xref: /linux/arch/x86/kernel/cpu/common.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17 
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/cpu.h>
41 #include <asm/mce.h>
42 #include <asm/msr.h>
43 #include <asm/pat.h>
44 #include <asm/microcode.h>
45 #include <asm/microcode_intel.h>
46 
47 #ifdef CONFIG_X86_LOCAL_APIC
48 #include <asm/uv/uv.h>
49 #endif
50 
51 #include "cpu.h"
52 
53 /* all of these masks are initialized in setup_cpu_local_masks() */
54 cpumask_var_t cpu_initialized_mask;
55 cpumask_var_t cpu_callout_mask;
56 cpumask_var_t cpu_callin_mask;
57 
58 /* representing cpus for which sibling maps can be computed */
59 cpumask_var_t cpu_sibling_setup_mask;
60 
61 /* correctly size the local cpu masks */
62 void __init setup_cpu_local_masks(void)
63 {
64 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
66 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
67 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68 }
69 
70 static void default_init(struct cpuinfo_x86 *c)
71 {
72 #ifdef CONFIG_X86_64
73 	cpu_detect_cache_sizes(c);
74 #else
75 	/* Not much we can do here... */
76 	/* Check if at least it has cpuid */
77 	if (c->cpuid_level == -1) {
78 		/* No cpuid. It must be an ancient CPU */
79 		if (c->x86 == 4)
80 			strcpy(c->x86_model_id, "486");
81 		else if (c->x86 == 3)
82 			strcpy(c->x86_model_id, "386");
83 	}
84 #endif
85 }
86 
87 static const struct cpu_dev default_cpu = {
88 	.c_init		= default_init,
89 	.c_vendor	= "Unknown",
90 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
91 };
92 
93 static const struct cpu_dev *this_cpu = &default_cpu;
94 
95 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96 #ifdef CONFIG_X86_64
97 	/*
98 	 * We need valid kernel segments for data and code in long mode too
99 	 * IRET will check the segment types  kkeil 2000/10/28
100 	 * Also sysret mandates a special GDT layout
101 	 *
102 	 * TLS descriptors are currently at a different place compared to i386.
103 	 * Hopefully nobody expects them at a fixed place (Wine?)
104 	 */
105 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111 #else
112 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116 	/*
117 	 * Segments used for calling PnP BIOS have byte granularity.
118 	 * They code segments and data segments have fixed 64k limits,
119 	 * the transfer segment sizes are set at run time.
120 	 */
121 	/* 32-bit code */
122 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123 	/* 16-bit code */
124 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125 	/* 16-bit data */
126 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127 	/* 16-bit data */
128 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
129 	/* 16-bit data */
130 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
131 	/*
132 	 * The APM segments have byte granularity and their bases
133 	 * are set at run time.  All have 64k limits.
134 	 */
135 	/* 32-bit code */
136 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137 	/* 16-bit code */
138 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139 	/* data */
140 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141 
142 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 	GDT_STACK_CANARY_INIT
145 #endif
146 } };
147 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148 
149 static int __init x86_mpx_setup(char *s)
150 {
151 	/* require an exact match without trailing characters */
152 	if (strlen(s))
153 		return 0;
154 
155 	/* do not emit a message if the feature is not present */
156 	if (!boot_cpu_has(X86_FEATURE_MPX))
157 		return 1;
158 
159 	setup_clear_cpu_cap(X86_FEATURE_MPX);
160 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161 	return 1;
162 }
163 __setup("nompx", x86_mpx_setup);
164 
165 static int __init x86_noinvpcid_setup(char *s)
166 {
167 	/* noinvpcid doesn't accept parameters */
168 	if (s)
169 		return -EINVAL;
170 
171 	/* do not emit a message if the feature is not present */
172 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
173 		return 0;
174 
175 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
176 	pr_info("noinvpcid: INVPCID feature disabled\n");
177 	return 0;
178 }
179 early_param("noinvpcid", x86_noinvpcid_setup);
180 
181 #ifdef CONFIG_X86_32
182 static int cachesize_override = -1;
183 static int disable_x86_serial_nr = 1;
184 
185 static int __init cachesize_setup(char *str)
186 {
187 	get_option(&str, &cachesize_override);
188 	return 1;
189 }
190 __setup("cachesize=", cachesize_setup);
191 
192 static int __init x86_sep_setup(char *s)
193 {
194 	setup_clear_cpu_cap(X86_FEATURE_SEP);
195 	return 1;
196 }
197 __setup("nosep", x86_sep_setup);
198 
199 /* Standard macro to see if a specific flag is changeable */
200 static inline int flag_is_changeable_p(u32 flag)
201 {
202 	u32 f1, f2;
203 
204 	/*
205 	 * Cyrix and IDT cpus allow disabling of CPUID
206 	 * so the code below may return different results
207 	 * when it is executed before and after enabling
208 	 * the CPUID. Add "volatile" to not allow gcc to
209 	 * optimize the subsequent calls to this function.
210 	 */
211 	asm volatile ("pushfl		\n\t"
212 		      "pushfl		\n\t"
213 		      "popl %0		\n\t"
214 		      "movl %0, %1	\n\t"
215 		      "xorl %2, %0	\n\t"
216 		      "pushl %0		\n\t"
217 		      "popfl		\n\t"
218 		      "pushfl		\n\t"
219 		      "popl %0		\n\t"
220 		      "popfl		\n\t"
221 
222 		      : "=&r" (f1), "=&r" (f2)
223 		      : "ir" (flag));
224 
225 	return ((f1^f2) & flag) != 0;
226 }
227 
228 /* Probe for the CPUID instruction */
229 int have_cpuid_p(void)
230 {
231 	return flag_is_changeable_p(X86_EFLAGS_ID);
232 }
233 
234 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
235 {
236 	unsigned long lo, hi;
237 
238 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
239 		return;
240 
241 	/* Disable processor serial number: */
242 
243 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
244 	lo |= 0x200000;
245 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246 
247 	pr_notice("CPU serial number disabled.\n");
248 	clear_cpu_cap(c, X86_FEATURE_PN);
249 
250 	/* Disabling the serial number may affect the cpuid level */
251 	c->cpuid_level = cpuid_eax(0);
252 }
253 
254 static int __init x86_serial_nr_setup(char *s)
255 {
256 	disable_x86_serial_nr = 0;
257 	return 1;
258 }
259 __setup("serialnumber", x86_serial_nr_setup);
260 #else
261 static inline int flag_is_changeable_p(u32 flag)
262 {
263 	return 1;
264 }
265 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266 {
267 }
268 #endif
269 
270 static __init int setup_disable_smep(char *arg)
271 {
272 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
273 	return 1;
274 }
275 __setup("nosmep", setup_disable_smep);
276 
277 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
278 {
279 	if (cpu_has(c, X86_FEATURE_SMEP))
280 		cr4_set_bits(X86_CR4_SMEP);
281 }
282 
283 static __init int setup_disable_smap(char *arg)
284 {
285 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
286 	return 1;
287 }
288 __setup("nosmap", setup_disable_smap);
289 
290 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
291 {
292 	unsigned long eflags = native_save_fl();
293 
294 	/* This should have been cleared long ago */
295 	BUG_ON(eflags & X86_EFLAGS_AC);
296 
297 	if (cpu_has(c, X86_FEATURE_SMAP)) {
298 #ifdef CONFIG_X86_SMAP
299 		cr4_set_bits(X86_CR4_SMAP);
300 #else
301 		cr4_clear_bits(X86_CR4_SMAP);
302 #endif
303 	}
304 }
305 
306 /*
307  * Protection Keys are not available in 32-bit mode.
308  */
309 static bool pku_disabled;
310 
311 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
312 {
313 	if (!cpu_has(c, X86_FEATURE_PKU))
314 		return;
315 	if (pku_disabled)
316 		return;
317 
318 	cr4_set_bits(X86_CR4_PKE);
319 	/*
320 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
321 	 * cpuid bit to be set.  We need to ensure that we
322 	 * update that bit in this CPU's "cpu_info".
323 	 */
324 	get_cpu_cap(c);
325 }
326 
327 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
328 static __init int setup_disable_pku(char *arg)
329 {
330 	/*
331 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
332 	 * runtime checks are against OSPKE so clearing the
333 	 * bit does nothing.
334 	 *
335 	 * This way, we will see "pku" in cpuinfo, but not
336 	 * "ospke", which is exactly what we want.  It shows
337 	 * that the CPU has PKU, but the OS has not enabled it.
338 	 * This happens to be exactly how a system would look
339 	 * if we disabled the config option.
340 	 */
341 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
342 	pku_disabled = true;
343 	return 1;
344 }
345 __setup("nopku", setup_disable_pku);
346 #endif /* CONFIG_X86_64 */
347 
348 /*
349  * Some CPU features depend on higher CPUID levels, which may not always
350  * be available due to CPUID level capping or broken virtualization
351  * software.  Add those features to this table to auto-disable them.
352  */
353 struct cpuid_dependent_feature {
354 	u32 feature;
355 	u32 level;
356 };
357 
358 static const struct cpuid_dependent_feature
359 cpuid_dependent_features[] = {
360 	{ X86_FEATURE_MWAIT,		0x00000005 },
361 	{ X86_FEATURE_DCA,		0x00000009 },
362 	{ X86_FEATURE_XSAVE,		0x0000000d },
363 	{ 0, 0 }
364 };
365 
366 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
367 {
368 	const struct cpuid_dependent_feature *df;
369 
370 	for (df = cpuid_dependent_features; df->feature; df++) {
371 
372 		if (!cpu_has(c, df->feature))
373 			continue;
374 		/*
375 		 * Note: cpuid_level is set to -1 if unavailable, but
376 		 * extended_extended_level is set to 0 if unavailable
377 		 * and the legitimate extended levels are all negative
378 		 * when signed; hence the weird messing around with
379 		 * signs here...
380 		 */
381 		if (!((s32)df->level < 0 ?
382 		     (u32)df->level > (u32)c->extended_cpuid_level :
383 		     (s32)df->level > (s32)c->cpuid_level))
384 			continue;
385 
386 		clear_cpu_cap(c, df->feature);
387 		if (!warn)
388 			continue;
389 
390 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
391 			x86_cap_flag(df->feature), df->level);
392 	}
393 }
394 
395 /*
396  * Naming convention should be: <Name> [(<Codename>)]
397  * This table only is used unless init_<vendor>() below doesn't set it;
398  * in particular, if CPUID levels 0x80000002..4 are supported, this
399  * isn't used
400  */
401 
402 /* Look up CPU names by table lookup. */
403 static const char *table_lookup_model(struct cpuinfo_x86 *c)
404 {
405 #ifdef CONFIG_X86_32
406 	const struct legacy_cpu_model_info *info;
407 
408 	if (c->x86_model >= 16)
409 		return NULL;	/* Range check */
410 
411 	if (!this_cpu)
412 		return NULL;
413 
414 	info = this_cpu->legacy_models;
415 
416 	while (info->family) {
417 		if (info->family == c->x86)
418 			return info->model_names[c->x86_model];
419 		info++;
420 	}
421 #endif
422 	return NULL;		/* Not found */
423 }
424 
425 __u32 cpu_caps_cleared[NCAPINTS];
426 __u32 cpu_caps_set[NCAPINTS];
427 
428 void load_percpu_segment(int cpu)
429 {
430 #ifdef CONFIG_X86_32
431 	loadsegment(fs, __KERNEL_PERCPU);
432 #else
433 	__loadsegment_simple(gs, 0);
434 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
435 #endif
436 	load_stack_canary_segment();
437 }
438 
439 /*
440  * Current gdt points %fs at the "master" per-cpu area: after this,
441  * it's on the real one.
442  */
443 void switch_to_new_gdt(int cpu)
444 {
445 	struct desc_ptr gdt_descr;
446 
447 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
448 	gdt_descr.size = GDT_SIZE - 1;
449 	load_gdt(&gdt_descr);
450 	/* Reload the per-cpu base */
451 
452 	load_percpu_segment(cpu);
453 }
454 
455 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
456 
457 static void get_model_name(struct cpuinfo_x86 *c)
458 {
459 	unsigned int *v;
460 	char *p, *q, *s;
461 
462 	if (c->extended_cpuid_level < 0x80000004)
463 		return;
464 
465 	v = (unsigned int *)c->x86_model_id;
466 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
467 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
468 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
469 	c->x86_model_id[48] = 0;
470 
471 	/* Trim whitespace */
472 	p = q = s = &c->x86_model_id[0];
473 
474 	while (*p == ' ')
475 		p++;
476 
477 	while (*p) {
478 		/* Note the last non-whitespace index */
479 		if (!isspace(*p))
480 			s = q;
481 
482 		*q++ = *p++;
483 	}
484 
485 	*(s + 1) = '\0';
486 }
487 
488 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
489 {
490 	unsigned int n, dummy, ebx, ecx, edx, l2size;
491 
492 	n = c->extended_cpuid_level;
493 
494 	if (n >= 0x80000005) {
495 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
496 		c->x86_cache_size = (ecx>>24) + (edx>>24);
497 #ifdef CONFIG_X86_64
498 		/* On K8 L1 TLB is inclusive, so don't count it */
499 		c->x86_tlbsize = 0;
500 #endif
501 	}
502 
503 	if (n < 0x80000006)	/* Some chips just has a large L1. */
504 		return;
505 
506 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
507 	l2size = ecx >> 16;
508 
509 #ifdef CONFIG_X86_64
510 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
511 #else
512 	/* do processor-specific cache resizing */
513 	if (this_cpu->legacy_cache_size)
514 		l2size = this_cpu->legacy_cache_size(c, l2size);
515 
516 	/* Allow user to override all this if necessary. */
517 	if (cachesize_override != -1)
518 		l2size = cachesize_override;
519 
520 	if (l2size == 0)
521 		return;		/* Again, no L2 cache is possible */
522 #endif
523 
524 	c->x86_cache_size = l2size;
525 }
526 
527 u16 __read_mostly tlb_lli_4k[NR_INFO];
528 u16 __read_mostly tlb_lli_2m[NR_INFO];
529 u16 __read_mostly tlb_lli_4m[NR_INFO];
530 u16 __read_mostly tlb_lld_4k[NR_INFO];
531 u16 __read_mostly tlb_lld_2m[NR_INFO];
532 u16 __read_mostly tlb_lld_4m[NR_INFO];
533 u16 __read_mostly tlb_lld_1g[NR_INFO];
534 
535 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
536 {
537 	if (this_cpu->c_detect_tlb)
538 		this_cpu->c_detect_tlb(c);
539 
540 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
541 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
542 		tlb_lli_4m[ENTRIES]);
543 
544 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
545 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
546 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
547 }
548 
549 void detect_ht(struct cpuinfo_x86 *c)
550 {
551 #ifdef CONFIG_SMP
552 	u32 eax, ebx, ecx, edx;
553 	int index_msb, core_bits;
554 	static bool printed;
555 
556 	if (!cpu_has(c, X86_FEATURE_HT))
557 		return;
558 
559 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
560 		goto out;
561 
562 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
563 		return;
564 
565 	cpuid(1, &eax, &ebx, &ecx, &edx);
566 
567 	smp_num_siblings = (ebx & 0xff0000) >> 16;
568 
569 	if (smp_num_siblings == 1) {
570 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
571 		goto out;
572 	}
573 
574 	if (smp_num_siblings <= 1)
575 		goto out;
576 
577 	index_msb = get_count_order(smp_num_siblings);
578 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
579 
580 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
581 
582 	index_msb = get_count_order(smp_num_siblings);
583 
584 	core_bits = get_count_order(c->x86_max_cores);
585 
586 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
587 				       ((1 << core_bits) - 1);
588 
589 out:
590 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
591 		pr_info("CPU: Physical Processor ID: %d\n",
592 			c->phys_proc_id);
593 		pr_info("CPU: Processor Core ID: %d\n",
594 			c->cpu_core_id);
595 		printed = 1;
596 	}
597 #endif
598 }
599 
600 static void get_cpu_vendor(struct cpuinfo_x86 *c)
601 {
602 	char *v = c->x86_vendor_id;
603 	int i;
604 
605 	for (i = 0; i < X86_VENDOR_NUM; i++) {
606 		if (!cpu_devs[i])
607 			break;
608 
609 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
610 		    (cpu_devs[i]->c_ident[1] &&
611 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
612 
613 			this_cpu = cpu_devs[i];
614 			c->x86_vendor = this_cpu->c_x86_vendor;
615 			return;
616 		}
617 	}
618 
619 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
620 		    "CPU: Your system may be unstable.\n", v);
621 
622 	c->x86_vendor = X86_VENDOR_UNKNOWN;
623 	this_cpu = &default_cpu;
624 }
625 
626 void cpu_detect(struct cpuinfo_x86 *c)
627 {
628 	/* Get vendor name */
629 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
630 	      (unsigned int *)&c->x86_vendor_id[0],
631 	      (unsigned int *)&c->x86_vendor_id[8],
632 	      (unsigned int *)&c->x86_vendor_id[4]);
633 
634 	c->x86 = 4;
635 	/* Intel-defined flags: level 0x00000001 */
636 	if (c->cpuid_level >= 0x00000001) {
637 		u32 junk, tfms, cap0, misc;
638 
639 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
640 		c->x86		= x86_family(tfms);
641 		c->x86_model	= x86_model(tfms);
642 		c->x86_mask	= x86_stepping(tfms);
643 
644 		if (cap0 & (1<<19)) {
645 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
646 			c->x86_cache_alignment = c->x86_clflush_size;
647 		}
648 	}
649 }
650 
651 void get_cpu_cap(struct cpuinfo_x86 *c)
652 {
653 	u32 eax, ebx, ecx, edx;
654 
655 	/* Intel-defined flags: level 0x00000001 */
656 	if (c->cpuid_level >= 0x00000001) {
657 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
658 
659 		c->x86_capability[CPUID_1_ECX] = ecx;
660 		c->x86_capability[CPUID_1_EDX] = edx;
661 	}
662 
663 	/* Additional Intel-defined flags: level 0x00000007 */
664 	if (c->cpuid_level >= 0x00000007) {
665 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
666 
667 		c->x86_capability[CPUID_7_0_EBX] = ebx;
668 
669 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
670 		c->x86_capability[CPUID_7_ECX] = ecx;
671 	}
672 
673 	/* Extended state features: level 0x0000000d */
674 	if (c->cpuid_level >= 0x0000000d) {
675 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
676 
677 		c->x86_capability[CPUID_D_1_EAX] = eax;
678 	}
679 
680 	/* Additional Intel-defined flags: level 0x0000000F */
681 	if (c->cpuid_level >= 0x0000000F) {
682 
683 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
684 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
685 		c->x86_capability[CPUID_F_0_EDX] = edx;
686 
687 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
688 			/* will be overridden if occupancy monitoring exists */
689 			c->x86_cache_max_rmid = ebx;
690 
691 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
692 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
693 			c->x86_capability[CPUID_F_1_EDX] = edx;
694 
695 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
696 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
697 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
698 				c->x86_cache_max_rmid = ecx;
699 				c->x86_cache_occ_scale = ebx;
700 			}
701 		} else {
702 			c->x86_cache_max_rmid = -1;
703 			c->x86_cache_occ_scale = -1;
704 		}
705 	}
706 
707 	/* AMD-defined flags: level 0x80000001 */
708 	eax = cpuid_eax(0x80000000);
709 	c->extended_cpuid_level = eax;
710 
711 	if ((eax & 0xffff0000) == 0x80000000) {
712 		if (eax >= 0x80000001) {
713 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
714 
715 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
716 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
717 		}
718 	}
719 
720 	if (c->extended_cpuid_level >= 0x80000007) {
721 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
722 
723 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
724 		c->x86_power = edx;
725 	}
726 
727 	if (c->extended_cpuid_level >= 0x80000008) {
728 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
729 
730 		c->x86_virt_bits = (eax >> 8) & 0xff;
731 		c->x86_phys_bits = eax & 0xff;
732 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
733 	}
734 #ifdef CONFIG_X86_32
735 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
736 		c->x86_phys_bits = 36;
737 #endif
738 
739 	if (c->extended_cpuid_level >= 0x8000000a)
740 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
741 
742 	init_scattered_cpuid_features(c);
743 }
744 
745 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
746 {
747 #ifdef CONFIG_X86_32
748 	int i;
749 
750 	/*
751 	 * First of all, decide if this is a 486 or higher
752 	 * It's a 486 if we can modify the AC flag
753 	 */
754 	if (flag_is_changeable_p(X86_EFLAGS_AC))
755 		c->x86 = 4;
756 	else
757 		c->x86 = 3;
758 
759 	for (i = 0; i < X86_VENDOR_NUM; i++)
760 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
761 			c->x86_vendor_id[0] = 0;
762 			cpu_devs[i]->c_identify(c);
763 			if (c->x86_vendor_id[0]) {
764 				get_cpu_vendor(c);
765 				break;
766 			}
767 		}
768 #endif
769 }
770 
771 /*
772  * Do minimum CPU detection early.
773  * Fields really needed: vendor, cpuid_level, family, model, mask,
774  * cache alignment.
775  * The others are not touched to avoid unwanted side effects.
776  *
777  * WARNING: this function is only called on the BP.  Don't add code here
778  * that is supposed to run on all CPUs.
779  */
780 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
781 {
782 #ifdef CONFIG_X86_64
783 	c->x86_clflush_size = 64;
784 	c->x86_phys_bits = 36;
785 	c->x86_virt_bits = 48;
786 #else
787 	c->x86_clflush_size = 32;
788 	c->x86_phys_bits = 32;
789 	c->x86_virt_bits = 32;
790 #endif
791 	c->x86_cache_alignment = c->x86_clflush_size;
792 
793 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
794 	c->extended_cpuid_level = 0;
795 
796 	if (!have_cpuid_p())
797 		identify_cpu_without_cpuid(c);
798 
799 	/* cyrix could have cpuid enabled via c_identify()*/
800 	if (!have_cpuid_p())
801 		return;
802 
803 	cpu_detect(c);
804 	get_cpu_vendor(c);
805 	get_cpu_cap(c);
806 
807 	if (this_cpu->c_early_init)
808 		this_cpu->c_early_init(c);
809 
810 	c->cpu_index = 0;
811 	filter_cpuid_features(c, false);
812 
813 	if (this_cpu->c_bsp_init)
814 		this_cpu->c_bsp_init(c);
815 
816 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
817 	fpu__init_system(c);
818 }
819 
820 void __init early_cpu_init(void)
821 {
822 	const struct cpu_dev *const *cdev;
823 	int count = 0;
824 
825 #ifdef CONFIG_PROCESSOR_SELECT
826 	pr_info("KERNEL supported cpus:\n");
827 #endif
828 
829 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
830 		const struct cpu_dev *cpudev = *cdev;
831 
832 		if (count >= X86_VENDOR_NUM)
833 			break;
834 		cpu_devs[count] = cpudev;
835 		count++;
836 
837 #ifdef CONFIG_PROCESSOR_SELECT
838 		{
839 			unsigned int j;
840 
841 			for (j = 0; j < 2; j++) {
842 				if (!cpudev->c_ident[j])
843 					continue;
844 				pr_info("  %s %s\n", cpudev->c_vendor,
845 					cpudev->c_ident[j]);
846 			}
847 		}
848 #endif
849 	}
850 	early_identify_cpu(&boot_cpu_data);
851 }
852 
853 /*
854  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
855  * unfortunately, that's not true in practice because of early VIA
856  * chips and (more importantly) broken virtualizers that are not easy
857  * to detect. In the latter case it doesn't even *fail* reliably, so
858  * probing for it doesn't even work. Disable it completely on 32-bit
859  * unless we can find a reliable way to detect all the broken cases.
860  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
861  */
862 static void detect_nopl(struct cpuinfo_x86 *c)
863 {
864 #ifdef CONFIG_X86_32
865 	clear_cpu_cap(c, X86_FEATURE_NOPL);
866 #else
867 	set_cpu_cap(c, X86_FEATURE_NOPL);
868 #endif
869 }
870 
871 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
872 {
873 #ifdef CONFIG_X86_64
874 	/*
875 	 * Empirically, writing zero to a segment selector on AMD does
876 	 * not clear the base, whereas writing zero to a segment
877 	 * selector on Intel does clear the base.  Intel's behavior
878 	 * allows slightly faster context switches in the common case
879 	 * where GS is unused by the prev and next threads.
880 	 *
881 	 * Since neither vendor documents this anywhere that I can see,
882 	 * detect it directly instead of hardcoding the choice by
883 	 * vendor.
884 	 *
885 	 * I've designated AMD's behavior as the "bug" because it's
886 	 * counterintuitive and less friendly.
887 	 */
888 
889 	unsigned long old_base, tmp;
890 	rdmsrl(MSR_FS_BASE, old_base);
891 	wrmsrl(MSR_FS_BASE, 1);
892 	loadsegment(fs, 0);
893 	rdmsrl(MSR_FS_BASE, tmp);
894 	if (tmp != 0)
895 		set_cpu_bug(c, X86_BUG_NULL_SEG);
896 	wrmsrl(MSR_FS_BASE, old_base);
897 #endif
898 }
899 
900 static void generic_identify(struct cpuinfo_x86 *c)
901 {
902 	c->extended_cpuid_level = 0;
903 
904 	if (!have_cpuid_p())
905 		identify_cpu_without_cpuid(c);
906 
907 	/* cyrix could have cpuid enabled via c_identify()*/
908 	if (!have_cpuid_p())
909 		return;
910 
911 	cpu_detect(c);
912 
913 	get_cpu_vendor(c);
914 
915 	get_cpu_cap(c);
916 
917 	if (c->cpuid_level >= 0x00000001) {
918 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
919 #ifdef CONFIG_X86_32
920 # ifdef CONFIG_SMP
921 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
922 # else
923 		c->apicid = c->initial_apicid;
924 # endif
925 #endif
926 		c->phys_proc_id = c->initial_apicid;
927 	}
928 
929 	get_model_name(c); /* Default name */
930 
931 	detect_nopl(c);
932 
933 	detect_null_seg_behavior(c);
934 
935 	/*
936 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
937 	 * systems that run Linux at CPL > 0 may or may not have the
938 	 * issue, but, even if they have the issue, there's absolutely
939 	 * nothing we can do about it because we can't use the real IRET
940 	 * instruction.
941 	 *
942 	 * NB: For the time being, only 32-bit kernels support
943 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
944 	 * whether to apply espfix using paravirt hooks.  If any
945 	 * non-paravirt system ever shows up that does *not* have the
946 	 * ESPFIX issue, we can change this.
947 	 */
948 #ifdef CONFIG_X86_32
949 # ifdef CONFIG_PARAVIRT
950 	do {
951 		extern void native_iret(void);
952 		if (pv_cpu_ops.iret == native_iret)
953 			set_cpu_bug(c, X86_BUG_ESPFIX);
954 	} while (0);
955 # else
956 	set_cpu_bug(c, X86_BUG_ESPFIX);
957 # endif
958 #endif
959 }
960 
961 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
962 {
963 	/*
964 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
965 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
966 	 * in case CQM bits really aren't there in this CPU.
967 	 */
968 	if (c != &boot_cpu_data) {
969 		boot_cpu_data.x86_cache_max_rmid =
970 			min(boot_cpu_data.x86_cache_max_rmid,
971 			    c->x86_cache_max_rmid);
972 	}
973 }
974 
975 /*
976  * This does the hard work of actually picking apart the CPU stuff...
977  */
978 static void identify_cpu(struct cpuinfo_x86 *c)
979 {
980 	int i;
981 
982 	c->loops_per_jiffy = loops_per_jiffy;
983 	c->x86_cache_size = -1;
984 	c->x86_vendor = X86_VENDOR_UNKNOWN;
985 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
986 	c->x86_vendor_id[0] = '\0'; /* Unset */
987 	c->x86_model_id[0] = '\0';  /* Unset */
988 	c->x86_max_cores = 1;
989 	c->x86_coreid_bits = 0;
990 #ifdef CONFIG_X86_64
991 	c->x86_clflush_size = 64;
992 	c->x86_phys_bits = 36;
993 	c->x86_virt_bits = 48;
994 #else
995 	c->cpuid_level = -1;	/* CPUID not detected */
996 	c->x86_clflush_size = 32;
997 	c->x86_phys_bits = 32;
998 	c->x86_virt_bits = 32;
999 #endif
1000 	c->x86_cache_alignment = c->x86_clflush_size;
1001 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1002 
1003 	generic_identify(c);
1004 
1005 	if (this_cpu->c_identify)
1006 		this_cpu->c_identify(c);
1007 
1008 	/* Clear/Set all flags overridden by options, after probe */
1009 	for (i = 0; i < NCAPINTS; i++) {
1010 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
1011 		c->x86_capability[i] |= cpu_caps_set[i];
1012 	}
1013 
1014 #ifdef CONFIG_X86_64
1015 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1016 #endif
1017 
1018 	/*
1019 	 * Vendor-specific initialization.  In this section we
1020 	 * canonicalize the feature flags, meaning if there are
1021 	 * features a certain CPU supports which CPUID doesn't
1022 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1023 	 * we handle them here.
1024 	 *
1025 	 * At the end of this section, c->x86_capability better
1026 	 * indicate the features this CPU genuinely supports!
1027 	 */
1028 	if (this_cpu->c_init)
1029 		this_cpu->c_init(c);
1030 
1031 	/* Disable the PN if appropriate */
1032 	squash_the_stupid_serial_number(c);
1033 
1034 	/* Set up SMEP/SMAP */
1035 	setup_smep(c);
1036 	setup_smap(c);
1037 
1038 	/*
1039 	 * The vendor-specific functions might have changed features.
1040 	 * Now we do "generic changes."
1041 	 */
1042 
1043 	/* Filter out anything that depends on CPUID levels we don't have */
1044 	filter_cpuid_features(c, true);
1045 
1046 	/* If the model name is still unset, do table lookup. */
1047 	if (!c->x86_model_id[0]) {
1048 		const char *p;
1049 		p = table_lookup_model(c);
1050 		if (p)
1051 			strcpy(c->x86_model_id, p);
1052 		else
1053 			/* Last resort... */
1054 			sprintf(c->x86_model_id, "%02x/%02x",
1055 				c->x86, c->x86_model);
1056 	}
1057 
1058 #ifdef CONFIG_X86_64
1059 	detect_ht(c);
1060 #endif
1061 
1062 	init_hypervisor(c);
1063 	x86_init_rdrand(c);
1064 	x86_init_cache_qos(c);
1065 	setup_pku(c);
1066 
1067 	/*
1068 	 * Clear/Set all flags overridden by options, need do it
1069 	 * before following smp all cpus cap AND.
1070 	 */
1071 	for (i = 0; i < NCAPINTS; i++) {
1072 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
1073 		c->x86_capability[i] |= cpu_caps_set[i];
1074 	}
1075 
1076 	/*
1077 	 * On SMP, boot_cpu_data holds the common feature set between
1078 	 * all CPUs; so make sure that we indicate which features are
1079 	 * common between the CPUs.  The first time this routine gets
1080 	 * executed, c == &boot_cpu_data.
1081 	 */
1082 	if (c != &boot_cpu_data) {
1083 		/* AND the already accumulated flags with these */
1084 		for (i = 0; i < NCAPINTS; i++)
1085 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1086 
1087 		/* OR, i.e. replicate the bug flags */
1088 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1089 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1090 	}
1091 
1092 	/* Init Machine Check Exception if available. */
1093 	mcheck_cpu_init(c);
1094 
1095 	select_idle_routine(c);
1096 
1097 #ifdef CONFIG_NUMA
1098 	numa_add_cpu(smp_processor_id());
1099 #endif
1100 	/* The boot/hotplug time assigment got cleared, restore it */
1101 	c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
1102 }
1103 
1104 /*
1105  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1106  * on 32-bit kernels:
1107  */
1108 #ifdef CONFIG_X86_32
1109 void enable_sep_cpu(void)
1110 {
1111 	struct tss_struct *tss;
1112 	int cpu;
1113 
1114 	if (!boot_cpu_has(X86_FEATURE_SEP))
1115 		return;
1116 
1117 	cpu = get_cpu();
1118 	tss = &per_cpu(cpu_tss, cpu);
1119 
1120 	/*
1121 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1122 	 * see the big comment in struct x86_hw_tss's definition.
1123 	 */
1124 
1125 	tss->x86_tss.ss1 = __KERNEL_CS;
1126 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1127 
1128 	wrmsr(MSR_IA32_SYSENTER_ESP,
1129 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1130 	      0);
1131 
1132 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1133 
1134 	put_cpu();
1135 }
1136 #endif
1137 
1138 void __init identify_boot_cpu(void)
1139 {
1140 	identify_cpu(&boot_cpu_data);
1141 	init_amd_e400_c1e_mask();
1142 #ifdef CONFIG_X86_32
1143 	sysenter_setup();
1144 	enable_sep_cpu();
1145 #endif
1146 	cpu_detect_tlb(&boot_cpu_data);
1147 }
1148 
1149 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1150 {
1151 	BUG_ON(c == &boot_cpu_data);
1152 	identify_cpu(c);
1153 #ifdef CONFIG_X86_32
1154 	enable_sep_cpu();
1155 #endif
1156 	mtrr_ap_init();
1157 }
1158 
1159 struct msr_range {
1160 	unsigned	min;
1161 	unsigned	max;
1162 };
1163 
1164 static const struct msr_range msr_range_array[] = {
1165 	{ 0x00000000, 0x00000418},
1166 	{ 0xc0000000, 0xc000040b},
1167 	{ 0xc0010000, 0xc0010142},
1168 	{ 0xc0011000, 0xc001103b},
1169 };
1170 
1171 static void __print_cpu_msr(void)
1172 {
1173 	unsigned index_min, index_max;
1174 	unsigned index;
1175 	u64 val;
1176 	int i;
1177 
1178 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1179 		index_min = msr_range_array[i].min;
1180 		index_max = msr_range_array[i].max;
1181 
1182 		for (index = index_min; index < index_max; index++) {
1183 			if (rdmsrl_safe(index, &val))
1184 				continue;
1185 			pr_info(" MSR%08x: %016llx\n", index, val);
1186 		}
1187 	}
1188 }
1189 
1190 static int show_msr;
1191 
1192 static __init int setup_show_msr(char *arg)
1193 {
1194 	int num;
1195 
1196 	get_option(&arg, &num);
1197 
1198 	if (num > 0)
1199 		show_msr = num;
1200 	return 1;
1201 }
1202 __setup("show_msr=", setup_show_msr);
1203 
1204 static __init int setup_noclflush(char *arg)
1205 {
1206 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1207 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1208 	return 1;
1209 }
1210 __setup("noclflush", setup_noclflush);
1211 
1212 void print_cpu_info(struct cpuinfo_x86 *c)
1213 {
1214 	const char *vendor = NULL;
1215 
1216 	if (c->x86_vendor < X86_VENDOR_NUM) {
1217 		vendor = this_cpu->c_vendor;
1218 	} else {
1219 		if (c->cpuid_level >= 0)
1220 			vendor = c->x86_vendor_id;
1221 	}
1222 
1223 	if (vendor && !strstr(c->x86_model_id, vendor))
1224 		pr_cont("%s ", vendor);
1225 
1226 	if (c->x86_model_id[0])
1227 		pr_cont("%s", c->x86_model_id);
1228 	else
1229 		pr_cont("%d86", c->x86);
1230 
1231 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1232 
1233 	if (c->x86_mask || c->cpuid_level >= 0)
1234 		pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1235 	else
1236 		pr_cont(")\n");
1237 
1238 	print_cpu_msr(c);
1239 }
1240 
1241 void print_cpu_msr(struct cpuinfo_x86 *c)
1242 {
1243 	if (c->cpu_index < show_msr)
1244 		__print_cpu_msr();
1245 }
1246 
1247 static __init int setup_disablecpuid(char *arg)
1248 {
1249 	int bit;
1250 
1251 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1252 		setup_clear_cpu_cap(bit);
1253 	else
1254 		return 0;
1255 
1256 	return 1;
1257 }
1258 __setup("clearcpuid=", setup_disablecpuid);
1259 
1260 #ifdef CONFIG_X86_64
1261 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1262 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1263 				    (unsigned long) debug_idt_table };
1264 
1265 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1266 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1267 
1268 /*
1269  * The following percpu variables are hot.  Align current_task to
1270  * cacheline size such that they fall in the same cacheline.
1271  */
1272 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1273 	&init_task;
1274 EXPORT_PER_CPU_SYMBOL(current_task);
1275 
1276 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1277 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1278 
1279 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1280 
1281 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1282 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1283 
1284 /*
1285  * Special IST stacks which the CPU switches to when it calls
1286  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1287  * limit), all of them are 4K, except the debug stack which
1288  * is 8K.
1289  */
1290 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1291 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1292 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1293 };
1294 
1295 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1296 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1297 
1298 /* May not be marked __init: used by software suspend */
1299 void syscall_init(void)
1300 {
1301 	/*
1302 	 * LSTAR and STAR live in a bit strange symbiosis.
1303 	 * They both write to the same internal register. STAR allows to
1304 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1305 	 */
1306 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1307 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1308 
1309 #ifdef CONFIG_IA32_EMULATION
1310 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1311 	/*
1312 	 * This only works on Intel CPUs.
1313 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1314 	 * This does not cause SYSENTER to jump to the wrong location, because
1315 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1316 	 */
1317 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1318 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1319 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1320 #else
1321 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1322 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1323 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1324 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1325 #endif
1326 
1327 	/* Flags to clear on syscall */
1328 	wrmsrl(MSR_SYSCALL_MASK,
1329 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1330 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1331 }
1332 
1333 /*
1334  * Copies of the original ist values from the tss are only accessed during
1335  * debugging, no special alignment required.
1336  */
1337 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1338 
1339 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1340 DEFINE_PER_CPU(int, debug_stack_usage);
1341 
1342 int is_debug_stack(unsigned long addr)
1343 {
1344 	return __this_cpu_read(debug_stack_usage) ||
1345 		(addr <= __this_cpu_read(debug_stack_addr) &&
1346 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1347 }
1348 NOKPROBE_SYMBOL(is_debug_stack);
1349 
1350 DEFINE_PER_CPU(u32, debug_idt_ctr);
1351 
1352 void debug_stack_set_zero(void)
1353 {
1354 	this_cpu_inc(debug_idt_ctr);
1355 	load_current_idt();
1356 }
1357 NOKPROBE_SYMBOL(debug_stack_set_zero);
1358 
1359 void debug_stack_reset(void)
1360 {
1361 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1362 		return;
1363 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1364 		load_current_idt();
1365 }
1366 NOKPROBE_SYMBOL(debug_stack_reset);
1367 
1368 #else	/* CONFIG_X86_64 */
1369 
1370 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1371 EXPORT_PER_CPU_SYMBOL(current_task);
1372 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1373 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1374 
1375 /*
1376  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1377  * the top of the kernel stack.  Use an extra percpu variable to track the
1378  * top of the kernel stack directly.
1379  */
1380 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1381 	(unsigned long)&init_thread_union + THREAD_SIZE;
1382 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1383 
1384 #ifdef CONFIG_CC_STACKPROTECTOR
1385 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1386 #endif
1387 
1388 #endif	/* CONFIG_X86_64 */
1389 
1390 /*
1391  * Clear all 6 debug registers:
1392  */
1393 static void clear_all_debug_regs(void)
1394 {
1395 	int i;
1396 
1397 	for (i = 0; i < 8; i++) {
1398 		/* Ignore db4, db5 */
1399 		if ((i == 4) || (i == 5))
1400 			continue;
1401 
1402 		set_debugreg(0, i);
1403 	}
1404 }
1405 
1406 #ifdef CONFIG_KGDB
1407 /*
1408  * Restore debug regs if using kgdbwait and you have a kernel debugger
1409  * connection established.
1410  */
1411 static void dbg_restore_debug_regs(void)
1412 {
1413 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1414 		arch_kgdb_ops.correct_hw_break();
1415 }
1416 #else /* ! CONFIG_KGDB */
1417 #define dbg_restore_debug_regs()
1418 #endif /* ! CONFIG_KGDB */
1419 
1420 static void wait_for_master_cpu(int cpu)
1421 {
1422 #ifdef CONFIG_SMP
1423 	/*
1424 	 * wait for ACK from master CPU before continuing
1425 	 * with AP initialization
1426 	 */
1427 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1428 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1429 		cpu_relax();
1430 #endif
1431 }
1432 
1433 /*
1434  * cpu_init() initializes state that is per-CPU. Some data is already
1435  * initialized (naturally) in the bootstrap process, such as the GDT
1436  * and IDT. We reload them nevertheless, this function acts as a
1437  * 'CPU state barrier', nothing should get across.
1438  * A lot of state is already set up in PDA init for 64 bit
1439  */
1440 #ifdef CONFIG_X86_64
1441 
1442 void cpu_init(void)
1443 {
1444 	struct orig_ist *oist;
1445 	struct task_struct *me;
1446 	struct tss_struct *t;
1447 	unsigned long v;
1448 	int cpu = stack_smp_processor_id();
1449 	int i;
1450 
1451 	wait_for_master_cpu(cpu);
1452 
1453 	/*
1454 	 * Initialize the CR4 shadow before doing anything that could
1455 	 * try to read it.
1456 	 */
1457 	cr4_init_shadow();
1458 
1459 	/*
1460 	 * Load microcode on this cpu if a valid microcode is available.
1461 	 * This is early microcode loading procedure.
1462 	 */
1463 	load_ucode_ap();
1464 
1465 	t = &per_cpu(cpu_tss, cpu);
1466 	oist = &per_cpu(orig_ist, cpu);
1467 
1468 #ifdef CONFIG_NUMA
1469 	if (this_cpu_read(numa_node) == 0 &&
1470 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1471 		set_numa_node(early_cpu_to_node(cpu));
1472 #endif
1473 
1474 	me = current;
1475 
1476 	pr_debug("Initializing CPU#%d\n", cpu);
1477 
1478 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1479 
1480 	/*
1481 	 * Initialize the per-CPU GDT with the boot GDT,
1482 	 * and set up the GDT descriptor:
1483 	 */
1484 
1485 	switch_to_new_gdt(cpu);
1486 	loadsegment(fs, 0);
1487 
1488 	load_current_idt();
1489 
1490 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1491 	syscall_init();
1492 
1493 	wrmsrl(MSR_FS_BASE, 0);
1494 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1495 	barrier();
1496 
1497 	x86_configure_nx();
1498 	x2apic_setup();
1499 
1500 	/*
1501 	 * set up and load the per-CPU TSS
1502 	 */
1503 	if (!oist->ist[0]) {
1504 		char *estacks = per_cpu(exception_stacks, cpu);
1505 
1506 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1507 			estacks += exception_stack_sizes[v];
1508 			oist->ist[v] = t->x86_tss.ist[v] =
1509 					(unsigned long)estacks;
1510 			if (v == DEBUG_STACK-1)
1511 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1512 		}
1513 	}
1514 
1515 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1516 
1517 	/*
1518 	 * <= is required because the CPU will access up to
1519 	 * 8 bits beyond the end of the IO permission bitmap.
1520 	 */
1521 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1522 		t->io_bitmap[i] = ~0UL;
1523 
1524 	atomic_inc(&init_mm.mm_count);
1525 	me->active_mm = &init_mm;
1526 	BUG_ON(me->mm);
1527 	enter_lazy_tlb(&init_mm, me);
1528 
1529 	load_sp0(t, &current->thread);
1530 	set_tss_desc(cpu, t);
1531 	load_TR_desc();
1532 	load_mm_ldt(&init_mm);
1533 
1534 	clear_all_debug_regs();
1535 	dbg_restore_debug_regs();
1536 
1537 	fpu__init_cpu();
1538 
1539 	if (is_uv_system())
1540 		uv_cpu_init();
1541 }
1542 
1543 #else
1544 
1545 void cpu_init(void)
1546 {
1547 	int cpu = smp_processor_id();
1548 	struct task_struct *curr = current;
1549 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1550 	struct thread_struct *thread = &curr->thread;
1551 
1552 	wait_for_master_cpu(cpu);
1553 
1554 	/*
1555 	 * Initialize the CR4 shadow before doing anything that could
1556 	 * try to read it.
1557 	 */
1558 	cr4_init_shadow();
1559 
1560 	show_ucode_info_early();
1561 
1562 	pr_info("Initializing CPU#%d\n", cpu);
1563 
1564 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1565 	    boot_cpu_has(X86_FEATURE_TSC) ||
1566 	    boot_cpu_has(X86_FEATURE_DE))
1567 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1568 
1569 	load_current_idt();
1570 	switch_to_new_gdt(cpu);
1571 
1572 	/*
1573 	 * Set up and load the per-CPU TSS and LDT
1574 	 */
1575 	atomic_inc(&init_mm.mm_count);
1576 	curr->active_mm = &init_mm;
1577 	BUG_ON(curr->mm);
1578 	enter_lazy_tlb(&init_mm, curr);
1579 
1580 	load_sp0(t, thread);
1581 	set_tss_desc(cpu, t);
1582 	load_TR_desc();
1583 	load_mm_ldt(&init_mm);
1584 
1585 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1586 
1587 #ifdef CONFIG_DOUBLEFAULT
1588 	/* Set up doublefault TSS pointer in the GDT */
1589 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1590 #endif
1591 
1592 	clear_all_debug_regs();
1593 	dbg_restore_debug_regs();
1594 
1595 	fpu__init_cpu();
1596 }
1597 #endif
1598 
1599 static void bsp_resume(void)
1600 {
1601 	if (this_cpu->c_bsp_resume)
1602 		this_cpu->c_bsp_resume(&boot_cpu_data);
1603 }
1604 
1605 static struct syscore_ops cpu_syscore_ops = {
1606 	.resume		= bsp_resume,
1607 };
1608 
1609 static int __init init_cpu_syscore(void)
1610 {
1611 	register_syscore_ops(&cpu_syscore_ops);
1612 	return 0;
1613 }
1614 core_initcall(init_cpu_syscore);
1615