xref: /linux/arch/x86/kernel/cpu/common.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17 
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/cpu.h>
41 #include <asm/mce.h>
42 #include <asm/msr.h>
43 #include <asm/pat.h>
44 #include <asm/microcode.h>
45 #include <asm/microcode_intel.h>
46 
47 #ifdef CONFIG_X86_LOCAL_APIC
48 #include <asm/uv/uv.h>
49 #endif
50 
51 #include "cpu.h"
52 
53 /* all of these masks are initialized in setup_cpu_local_masks() */
54 cpumask_var_t cpu_initialized_mask;
55 cpumask_var_t cpu_callout_mask;
56 cpumask_var_t cpu_callin_mask;
57 
58 /* representing cpus for which sibling maps can be computed */
59 cpumask_var_t cpu_sibling_setup_mask;
60 
61 /* correctly size the local cpu masks */
62 void __init setup_cpu_local_masks(void)
63 {
64 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68 }
69 
70 static void default_init(struct cpuinfo_x86 *c)
71 {
72 #ifdef CONFIG_X86_64
73 	cpu_detect_cache_sizes(c);
74 #else
75 	/* Not much we can do here... */
76 	/* Check if at least it has cpuid */
77 	if (c->cpuid_level == -1) {
78 		/* No cpuid. It must be an ancient CPU */
79 		if (c->x86 == 4)
80 			strcpy(c->x86_model_id, "486");
81 		else if (c->x86 == 3)
82 			strcpy(c->x86_model_id, "386");
83 	}
84 #endif
85 }
86 
87 static const struct cpu_dev default_cpu = {
88 	.c_init		= default_init,
89 	.c_vendor	= "Unknown",
90 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
91 };
92 
93 static const struct cpu_dev *this_cpu = &default_cpu;
94 
95 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96 #ifdef CONFIG_X86_64
97 	/*
98 	 * We need valid kernel segments for data and code in long mode too
99 	 * IRET will check the segment types  kkeil 2000/10/28
100 	 * Also sysret mandates a special GDT layout
101 	 *
102 	 * TLS descriptors are currently at a different place compared to i386.
103 	 * Hopefully nobody expects them at a fixed place (Wine?)
104 	 */
105 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111 #else
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 	/*
117 	 * Segments used for calling PnP BIOS have byte granularity.
118 	 * They code segments and data segments have fixed 64k limits,
119 	 * the transfer segment sizes are set at run time.
120 	 */
121 	/* 32-bit code */
122 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 	/* 16-bit code */
124 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 	/* 16-bit data */
128 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
129 	/* 16-bit data */
130 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
131 	/*
132 	 * The APM segments have byte granularity and their bases
133 	 * are set at run time.  All have 64k limits.
134 	 */
135 	/* 32-bit code */
136 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 	/* 16-bit code */
138 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 	/* data */
140 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141 
142 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 	GDT_STACK_CANARY_INIT
145 #endif
146 } };
147 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148 
149 static int __init x86_mpx_setup(char *s)
150 {
151 	/* require an exact match without trailing characters */
152 	if (strlen(s))
153 		return 0;
154 
155 	/* do not emit a message if the feature is not present */
156 	if (!boot_cpu_has(X86_FEATURE_MPX))
157 		return 1;
158 
159 	setup_clear_cpu_cap(X86_FEATURE_MPX);
160 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 	return 1;
162 }
163 __setup("nompx", x86_mpx_setup);
164 
165 static int __init x86_noinvpcid_setup(char *s)
166 {
167 	/* noinvpcid doesn't accept parameters */
168 	if (s)
169 		return -EINVAL;
170 
171 	/* do not emit a message if the feature is not present */
172 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
173 		return 0;
174 
175 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
176 	pr_info("noinvpcid: INVPCID feature disabled\n");
177 	return 0;
178 }
179 early_param("noinvpcid", x86_noinvpcid_setup);
180 
181 #ifdef CONFIG_X86_32
182 static int cachesize_override = -1;
183 static int disable_x86_serial_nr = 1;
184 
185 static int __init cachesize_setup(char *str)
186 {
187 	get_option(&str, &cachesize_override);
188 	return 1;
189 }
190 __setup("cachesize=", cachesize_setup);
191 
192 static int __init x86_sep_setup(char *s)
193 {
194 	setup_clear_cpu_cap(X86_FEATURE_SEP);
195 	return 1;
196 }
197 __setup("nosep", x86_sep_setup);
198 
199 /* Standard macro to see if a specific flag is changeable */
200 static inline int flag_is_changeable_p(u32 flag)
201 {
202 	u32 f1, f2;
203 
204 	/*
205 	 * Cyrix and IDT cpus allow disabling of CPUID
206 	 * so the code below may return different results
207 	 * when it is executed before and after enabling
208 	 * the CPUID. Add "volatile" to not allow gcc to
209 	 * optimize the subsequent calls to this function.
210 	 */
211 	asm volatile ("pushfl		\n\t"
212 		      "pushfl		\n\t"
213 		      "popl %0		\n\t"
214 		      "movl %0, %1	\n\t"
215 		      "xorl %2, %0	\n\t"
216 		      "pushl %0		\n\t"
217 		      "popfl		\n\t"
218 		      "pushfl		\n\t"
219 		      "popl %0		\n\t"
220 		      "popfl		\n\t"
221 
222 		      : "=&r" (f1), "=&r" (f2)
223 		      : "ir" (flag));
224 
225 	return ((f1^f2) & flag) != 0;
226 }
227 
228 /* Probe for the CPUID instruction */
229 int have_cpuid_p(void)
230 {
231 	return flag_is_changeable_p(X86_EFLAGS_ID);
232 }
233 
234 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
235 {
236 	unsigned long lo, hi;
237 
238 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
239 		return;
240 
241 	/* Disable processor serial number: */
242 
243 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
244 	lo |= 0x200000;
245 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246 
247 	pr_notice("CPU serial number disabled.\n");
248 	clear_cpu_cap(c, X86_FEATURE_PN);
249 
250 	/* Disabling the serial number may affect the cpuid level */
251 	c->cpuid_level = cpuid_eax(0);
252 }
253 
254 static int __init x86_serial_nr_setup(char *s)
255 {
256 	disable_x86_serial_nr = 0;
257 	return 1;
258 }
259 __setup("serialnumber", x86_serial_nr_setup);
260 #else
261 static inline int flag_is_changeable_p(u32 flag)
262 {
263 	return 1;
264 }
265 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266 {
267 }
268 #endif
269 
270 static __init int setup_disable_smep(char *arg)
271 {
272 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
273 	return 1;
274 }
275 __setup("nosmep", setup_disable_smep);
276 
277 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
278 {
279 	if (cpu_has(c, X86_FEATURE_SMEP))
280 		cr4_set_bits(X86_CR4_SMEP);
281 }
282 
283 static __init int setup_disable_smap(char *arg)
284 {
285 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
286 	return 1;
287 }
288 __setup("nosmap", setup_disable_smap);
289 
290 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
291 {
292 	unsigned long eflags = native_save_fl();
293 
294 	/* This should have been cleared long ago */
295 	BUG_ON(eflags & X86_EFLAGS_AC);
296 
297 	if (cpu_has(c, X86_FEATURE_SMAP)) {
298 #ifdef CONFIG_X86_SMAP
299 		cr4_set_bits(X86_CR4_SMAP);
300 #else
301 		cr4_clear_bits(X86_CR4_SMAP);
302 #endif
303 	}
304 }
305 
306 /*
307  * Protection Keys are not available in 32-bit mode.
308  */
309 static bool pku_disabled;
310 
311 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
312 {
313 	if (!cpu_has(c, X86_FEATURE_PKU))
314 		return;
315 	if (pku_disabled)
316 		return;
317 
318 	cr4_set_bits(X86_CR4_PKE);
319 	/*
320 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
321 	 * cpuid bit to be set.  We need to ensure that we
322 	 * update that bit in this CPU's "cpu_info".
323 	 */
324 	get_cpu_cap(c);
325 }
326 
327 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
328 static __init int setup_disable_pku(char *arg)
329 {
330 	/*
331 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
332 	 * runtime checks are against OSPKE so clearing the
333 	 * bit does nothing.
334 	 *
335 	 * This way, we will see "pku" in cpuinfo, but not
336 	 * "ospke", which is exactly what we want.  It shows
337 	 * that the CPU has PKU, but the OS has not enabled it.
338 	 * This happens to be exactly how a system would look
339 	 * if we disabled the config option.
340 	 */
341 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
342 	pku_disabled = true;
343 	return 1;
344 }
345 __setup("nopku", setup_disable_pku);
346 #endif /* CONFIG_X86_64 */
347 
348 /*
349  * Some CPU features depend on higher CPUID levels, which may not always
350  * be available due to CPUID level capping or broken virtualization
351  * software.  Add those features to this table to auto-disable them.
352  */
353 struct cpuid_dependent_feature {
354 	u32 feature;
355 	u32 level;
356 };
357 
358 static const struct cpuid_dependent_feature
359 cpuid_dependent_features[] = {
360 	{ X86_FEATURE_MWAIT,		0x00000005 },
361 	{ X86_FEATURE_DCA,		0x00000009 },
362 	{ X86_FEATURE_XSAVE,		0x0000000d },
363 	{ 0, 0 }
364 };
365 
366 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
367 {
368 	const struct cpuid_dependent_feature *df;
369 
370 	for (df = cpuid_dependent_features; df->feature; df++) {
371 
372 		if (!cpu_has(c, df->feature))
373 			continue;
374 		/*
375 		 * Note: cpuid_level is set to -1 if unavailable, but
376 		 * extended_extended_level is set to 0 if unavailable
377 		 * and the legitimate extended levels are all negative
378 		 * when signed; hence the weird messing around with
379 		 * signs here...
380 		 */
381 		if (!((s32)df->level < 0 ?
382 		     (u32)df->level > (u32)c->extended_cpuid_level :
383 		     (s32)df->level > (s32)c->cpuid_level))
384 			continue;
385 
386 		clear_cpu_cap(c, df->feature);
387 		if (!warn)
388 			continue;
389 
390 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
391 			x86_cap_flag(df->feature), df->level);
392 	}
393 }
394 
395 /*
396  * Naming convention should be: <Name> [(<Codename>)]
397  * This table only is used unless init_<vendor>() below doesn't set it;
398  * in particular, if CPUID levels 0x80000002..4 are supported, this
399  * isn't used
400  */
401 
402 /* Look up CPU names by table lookup. */
403 static const char *table_lookup_model(struct cpuinfo_x86 *c)
404 {
405 #ifdef CONFIG_X86_32
406 	const struct legacy_cpu_model_info *info;
407 
408 	if (c->x86_model >= 16)
409 		return NULL;	/* Range check */
410 
411 	if (!this_cpu)
412 		return NULL;
413 
414 	info = this_cpu->legacy_models;
415 
416 	while (info->family) {
417 		if (info->family == c->x86)
418 			return info->model_names[c->x86_model];
419 		info++;
420 	}
421 #endif
422 	return NULL;		/* Not found */
423 }
424 
425 __u32 cpu_caps_cleared[NCAPINTS];
426 __u32 cpu_caps_set[NCAPINTS];
427 
428 void load_percpu_segment(int cpu)
429 {
430 #ifdef CONFIG_X86_32
431 	loadsegment(fs, __KERNEL_PERCPU);
432 #else
433 	loadsegment(gs, 0);
434 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
435 #endif
436 	load_stack_canary_segment();
437 }
438 
439 /*
440  * Current gdt points %fs at the "master" per-cpu area: after this,
441  * it's on the real one.
442  */
443 void switch_to_new_gdt(int cpu)
444 {
445 	struct desc_ptr gdt_descr;
446 
447 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
448 	gdt_descr.size = GDT_SIZE - 1;
449 	load_gdt(&gdt_descr);
450 	/* Reload the per-cpu base */
451 
452 	load_percpu_segment(cpu);
453 }
454 
455 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
456 
457 static void get_model_name(struct cpuinfo_x86 *c)
458 {
459 	unsigned int *v;
460 	char *p, *q, *s;
461 
462 	if (c->extended_cpuid_level < 0x80000004)
463 		return;
464 
465 	v = (unsigned int *)c->x86_model_id;
466 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
467 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
468 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
469 	c->x86_model_id[48] = 0;
470 
471 	/* Trim whitespace */
472 	p = q = s = &c->x86_model_id[0];
473 
474 	while (*p == ' ')
475 		p++;
476 
477 	while (*p) {
478 		/* Note the last non-whitespace index */
479 		if (!isspace(*p))
480 			s = q;
481 
482 		*q++ = *p++;
483 	}
484 
485 	*(s + 1) = '\0';
486 }
487 
488 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
489 {
490 	unsigned int n, dummy, ebx, ecx, edx, l2size;
491 
492 	n = c->extended_cpuid_level;
493 
494 	if (n >= 0x80000005) {
495 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
496 		c->x86_cache_size = (ecx>>24) + (edx>>24);
497 #ifdef CONFIG_X86_64
498 		/* On K8 L1 TLB is inclusive, so don't count it */
499 		c->x86_tlbsize = 0;
500 #endif
501 	}
502 
503 	if (n < 0x80000006)	/* Some chips just has a large L1. */
504 		return;
505 
506 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
507 	l2size = ecx >> 16;
508 
509 #ifdef CONFIG_X86_64
510 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
511 #else
512 	/* do processor-specific cache resizing */
513 	if (this_cpu->legacy_cache_size)
514 		l2size = this_cpu->legacy_cache_size(c, l2size);
515 
516 	/* Allow user to override all this if necessary. */
517 	if (cachesize_override != -1)
518 		l2size = cachesize_override;
519 
520 	if (l2size == 0)
521 		return;		/* Again, no L2 cache is possible */
522 #endif
523 
524 	c->x86_cache_size = l2size;
525 }
526 
527 u16 __read_mostly tlb_lli_4k[NR_INFO];
528 u16 __read_mostly tlb_lli_2m[NR_INFO];
529 u16 __read_mostly tlb_lli_4m[NR_INFO];
530 u16 __read_mostly tlb_lld_4k[NR_INFO];
531 u16 __read_mostly tlb_lld_2m[NR_INFO];
532 u16 __read_mostly tlb_lld_4m[NR_INFO];
533 u16 __read_mostly tlb_lld_1g[NR_INFO];
534 
535 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
536 {
537 	if (this_cpu->c_detect_tlb)
538 		this_cpu->c_detect_tlb(c);
539 
540 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
541 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
542 		tlb_lli_4m[ENTRIES]);
543 
544 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
545 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
546 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
547 }
548 
549 void detect_ht(struct cpuinfo_x86 *c)
550 {
551 #ifdef CONFIG_SMP
552 	u32 eax, ebx, ecx, edx;
553 	int index_msb, core_bits;
554 	static bool printed;
555 
556 	if (!cpu_has(c, X86_FEATURE_HT))
557 		return;
558 
559 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
560 		goto out;
561 
562 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
563 		return;
564 
565 	cpuid(1, &eax, &ebx, &ecx, &edx);
566 
567 	smp_num_siblings = (ebx & 0xff0000) >> 16;
568 
569 	if (smp_num_siblings == 1) {
570 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
571 		goto out;
572 	}
573 
574 	if (smp_num_siblings <= 1)
575 		goto out;
576 
577 	index_msb = get_count_order(smp_num_siblings);
578 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
579 
580 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
581 
582 	index_msb = get_count_order(smp_num_siblings);
583 
584 	core_bits = get_count_order(c->x86_max_cores);
585 
586 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
587 				       ((1 << core_bits) - 1);
588 
589 out:
590 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
591 		pr_info("CPU: Physical Processor ID: %d\n",
592 			c->phys_proc_id);
593 		pr_info("CPU: Processor Core ID: %d\n",
594 			c->cpu_core_id);
595 		printed = 1;
596 	}
597 #endif
598 }
599 
600 static void get_cpu_vendor(struct cpuinfo_x86 *c)
601 {
602 	char *v = c->x86_vendor_id;
603 	int i;
604 
605 	for (i = 0; i < X86_VENDOR_NUM; i++) {
606 		if (!cpu_devs[i])
607 			break;
608 
609 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
610 		    (cpu_devs[i]->c_ident[1] &&
611 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
612 
613 			this_cpu = cpu_devs[i];
614 			c->x86_vendor = this_cpu->c_x86_vendor;
615 			return;
616 		}
617 	}
618 
619 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
620 		    "CPU: Your system may be unstable.\n", v);
621 
622 	c->x86_vendor = X86_VENDOR_UNKNOWN;
623 	this_cpu = &default_cpu;
624 }
625 
626 void cpu_detect(struct cpuinfo_x86 *c)
627 {
628 	/* Get vendor name */
629 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
630 	      (unsigned int *)&c->x86_vendor_id[0],
631 	      (unsigned int *)&c->x86_vendor_id[8],
632 	      (unsigned int *)&c->x86_vendor_id[4]);
633 
634 	c->x86 = 4;
635 	/* Intel-defined flags: level 0x00000001 */
636 	if (c->cpuid_level >= 0x00000001) {
637 		u32 junk, tfms, cap0, misc;
638 
639 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
640 		c->x86		= x86_family(tfms);
641 		c->x86_model	= x86_model(tfms);
642 		c->x86_mask	= x86_stepping(tfms);
643 
644 		if (cap0 & (1<<19)) {
645 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
646 			c->x86_cache_alignment = c->x86_clflush_size;
647 		}
648 	}
649 }
650 
651 void get_cpu_cap(struct cpuinfo_x86 *c)
652 {
653 	u32 eax, ebx, ecx, edx;
654 
655 	/* Intel-defined flags: level 0x00000001 */
656 	if (c->cpuid_level >= 0x00000001) {
657 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
658 
659 		c->x86_capability[CPUID_1_ECX] = ecx;
660 		c->x86_capability[CPUID_1_EDX] = edx;
661 	}
662 
663 	/* Additional Intel-defined flags: level 0x00000007 */
664 	if (c->cpuid_level >= 0x00000007) {
665 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
666 
667 		c->x86_capability[CPUID_7_0_EBX] = ebx;
668 
669 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
670 		c->x86_capability[CPUID_7_ECX] = ecx;
671 	}
672 
673 	/* Extended state features: level 0x0000000d */
674 	if (c->cpuid_level >= 0x0000000d) {
675 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
676 
677 		c->x86_capability[CPUID_D_1_EAX] = eax;
678 	}
679 
680 	/* Additional Intel-defined flags: level 0x0000000F */
681 	if (c->cpuid_level >= 0x0000000F) {
682 
683 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
684 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
685 		c->x86_capability[CPUID_F_0_EDX] = edx;
686 
687 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
688 			/* will be overridden if occupancy monitoring exists */
689 			c->x86_cache_max_rmid = ebx;
690 
691 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
692 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
693 			c->x86_capability[CPUID_F_1_EDX] = edx;
694 
695 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
696 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
697 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
698 				c->x86_cache_max_rmid = ecx;
699 				c->x86_cache_occ_scale = ebx;
700 			}
701 		} else {
702 			c->x86_cache_max_rmid = -1;
703 			c->x86_cache_occ_scale = -1;
704 		}
705 	}
706 
707 	/* AMD-defined flags: level 0x80000001 */
708 	eax = cpuid_eax(0x80000000);
709 	c->extended_cpuid_level = eax;
710 
711 	if ((eax & 0xffff0000) == 0x80000000) {
712 		if (eax >= 0x80000001) {
713 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
714 
715 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
716 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
717 		}
718 	}
719 
720 	if (c->extended_cpuid_level >= 0x80000008) {
721 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
722 
723 		c->x86_virt_bits = (eax >> 8) & 0xff;
724 		c->x86_phys_bits = eax & 0xff;
725 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
726 	}
727 #ifdef CONFIG_X86_32
728 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
729 		c->x86_phys_bits = 36;
730 #endif
731 
732 	if (c->extended_cpuid_level >= 0x80000007)
733 		c->x86_power = cpuid_edx(0x80000007);
734 
735 	if (c->extended_cpuid_level >= 0x8000000a)
736 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
737 
738 	init_scattered_cpuid_features(c);
739 }
740 
741 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
742 {
743 #ifdef CONFIG_X86_32
744 	int i;
745 
746 	/*
747 	 * First of all, decide if this is a 486 or higher
748 	 * It's a 486 if we can modify the AC flag
749 	 */
750 	if (flag_is_changeable_p(X86_EFLAGS_AC))
751 		c->x86 = 4;
752 	else
753 		c->x86 = 3;
754 
755 	for (i = 0; i < X86_VENDOR_NUM; i++)
756 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
757 			c->x86_vendor_id[0] = 0;
758 			cpu_devs[i]->c_identify(c);
759 			if (c->x86_vendor_id[0]) {
760 				get_cpu_vendor(c);
761 				break;
762 			}
763 		}
764 #endif
765 }
766 
767 /*
768  * Do minimum CPU detection early.
769  * Fields really needed: vendor, cpuid_level, family, model, mask,
770  * cache alignment.
771  * The others are not touched to avoid unwanted side effects.
772  *
773  * WARNING: this function is only called on the BP.  Don't add code here
774  * that is supposed to run on all CPUs.
775  */
776 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
777 {
778 #ifdef CONFIG_X86_64
779 	c->x86_clflush_size = 64;
780 	c->x86_phys_bits = 36;
781 	c->x86_virt_bits = 48;
782 #else
783 	c->x86_clflush_size = 32;
784 	c->x86_phys_bits = 32;
785 	c->x86_virt_bits = 32;
786 #endif
787 	c->x86_cache_alignment = c->x86_clflush_size;
788 
789 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
790 	c->extended_cpuid_level = 0;
791 
792 	if (!have_cpuid_p())
793 		identify_cpu_without_cpuid(c);
794 
795 	/* cyrix could have cpuid enabled via c_identify()*/
796 	if (!have_cpuid_p())
797 		return;
798 
799 	cpu_detect(c);
800 	get_cpu_vendor(c);
801 	get_cpu_cap(c);
802 
803 	if (this_cpu->c_early_init)
804 		this_cpu->c_early_init(c);
805 
806 	c->cpu_index = 0;
807 	filter_cpuid_features(c, false);
808 
809 	if (this_cpu->c_bsp_init)
810 		this_cpu->c_bsp_init(c);
811 
812 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
813 	fpu__init_system(c);
814 }
815 
816 void __init early_cpu_init(void)
817 {
818 	const struct cpu_dev *const *cdev;
819 	int count = 0;
820 
821 #ifdef CONFIG_PROCESSOR_SELECT
822 	pr_info("KERNEL supported cpus:\n");
823 #endif
824 
825 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
826 		const struct cpu_dev *cpudev = *cdev;
827 
828 		if (count >= X86_VENDOR_NUM)
829 			break;
830 		cpu_devs[count] = cpudev;
831 		count++;
832 
833 #ifdef CONFIG_PROCESSOR_SELECT
834 		{
835 			unsigned int j;
836 
837 			for (j = 0; j < 2; j++) {
838 				if (!cpudev->c_ident[j])
839 					continue;
840 				pr_info("  %s %s\n", cpudev->c_vendor,
841 					cpudev->c_ident[j]);
842 			}
843 		}
844 #endif
845 	}
846 	early_identify_cpu(&boot_cpu_data);
847 }
848 
849 /*
850  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
851  * unfortunately, that's not true in practice because of early VIA
852  * chips and (more importantly) broken virtualizers that are not easy
853  * to detect. In the latter case it doesn't even *fail* reliably, so
854  * probing for it doesn't even work. Disable it completely on 32-bit
855  * unless we can find a reliable way to detect all the broken cases.
856  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
857  */
858 static void detect_nopl(struct cpuinfo_x86 *c)
859 {
860 #ifdef CONFIG_X86_32
861 	clear_cpu_cap(c, X86_FEATURE_NOPL);
862 #else
863 	set_cpu_cap(c, X86_FEATURE_NOPL);
864 #endif
865 
866 	/*
867 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
868 	 * systems that run Linux at CPL > 0 may or may not have the
869 	 * issue, but, even if they have the issue, there's absolutely
870 	 * nothing we can do about it because we can't use the real IRET
871 	 * instruction.
872 	 *
873 	 * NB: For the time being, only 32-bit kernels support
874 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
875 	 * whether to apply espfix using paravirt hooks.  If any
876 	 * non-paravirt system ever shows up that does *not* have the
877 	 * ESPFIX issue, we can change this.
878 	 */
879 #ifdef CONFIG_X86_32
880 #ifdef CONFIG_PARAVIRT
881 	do {
882 		extern void native_iret(void);
883 		if (pv_cpu_ops.iret == native_iret)
884 			set_cpu_bug(c, X86_BUG_ESPFIX);
885 	} while (0);
886 #else
887 	set_cpu_bug(c, X86_BUG_ESPFIX);
888 #endif
889 #endif
890 }
891 
892 static void generic_identify(struct cpuinfo_x86 *c)
893 {
894 	c->extended_cpuid_level = 0;
895 
896 	if (!have_cpuid_p())
897 		identify_cpu_without_cpuid(c);
898 
899 	/* cyrix could have cpuid enabled via c_identify()*/
900 	if (!have_cpuid_p())
901 		return;
902 
903 	cpu_detect(c);
904 
905 	get_cpu_vendor(c);
906 
907 	get_cpu_cap(c);
908 
909 	if (c->cpuid_level >= 0x00000001) {
910 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
911 #ifdef CONFIG_X86_32
912 # ifdef CONFIG_SMP
913 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
914 # else
915 		c->apicid = c->initial_apicid;
916 # endif
917 #endif
918 		c->phys_proc_id = c->initial_apicid;
919 	}
920 
921 	get_model_name(c); /* Default name */
922 
923 	detect_nopl(c);
924 }
925 
926 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
927 {
928 	/*
929 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
930 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
931 	 * in case CQM bits really aren't there in this CPU.
932 	 */
933 	if (c != &boot_cpu_data) {
934 		boot_cpu_data.x86_cache_max_rmid =
935 			min(boot_cpu_data.x86_cache_max_rmid,
936 			    c->x86_cache_max_rmid);
937 	}
938 }
939 
940 /*
941  * This does the hard work of actually picking apart the CPU stuff...
942  */
943 static void identify_cpu(struct cpuinfo_x86 *c)
944 {
945 	int i;
946 
947 	c->loops_per_jiffy = loops_per_jiffy;
948 	c->x86_cache_size = -1;
949 	c->x86_vendor = X86_VENDOR_UNKNOWN;
950 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
951 	c->x86_vendor_id[0] = '\0'; /* Unset */
952 	c->x86_model_id[0] = '\0';  /* Unset */
953 	c->x86_max_cores = 1;
954 	c->x86_coreid_bits = 0;
955 #ifdef CONFIG_X86_64
956 	c->x86_clflush_size = 64;
957 	c->x86_phys_bits = 36;
958 	c->x86_virt_bits = 48;
959 #else
960 	c->cpuid_level = -1;	/* CPUID not detected */
961 	c->x86_clflush_size = 32;
962 	c->x86_phys_bits = 32;
963 	c->x86_virt_bits = 32;
964 #endif
965 	c->x86_cache_alignment = c->x86_clflush_size;
966 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
967 
968 	generic_identify(c);
969 
970 	if (this_cpu->c_identify)
971 		this_cpu->c_identify(c);
972 
973 	/* Clear/Set all flags overridden by options, after probe */
974 	for (i = 0; i < NCAPINTS; i++) {
975 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
976 		c->x86_capability[i] |= cpu_caps_set[i];
977 	}
978 
979 #ifdef CONFIG_X86_64
980 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
981 #endif
982 
983 	/*
984 	 * Vendor-specific initialization.  In this section we
985 	 * canonicalize the feature flags, meaning if there are
986 	 * features a certain CPU supports which CPUID doesn't
987 	 * tell us, CPUID claiming incorrect flags, or other bugs,
988 	 * we handle them here.
989 	 *
990 	 * At the end of this section, c->x86_capability better
991 	 * indicate the features this CPU genuinely supports!
992 	 */
993 	if (this_cpu->c_init)
994 		this_cpu->c_init(c);
995 
996 	/* Disable the PN if appropriate */
997 	squash_the_stupid_serial_number(c);
998 
999 	/* Set up SMEP/SMAP */
1000 	setup_smep(c);
1001 	setup_smap(c);
1002 
1003 	/*
1004 	 * The vendor-specific functions might have changed features.
1005 	 * Now we do "generic changes."
1006 	 */
1007 
1008 	/* Filter out anything that depends on CPUID levels we don't have */
1009 	filter_cpuid_features(c, true);
1010 
1011 	/* If the model name is still unset, do table lookup. */
1012 	if (!c->x86_model_id[0]) {
1013 		const char *p;
1014 		p = table_lookup_model(c);
1015 		if (p)
1016 			strcpy(c->x86_model_id, p);
1017 		else
1018 			/* Last resort... */
1019 			sprintf(c->x86_model_id, "%02x/%02x",
1020 				c->x86, c->x86_model);
1021 	}
1022 
1023 #ifdef CONFIG_X86_64
1024 	detect_ht(c);
1025 #endif
1026 
1027 	init_hypervisor(c);
1028 	x86_init_rdrand(c);
1029 	x86_init_cache_qos(c);
1030 	setup_pku(c);
1031 
1032 	/*
1033 	 * Clear/Set all flags overridden by options, need do it
1034 	 * before following smp all cpus cap AND.
1035 	 */
1036 	for (i = 0; i < NCAPINTS; i++) {
1037 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
1038 		c->x86_capability[i] |= cpu_caps_set[i];
1039 	}
1040 
1041 	/*
1042 	 * On SMP, boot_cpu_data holds the common feature set between
1043 	 * all CPUs; so make sure that we indicate which features are
1044 	 * common between the CPUs.  The first time this routine gets
1045 	 * executed, c == &boot_cpu_data.
1046 	 */
1047 	if (c != &boot_cpu_data) {
1048 		/* AND the already accumulated flags with these */
1049 		for (i = 0; i < NCAPINTS; i++)
1050 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1051 
1052 		/* OR, i.e. replicate the bug flags */
1053 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1054 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1055 	}
1056 
1057 	/* Init Machine Check Exception if available. */
1058 	mcheck_cpu_init(c);
1059 
1060 	select_idle_routine(c);
1061 
1062 #ifdef CONFIG_NUMA
1063 	numa_add_cpu(smp_processor_id());
1064 #endif
1065 	/* The boot/hotplug time assigment got cleared, restore it */
1066 	c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
1067 }
1068 
1069 /*
1070  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1071  * on 32-bit kernels:
1072  */
1073 #ifdef CONFIG_X86_32
1074 void enable_sep_cpu(void)
1075 {
1076 	struct tss_struct *tss;
1077 	int cpu;
1078 
1079 	cpu = get_cpu();
1080 	tss = &per_cpu(cpu_tss, cpu);
1081 
1082 	if (!boot_cpu_has(X86_FEATURE_SEP))
1083 		goto out;
1084 
1085 	/*
1086 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1087 	 * see the big comment in struct x86_hw_tss's definition.
1088 	 */
1089 
1090 	tss->x86_tss.ss1 = __KERNEL_CS;
1091 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1092 
1093 	wrmsr(MSR_IA32_SYSENTER_ESP,
1094 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1095 	      0);
1096 
1097 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1098 
1099 out:
1100 	put_cpu();
1101 }
1102 #endif
1103 
1104 void __init identify_boot_cpu(void)
1105 {
1106 	identify_cpu(&boot_cpu_data);
1107 	init_amd_e400_c1e_mask();
1108 #ifdef CONFIG_X86_32
1109 	sysenter_setup();
1110 	enable_sep_cpu();
1111 #endif
1112 	cpu_detect_tlb(&boot_cpu_data);
1113 }
1114 
1115 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1116 {
1117 	BUG_ON(c == &boot_cpu_data);
1118 	identify_cpu(c);
1119 #ifdef CONFIG_X86_32
1120 	enable_sep_cpu();
1121 #endif
1122 	mtrr_ap_init();
1123 }
1124 
1125 struct msr_range {
1126 	unsigned	min;
1127 	unsigned	max;
1128 };
1129 
1130 static const struct msr_range msr_range_array[] = {
1131 	{ 0x00000000, 0x00000418},
1132 	{ 0xc0000000, 0xc000040b},
1133 	{ 0xc0010000, 0xc0010142},
1134 	{ 0xc0011000, 0xc001103b},
1135 };
1136 
1137 static void __print_cpu_msr(void)
1138 {
1139 	unsigned index_min, index_max;
1140 	unsigned index;
1141 	u64 val;
1142 	int i;
1143 
1144 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1145 		index_min = msr_range_array[i].min;
1146 		index_max = msr_range_array[i].max;
1147 
1148 		for (index = index_min; index < index_max; index++) {
1149 			if (rdmsrl_safe(index, &val))
1150 				continue;
1151 			pr_info(" MSR%08x: %016llx\n", index, val);
1152 		}
1153 	}
1154 }
1155 
1156 static int show_msr;
1157 
1158 static __init int setup_show_msr(char *arg)
1159 {
1160 	int num;
1161 
1162 	get_option(&arg, &num);
1163 
1164 	if (num > 0)
1165 		show_msr = num;
1166 	return 1;
1167 }
1168 __setup("show_msr=", setup_show_msr);
1169 
1170 static __init int setup_noclflush(char *arg)
1171 {
1172 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1173 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1174 	return 1;
1175 }
1176 __setup("noclflush", setup_noclflush);
1177 
1178 void print_cpu_info(struct cpuinfo_x86 *c)
1179 {
1180 	const char *vendor = NULL;
1181 
1182 	if (c->x86_vendor < X86_VENDOR_NUM) {
1183 		vendor = this_cpu->c_vendor;
1184 	} else {
1185 		if (c->cpuid_level >= 0)
1186 			vendor = c->x86_vendor_id;
1187 	}
1188 
1189 	if (vendor && !strstr(c->x86_model_id, vendor))
1190 		pr_cont("%s ", vendor);
1191 
1192 	if (c->x86_model_id[0])
1193 		pr_cont("%s", c->x86_model_id);
1194 	else
1195 		pr_cont("%d86", c->x86);
1196 
1197 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1198 
1199 	if (c->x86_mask || c->cpuid_level >= 0)
1200 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1201 	else
1202 		pr_cont(")\n");
1203 
1204 	print_cpu_msr(c);
1205 }
1206 
1207 void print_cpu_msr(struct cpuinfo_x86 *c)
1208 {
1209 	if (c->cpu_index < show_msr)
1210 		__print_cpu_msr();
1211 }
1212 
1213 static __init int setup_disablecpuid(char *arg)
1214 {
1215 	int bit;
1216 
1217 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1218 		setup_clear_cpu_cap(bit);
1219 	else
1220 		return 0;
1221 
1222 	return 1;
1223 }
1224 __setup("clearcpuid=", setup_disablecpuid);
1225 
1226 #ifdef CONFIG_X86_64
1227 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1228 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1229 				    (unsigned long) debug_idt_table };
1230 
1231 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1232 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1233 
1234 /*
1235  * The following percpu variables are hot.  Align current_task to
1236  * cacheline size such that they fall in the same cacheline.
1237  */
1238 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1239 	&init_task;
1240 EXPORT_PER_CPU_SYMBOL(current_task);
1241 
1242 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1243 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1244 
1245 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1246 
1247 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1248 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1249 
1250 /*
1251  * Special IST stacks which the CPU switches to when it calls
1252  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1253  * limit), all of them are 4K, except the debug stack which
1254  * is 8K.
1255  */
1256 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1257 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1258 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1259 };
1260 
1261 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1262 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1263 
1264 /* May not be marked __init: used by software suspend */
1265 void syscall_init(void)
1266 {
1267 	/*
1268 	 * LSTAR and STAR live in a bit strange symbiosis.
1269 	 * They both write to the same internal register. STAR allows to
1270 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1271 	 */
1272 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1273 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1274 
1275 #ifdef CONFIG_IA32_EMULATION
1276 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1277 	/*
1278 	 * This only works on Intel CPUs.
1279 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1280 	 * This does not cause SYSENTER to jump to the wrong location, because
1281 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1282 	 */
1283 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1284 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1285 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1286 #else
1287 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1288 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1289 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1290 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1291 #endif
1292 
1293 	/* Flags to clear on syscall */
1294 	wrmsrl(MSR_SYSCALL_MASK,
1295 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1296 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1297 }
1298 
1299 /*
1300  * Copies of the original ist values from the tss are only accessed during
1301  * debugging, no special alignment required.
1302  */
1303 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1304 
1305 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1306 DEFINE_PER_CPU(int, debug_stack_usage);
1307 
1308 int is_debug_stack(unsigned long addr)
1309 {
1310 	return __this_cpu_read(debug_stack_usage) ||
1311 		(addr <= __this_cpu_read(debug_stack_addr) &&
1312 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1313 }
1314 NOKPROBE_SYMBOL(is_debug_stack);
1315 
1316 DEFINE_PER_CPU(u32, debug_idt_ctr);
1317 
1318 void debug_stack_set_zero(void)
1319 {
1320 	this_cpu_inc(debug_idt_ctr);
1321 	load_current_idt();
1322 }
1323 NOKPROBE_SYMBOL(debug_stack_set_zero);
1324 
1325 void debug_stack_reset(void)
1326 {
1327 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1328 		return;
1329 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1330 		load_current_idt();
1331 }
1332 NOKPROBE_SYMBOL(debug_stack_reset);
1333 
1334 #else	/* CONFIG_X86_64 */
1335 
1336 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1337 EXPORT_PER_CPU_SYMBOL(current_task);
1338 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1339 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1340 
1341 /*
1342  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1343  * the top of the kernel stack.  Use an extra percpu variable to track the
1344  * top of the kernel stack directly.
1345  */
1346 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1347 	(unsigned long)&init_thread_union + THREAD_SIZE;
1348 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1349 
1350 #ifdef CONFIG_CC_STACKPROTECTOR
1351 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1352 #endif
1353 
1354 #endif	/* CONFIG_X86_64 */
1355 
1356 /*
1357  * Clear all 6 debug registers:
1358  */
1359 static void clear_all_debug_regs(void)
1360 {
1361 	int i;
1362 
1363 	for (i = 0; i < 8; i++) {
1364 		/* Ignore db4, db5 */
1365 		if ((i == 4) || (i == 5))
1366 			continue;
1367 
1368 		set_debugreg(0, i);
1369 	}
1370 }
1371 
1372 #ifdef CONFIG_KGDB
1373 /*
1374  * Restore debug regs if using kgdbwait and you have a kernel debugger
1375  * connection established.
1376  */
1377 static void dbg_restore_debug_regs(void)
1378 {
1379 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1380 		arch_kgdb_ops.correct_hw_break();
1381 }
1382 #else /* ! CONFIG_KGDB */
1383 #define dbg_restore_debug_regs()
1384 #endif /* ! CONFIG_KGDB */
1385 
1386 static void wait_for_master_cpu(int cpu)
1387 {
1388 #ifdef CONFIG_SMP
1389 	/*
1390 	 * wait for ACK from master CPU before continuing
1391 	 * with AP initialization
1392 	 */
1393 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1394 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1395 		cpu_relax();
1396 #endif
1397 }
1398 
1399 /*
1400  * cpu_init() initializes state that is per-CPU. Some data is already
1401  * initialized (naturally) in the bootstrap process, such as the GDT
1402  * and IDT. We reload them nevertheless, this function acts as a
1403  * 'CPU state barrier', nothing should get across.
1404  * A lot of state is already set up in PDA init for 64 bit
1405  */
1406 #ifdef CONFIG_X86_64
1407 
1408 void cpu_init(void)
1409 {
1410 	struct orig_ist *oist;
1411 	struct task_struct *me;
1412 	struct tss_struct *t;
1413 	unsigned long v;
1414 	int cpu = stack_smp_processor_id();
1415 	int i;
1416 
1417 	wait_for_master_cpu(cpu);
1418 
1419 	/*
1420 	 * Initialize the CR4 shadow before doing anything that could
1421 	 * try to read it.
1422 	 */
1423 	cr4_init_shadow();
1424 
1425 	/*
1426 	 * Load microcode on this cpu if a valid microcode is available.
1427 	 * This is early microcode loading procedure.
1428 	 */
1429 	load_ucode_ap();
1430 
1431 	t = &per_cpu(cpu_tss, cpu);
1432 	oist = &per_cpu(orig_ist, cpu);
1433 
1434 #ifdef CONFIG_NUMA
1435 	if (this_cpu_read(numa_node) == 0 &&
1436 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1437 		set_numa_node(early_cpu_to_node(cpu));
1438 #endif
1439 
1440 	me = current;
1441 
1442 	pr_debug("Initializing CPU#%d\n", cpu);
1443 
1444 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1445 
1446 	/*
1447 	 * Initialize the per-CPU GDT with the boot GDT,
1448 	 * and set up the GDT descriptor:
1449 	 */
1450 
1451 	switch_to_new_gdt(cpu);
1452 	loadsegment(fs, 0);
1453 
1454 	load_current_idt();
1455 
1456 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1457 	syscall_init();
1458 
1459 	wrmsrl(MSR_FS_BASE, 0);
1460 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1461 	barrier();
1462 
1463 	x86_configure_nx();
1464 	x2apic_setup();
1465 
1466 	/*
1467 	 * set up and load the per-CPU TSS
1468 	 */
1469 	if (!oist->ist[0]) {
1470 		char *estacks = per_cpu(exception_stacks, cpu);
1471 
1472 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1473 			estacks += exception_stack_sizes[v];
1474 			oist->ist[v] = t->x86_tss.ist[v] =
1475 					(unsigned long)estacks;
1476 			if (v == DEBUG_STACK-1)
1477 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1478 		}
1479 	}
1480 
1481 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1482 
1483 	/*
1484 	 * <= is required because the CPU will access up to
1485 	 * 8 bits beyond the end of the IO permission bitmap.
1486 	 */
1487 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1488 		t->io_bitmap[i] = ~0UL;
1489 
1490 	atomic_inc(&init_mm.mm_count);
1491 	me->active_mm = &init_mm;
1492 	BUG_ON(me->mm);
1493 	enter_lazy_tlb(&init_mm, me);
1494 
1495 	load_sp0(t, &current->thread);
1496 	set_tss_desc(cpu, t);
1497 	load_TR_desc();
1498 	load_mm_ldt(&init_mm);
1499 
1500 	clear_all_debug_regs();
1501 	dbg_restore_debug_regs();
1502 
1503 	fpu__init_cpu();
1504 
1505 	if (is_uv_system())
1506 		uv_cpu_init();
1507 }
1508 
1509 #else
1510 
1511 void cpu_init(void)
1512 {
1513 	int cpu = smp_processor_id();
1514 	struct task_struct *curr = current;
1515 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1516 	struct thread_struct *thread = &curr->thread;
1517 
1518 	wait_for_master_cpu(cpu);
1519 
1520 	/*
1521 	 * Initialize the CR4 shadow before doing anything that could
1522 	 * try to read it.
1523 	 */
1524 	cr4_init_shadow();
1525 
1526 	show_ucode_info_early();
1527 
1528 	pr_info("Initializing CPU#%d\n", cpu);
1529 
1530 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1531 	    cpu_has_tsc ||
1532 	    boot_cpu_has(X86_FEATURE_DE))
1533 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1534 
1535 	load_current_idt();
1536 	switch_to_new_gdt(cpu);
1537 
1538 	/*
1539 	 * Set up and load the per-CPU TSS and LDT
1540 	 */
1541 	atomic_inc(&init_mm.mm_count);
1542 	curr->active_mm = &init_mm;
1543 	BUG_ON(curr->mm);
1544 	enter_lazy_tlb(&init_mm, curr);
1545 
1546 	load_sp0(t, thread);
1547 	set_tss_desc(cpu, t);
1548 	load_TR_desc();
1549 	load_mm_ldt(&init_mm);
1550 
1551 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1552 
1553 #ifdef CONFIG_DOUBLEFAULT
1554 	/* Set up doublefault TSS pointer in the GDT */
1555 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1556 #endif
1557 
1558 	clear_all_debug_regs();
1559 	dbg_restore_debug_regs();
1560 
1561 	fpu__init_cpu();
1562 }
1563 #endif
1564 
1565 static void bsp_resume(void)
1566 {
1567 	if (this_cpu->c_bsp_resume)
1568 		this_cpu->c_bsp_resume(&boot_cpu_data);
1569 }
1570 
1571 static struct syscore_ops cpu_syscore_ops = {
1572 	.resume		= bsp_resume,
1573 };
1574 
1575 static int __init init_cpu_syscore(void)
1576 {
1577 	register_syscore_ops(&cpu_syscore_ops);
1578 	return 0;
1579 }
1580 core_initcall(init_cpu_syscore);
1581