernel debugger
2016  * connection established.
2017  */
2018 static void dbg_restore_debug_regs(void)
2019 {
2020 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2021 		arch_kgdb_ops.correct_hw_break();
2022 }
2023 #else /* ! CONFIG_KGDB */
2024 #define dbg_restore_debug_regs()
2025 #endif /* ! CONFIG_KGDB */
2026 
2027 static void wait_for_master_cpu(int cpu)
2028 {
2029 #ifdef CONFIG_SMP
2030 	/*
2031 	 * wait for ACK from master CPU before continuing
2032 	 * with AP initialization
2033 	 */
2034 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2035 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2036 		cpu_relax();
2037 #endif
2038 }
2039 
2040 #ifdef CONFIG_X86_64
2041 static inline void setup_getcpu(int cpu)
2042 {
2043 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2044 	struct desc_struct d = { };
2045 
2046 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2047 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2048 
2049 	/* Store CPU and node number in limit. */
2050 	d.limit0 = cpudata;
2051 	d.limit1 = cpudata >> 16;
2052 
2053 	d.type = 5;		/* RO data, expand down, accessed */
2054 	d.dpl = 3;		/* Visible to user code */
2055 	d.s = 1;		/* Not a system segment */
2056 	d.p = 1;		/* Present */
2057 	d.d = 1;		/* 32-bit */
2058 
2059 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2060 }
2061 
2062 static inline void ucode_cpu_init(int cpu)
2063 {
2064 	if (cpu)
2065 		load_ucode_ap();
2066 }
2067 
2068 static inline void tss_setup_ist(struct tss_struct *tss)
2069 {
2070 	/* Set up the per-CPU TSS IST stacks */
2071 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2072 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2073 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2074 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2075 	/* Only mapped when SEV-ES is active */
2076 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2077 }
2078 
2079 #else /* CONFIG_X86_64 */
2080 
2081 static inline void setup_getcpu(int cpu) { }
2082 
2083 static inline void ucode_cpu_init(int cpu)
2084 {
2085 	show_ucode_info_early();
2086 }
2087 
2088 static inline void tss_setup_ist(struct tss_struct *tss) { }
2089 
2090 #endif /* !CONFIG_X86_64 */
2091 
2092 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2093 {
2094 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2095 
2096 #ifdef CONFIG_X86_IOPL_IOPERM
2097 	tss->io_bitmap.prev_max = 0;
2098 	tss->io_bitmap.prev_sequence = 0;
2099 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2100 	/*
2101 	 * Invalidate the extra array entry past the end of the all
2102 	 * permission bitmap as required by the hardware.
2103 	 */
2104 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2105 #endif
2106 }
2107 
2108 /*
2109  * Setup everything needed to handle exceptions from the IDT, including the IST
2110  * exceptions which use paranoid_entry().
2111  */
2112 void cpu_init_exception_handling(void)
2113 {
2114 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2115 	int cpu = raw_smp_processor_id();
2116 
2117 	/* paranoid_entry() gets the CPU number from the GDT */
2118 	setup_getcpu(cpu);
2119 
2120 	/* IST vectors need TSS to be set up. */
2121 	tss_setup_ist(tss);
2122 	tss_setup_io_bitmap(tss);
2123 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2124 
2125 	load_TR_desc();
2126 
2127 	/* Finally load the IDT */
2128 	load_current_idt();
2129 }
2130 
2131 /*
2132  * cpu_init() initializes state that is per-CPU. Some data is already
2133  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2134  * reload it nevertheless, this function acts as a 'CPU state barrier',
2135  * nothing should get across.
2136  */
2137 void cpu_init(void)
2138 {
2139 	struct task_struct *cur = current;
2140 	int cpu = raw_smp_processor_id();
2141 
2142 	wait_for_master_cpu(cpu);
2143 
2144 	ucode_cpu_init(cpu);
2145 
2146 #ifdef CONFIG_NUMA
2147 	if (this_cpu_read(numa_node) == 0 &&
2148 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2149 		set_numa_node(early_cpu_to_node(cpu));
2150 #endif
2151 	pr_debug("Initializing CPU#%d\n", cpu);
2152 
2153 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2154 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2155 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2156 
2157 	/*
2158 	 * Initialize the per-CPU GDT with the boot GDT,
2159 	 * and set up the GDT descriptor:
2160 	 */
2161 	switch_to_new_gdt(cpu);
2162 
2163 	if (IS_ENABLED(CONFIG_X86_64)) {
2164 		loadsegment(fs, 0);
2165 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2166 		syscall_init();
2167 
2168 		wrmsrl(MSR_FS_BASE, 0);
2169 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2170 		barrier();
2171 
2172 		x2apic_setup();
2173 	}
2174 
2175 	mmgrab(&init_mm);
2176 	cur->active_mm = &init_mm;
2177 	BUG_ON(cur->mm);
2178 	initialize_tlbstate_and_flush();
2179 	enter_lazy_tlb(&init_mm, cur);
2180 
2181 	/*
2182 	 * sp0 points to the entry trampoline stack regardless of what task
2183 	 * is running.
2184 	 */
2185 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2186 
2187 	load_mm_ldt(&init_mm);
2188 
2189 	clear_all_debug_regs();
2190 	dbg_restore_debug_regs();
2191 
2192 	doublefault_init_cpu_tss();
2193 
2194 	fpu__init_cpu();
2195 
2196 	if (is_uv_system())
2197 		uv_cpu_init();
2198 
2199 	load_fixmap_gdt(cpu);
2200 }
2201 
2202 #ifdef CONFIG_SMP
2203 void cpu_init_secondary(void)
2204 {
2205 	/*
2206 	 * Relies on the BP having set-up the IDT tables, which are loaded
2207 	 * on this CPU in cpu_init_exception_handling().
2208 	 */
2209 	cpu_init_exception_handling();
2210 	cpu_init();
2211 }
2212 #endif
2213 
2214 /*
2215  * The microcode loader calls this upon late microcode load to recheck features,
2216  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2217  * hotplug lock.
2218  */
2219 void microcode_check(void)
2220 {
2221 	struct cpuinfo_x86 info;
2222 
2223 	perf_check_microcode();
2224 
2225 	/* Reload CPUID max function as it might've changed. */
2226 	info.cpuid_level = cpuid_eax(0);
2227 
2228 	/*
2229 	 * Copy all capability leafs to pick up the synthetic ones so that
2230 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2231 	 * get overwritten in get_cpu_cap().
2232 	 */
2233 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2234 
2235 	get_cpu_cap(&info);
2236 
2237 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2238 		return;
2239 
2240 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2241 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2242 }
2243 
2244 /*
2245  * Invoked from core CPU hotplug code after hotplug operations
2246  */
2247 void arch_smt_update(void)
2248 {
2249 	/* Handle the speculative execution misfeatures */
2250 	cpu_bugs_smt_update();
2251 	/* Check whether IPI broadcasting can be enabled */
2252 	apic_smt_update();
2253 }
2254