1 #include <linux/bootmem.h> 2 #include <linux/linkage.h> 3 #include <linux/bitops.h> 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/percpu.h> 7 #include <linux/string.h> 8 #include <linux/ctype.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/init.h> 12 #include <linux/kprobes.h> 13 #include <linux/kgdb.h> 14 #include <linux/smp.h> 15 #include <linux/io.h> 16 17 #include <asm/stackprotector.h> 18 #include <asm/perf_event.h> 19 #include <asm/mmu_context.h> 20 #include <asm/archrandom.h> 21 #include <asm/hypervisor.h> 22 #include <asm/processor.h> 23 #include <asm/tlbflush.h> 24 #include <asm/debugreg.h> 25 #include <asm/sections.h> 26 #include <asm/vsyscall.h> 27 #include <linux/topology.h> 28 #include <linux/cpumask.h> 29 #include <asm/pgtable.h> 30 #include <linux/atomic.h> 31 #include <asm/proto.h> 32 #include <asm/setup.h> 33 #include <asm/apic.h> 34 #include <asm/desc.h> 35 #include <asm/fpu/internal.h> 36 #include <asm/mtrr.h> 37 #include <linux/numa.h> 38 #include <asm/asm.h> 39 #include <asm/cpu.h> 40 #include <asm/mce.h> 41 #include <asm/msr.h> 42 #include <asm/pat.h> 43 #include <asm/microcode.h> 44 #include <asm/microcode_intel.h> 45 46 #ifdef CONFIG_X86_LOCAL_APIC 47 #include <asm/uv/uv.h> 48 #endif 49 50 #include "cpu.h" 51 52 /* all of these masks are initialized in setup_cpu_local_masks() */ 53 cpumask_var_t cpu_initialized_mask; 54 cpumask_var_t cpu_callout_mask; 55 cpumask_var_t cpu_callin_mask; 56 57 /* representing cpus for which sibling maps can be computed */ 58 cpumask_var_t cpu_sibling_setup_mask; 59 60 /* correctly size the local cpu masks */ 61 void __init setup_cpu_local_masks(void) 62 { 63 alloc_bootmem_cpumask_var(&cpu_initialized_mask); 64 alloc_bootmem_cpumask_var(&cpu_callin_mask); 65 alloc_bootmem_cpumask_var(&cpu_callout_mask); 66 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); 67 } 68 69 static void default_init(struct cpuinfo_x86 *c) 70 { 71 #ifdef CONFIG_X86_64 72 cpu_detect_cache_sizes(c); 73 #else 74 /* Not much we can do here... */ 75 /* Check if at least it has cpuid */ 76 if (c->cpuid_level == -1) { 77 /* No cpuid. It must be an ancient CPU */ 78 if (c->x86 == 4) 79 strcpy(c->x86_model_id, "486"); 80 else if (c->x86 == 3) 81 strcpy(c->x86_model_id, "386"); 82 } 83 #endif 84 } 85 86 static const struct cpu_dev default_cpu = { 87 .c_init = default_init, 88 .c_vendor = "Unknown", 89 .c_x86_vendor = X86_VENDOR_UNKNOWN, 90 }; 91 92 static const struct cpu_dev *this_cpu = &default_cpu; 93 94 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 95 #ifdef CONFIG_X86_64 96 /* 97 * We need valid kernel segments for data and code in long mode too 98 * IRET will check the segment types kkeil 2000/10/28 99 * Also sysret mandates a special GDT layout 100 * 101 * TLS descriptors are currently at a different place compared to i386. 102 * Hopefully nobody expects them at a fixed place (Wine?) 103 */ 104 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 105 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 106 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 107 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), 108 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), 109 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), 110 #else 111 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), 112 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 113 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), 114 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), 115 /* 116 * Segments used for calling PnP BIOS have byte granularity. 117 * They code segments and data segments have fixed 64k limits, 118 * the transfer segment sizes are set at run time. 119 */ 120 /* 32-bit code */ 121 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 122 /* 16-bit code */ 123 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 124 /* 16-bit data */ 125 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), 126 /* 16-bit data */ 127 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), 128 /* 16-bit data */ 129 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), 130 /* 131 * The APM segments have byte granularity and their bases 132 * are set at run time. All have 64k limits. 133 */ 134 /* 32-bit code */ 135 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), 136 /* 16-bit code */ 137 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), 138 /* data */ 139 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), 140 141 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 142 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), 143 GDT_STACK_CANARY_INIT 144 #endif 145 } }; 146 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 147 148 static int __init x86_mpx_setup(char *s) 149 { 150 /* require an exact match without trailing characters */ 151 if (strlen(s)) 152 return 0; 153 154 /* do not emit a message if the feature is not present */ 155 if (!boot_cpu_has(X86_FEATURE_MPX)) 156 return 1; 157 158 setup_clear_cpu_cap(X86_FEATURE_MPX); 159 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); 160 return 1; 161 } 162 __setup("nompx", x86_mpx_setup); 163 164 #ifdef CONFIG_X86_32 165 static int cachesize_override = -1; 166 static int disable_x86_serial_nr = 1; 167 168 static int __init cachesize_setup(char *str) 169 { 170 get_option(&str, &cachesize_override); 171 return 1; 172 } 173 __setup("cachesize=", cachesize_setup); 174 175 static int __init x86_sep_setup(char *s) 176 { 177 setup_clear_cpu_cap(X86_FEATURE_SEP); 178 return 1; 179 } 180 __setup("nosep", x86_sep_setup); 181 182 /* Standard macro to see if a specific flag is changeable */ 183 static inline int flag_is_changeable_p(u32 flag) 184 { 185 u32 f1, f2; 186 187 /* 188 * Cyrix and IDT cpus allow disabling of CPUID 189 * so the code below may return different results 190 * when it is executed before and after enabling 191 * the CPUID. Add "volatile" to not allow gcc to 192 * optimize the subsequent calls to this function. 193 */ 194 asm volatile ("pushfl \n\t" 195 "pushfl \n\t" 196 "popl %0 \n\t" 197 "movl %0, %1 \n\t" 198 "xorl %2, %0 \n\t" 199 "pushl %0 \n\t" 200 "popfl \n\t" 201 "pushfl \n\t" 202 "popl %0 \n\t" 203 "popfl \n\t" 204 205 : "=&r" (f1), "=&r" (f2) 206 : "ir" (flag)); 207 208 return ((f1^f2) & flag) != 0; 209 } 210 211 /* Probe for the CPUID instruction */ 212 int have_cpuid_p(void) 213 { 214 return flag_is_changeable_p(X86_EFLAGS_ID); 215 } 216 217 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 218 { 219 unsigned long lo, hi; 220 221 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 222 return; 223 224 /* Disable processor serial number: */ 225 226 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 227 lo |= 0x200000; 228 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 229 230 printk(KERN_NOTICE "CPU serial number disabled.\n"); 231 clear_cpu_cap(c, X86_FEATURE_PN); 232 233 /* Disabling the serial number may affect the cpuid level */ 234 c->cpuid_level = cpuid_eax(0); 235 } 236 237 static int __init x86_serial_nr_setup(char *s) 238 { 239 disable_x86_serial_nr = 0; 240 return 1; 241 } 242 __setup("serialnumber", x86_serial_nr_setup); 243 #else 244 static inline int flag_is_changeable_p(u32 flag) 245 { 246 return 1; 247 } 248 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 249 { 250 } 251 #endif 252 253 static __init int setup_disable_smep(char *arg) 254 { 255 setup_clear_cpu_cap(X86_FEATURE_SMEP); 256 return 1; 257 } 258 __setup("nosmep", setup_disable_smep); 259 260 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 261 { 262 if (cpu_has(c, X86_FEATURE_SMEP)) 263 cr4_set_bits(X86_CR4_SMEP); 264 } 265 266 static __init int setup_disable_smap(char *arg) 267 { 268 setup_clear_cpu_cap(X86_FEATURE_SMAP); 269 return 1; 270 } 271 __setup("nosmap", setup_disable_smap); 272 273 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 274 { 275 unsigned long eflags; 276 277 /* This should have been cleared long ago */ 278 raw_local_save_flags(eflags); 279 BUG_ON(eflags & X86_EFLAGS_AC); 280 281 if (cpu_has(c, X86_FEATURE_SMAP)) { 282 #ifdef CONFIG_X86_SMAP 283 cr4_set_bits(X86_CR4_SMAP); 284 #else 285 cr4_clear_bits(X86_CR4_SMAP); 286 #endif 287 } 288 } 289 290 /* 291 * Some CPU features depend on higher CPUID levels, which may not always 292 * be available due to CPUID level capping or broken virtualization 293 * software. Add those features to this table to auto-disable them. 294 */ 295 struct cpuid_dependent_feature { 296 u32 feature; 297 u32 level; 298 }; 299 300 static const struct cpuid_dependent_feature 301 cpuid_dependent_features[] = { 302 { X86_FEATURE_MWAIT, 0x00000005 }, 303 { X86_FEATURE_DCA, 0x00000009 }, 304 { X86_FEATURE_XSAVE, 0x0000000d }, 305 { 0, 0 } 306 }; 307 308 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 309 { 310 const struct cpuid_dependent_feature *df; 311 312 for (df = cpuid_dependent_features; df->feature; df++) { 313 314 if (!cpu_has(c, df->feature)) 315 continue; 316 /* 317 * Note: cpuid_level is set to -1 if unavailable, but 318 * extended_extended_level is set to 0 if unavailable 319 * and the legitimate extended levels are all negative 320 * when signed; hence the weird messing around with 321 * signs here... 322 */ 323 if (!((s32)df->level < 0 ? 324 (u32)df->level > (u32)c->extended_cpuid_level : 325 (s32)df->level > (s32)c->cpuid_level)) 326 continue; 327 328 clear_cpu_cap(c, df->feature); 329 if (!warn) 330 continue; 331 332 printk(KERN_WARNING 333 "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", 334 x86_cap_flag(df->feature), df->level); 335 } 336 } 337 338 /* 339 * Naming convention should be: <Name> [(<Codename>)] 340 * This table only is used unless init_<vendor>() below doesn't set it; 341 * in particular, if CPUID levels 0x80000002..4 are supported, this 342 * isn't used 343 */ 344 345 /* Look up CPU names by table lookup. */ 346 static const char *table_lookup_model(struct cpuinfo_x86 *c) 347 { 348 #ifdef CONFIG_X86_32 349 const struct legacy_cpu_model_info *info; 350 351 if (c->x86_model >= 16) 352 return NULL; /* Range check */ 353 354 if (!this_cpu) 355 return NULL; 356 357 info = this_cpu->legacy_models; 358 359 while (info->family) { 360 if (info->family == c->x86) 361 return info->model_names[c->x86_model]; 362 info++; 363 } 364 #endif 365 return NULL; /* Not found */ 366 } 367 368 __u32 cpu_caps_cleared[NCAPINTS]; 369 __u32 cpu_caps_set[NCAPINTS]; 370 371 void load_percpu_segment(int cpu) 372 { 373 #ifdef CONFIG_X86_32 374 loadsegment(fs, __KERNEL_PERCPU); 375 #else 376 loadsegment(gs, 0); 377 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); 378 #endif 379 load_stack_canary_segment(); 380 } 381 382 /* 383 * Current gdt points %fs at the "master" per-cpu area: after this, 384 * it's on the real one. 385 */ 386 void switch_to_new_gdt(int cpu) 387 { 388 struct desc_ptr gdt_descr; 389 390 gdt_descr.address = (long)get_cpu_gdt_table(cpu); 391 gdt_descr.size = GDT_SIZE - 1; 392 load_gdt(&gdt_descr); 393 /* Reload the per-cpu base */ 394 395 load_percpu_segment(cpu); 396 } 397 398 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 399 400 static void get_model_name(struct cpuinfo_x86 *c) 401 { 402 unsigned int *v; 403 char *p, *q, *s; 404 405 if (c->extended_cpuid_level < 0x80000004) 406 return; 407 408 v = (unsigned int *)c->x86_model_id; 409 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 410 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 411 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 412 c->x86_model_id[48] = 0; 413 414 /* Trim whitespace */ 415 p = q = s = &c->x86_model_id[0]; 416 417 while (*p == ' ') 418 p++; 419 420 while (*p) { 421 /* Note the last non-whitespace index */ 422 if (!isspace(*p)) 423 s = q; 424 425 *q++ = *p++; 426 } 427 428 *(s + 1) = '\0'; 429 } 430 431 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 432 { 433 unsigned int n, dummy, ebx, ecx, edx, l2size; 434 435 n = c->extended_cpuid_level; 436 437 if (n >= 0x80000005) { 438 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 439 c->x86_cache_size = (ecx>>24) + (edx>>24); 440 #ifdef CONFIG_X86_64 441 /* On K8 L1 TLB is inclusive, so don't count it */ 442 c->x86_tlbsize = 0; 443 #endif 444 } 445 446 if (n < 0x80000006) /* Some chips just has a large L1. */ 447 return; 448 449 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 450 l2size = ecx >> 16; 451 452 #ifdef CONFIG_X86_64 453 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 454 #else 455 /* do processor-specific cache resizing */ 456 if (this_cpu->legacy_cache_size) 457 l2size = this_cpu->legacy_cache_size(c, l2size); 458 459 /* Allow user to override all this if necessary. */ 460 if (cachesize_override != -1) 461 l2size = cachesize_override; 462 463 if (l2size == 0) 464 return; /* Again, no L2 cache is possible */ 465 #endif 466 467 c->x86_cache_size = l2size; 468 } 469 470 u16 __read_mostly tlb_lli_4k[NR_INFO]; 471 u16 __read_mostly tlb_lli_2m[NR_INFO]; 472 u16 __read_mostly tlb_lli_4m[NR_INFO]; 473 u16 __read_mostly tlb_lld_4k[NR_INFO]; 474 u16 __read_mostly tlb_lld_2m[NR_INFO]; 475 u16 __read_mostly tlb_lld_4m[NR_INFO]; 476 u16 __read_mostly tlb_lld_1g[NR_INFO]; 477 478 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 479 { 480 if (this_cpu->c_detect_tlb) 481 this_cpu->c_detect_tlb(c); 482 483 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 484 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], 485 tlb_lli_4m[ENTRIES]); 486 487 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 488 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], 489 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); 490 } 491 492 void detect_ht(struct cpuinfo_x86 *c) 493 { 494 #ifdef CONFIG_SMP 495 u32 eax, ebx, ecx, edx; 496 int index_msb, core_bits; 497 static bool printed; 498 499 if (!cpu_has(c, X86_FEATURE_HT)) 500 return; 501 502 if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) 503 goto out; 504 505 if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) 506 return; 507 508 cpuid(1, &eax, &ebx, &ecx, &edx); 509 510 smp_num_siblings = (ebx & 0xff0000) >> 16; 511 512 if (smp_num_siblings == 1) { 513 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n"); 514 goto out; 515 } 516 517 if (smp_num_siblings <= 1) 518 goto out; 519 520 index_msb = get_count_order(smp_num_siblings); 521 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); 522 523 smp_num_siblings = smp_num_siblings / c->x86_max_cores; 524 525 index_msb = get_count_order(smp_num_siblings); 526 527 core_bits = get_count_order(c->x86_max_cores); 528 529 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & 530 ((1 << core_bits) - 1); 531 532 out: 533 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { 534 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", 535 c->phys_proc_id); 536 printk(KERN_INFO "CPU: Processor Core ID: %d\n", 537 c->cpu_core_id); 538 printed = 1; 539 } 540 #endif 541 } 542 543 static void get_cpu_vendor(struct cpuinfo_x86 *c) 544 { 545 char *v = c->x86_vendor_id; 546 int i; 547 548 for (i = 0; i < X86_VENDOR_NUM; i++) { 549 if (!cpu_devs[i]) 550 break; 551 552 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 553 (cpu_devs[i]->c_ident[1] && 554 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 555 556 this_cpu = cpu_devs[i]; 557 c->x86_vendor = this_cpu->c_x86_vendor; 558 return; 559 } 560 } 561 562 printk_once(KERN_ERR 563 "CPU: vendor_id '%s' unknown, using generic init.\n" \ 564 "CPU: Your system may be unstable.\n", v); 565 566 c->x86_vendor = X86_VENDOR_UNKNOWN; 567 this_cpu = &default_cpu; 568 } 569 570 void cpu_detect(struct cpuinfo_x86 *c) 571 { 572 /* Get vendor name */ 573 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 574 (unsigned int *)&c->x86_vendor_id[0], 575 (unsigned int *)&c->x86_vendor_id[8], 576 (unsigned int *)&c->x86_vendor_id[4]); 577 578 c->x86 = 4; 579 /* Intel-defined flags: level 0x00000001 */ 580 if (c->cpuid_level >= 0x00000001) { 581 u32 junk, tfms, cap0, misc; 582 583 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 584 c->x86 = (tfms >> 8) & 0xf; 585 c->x86_model = (tfms >> 4) & 0xf; 586 c->x86_mask = tfms & 0xf; 587 588 if (c->x86 == 0xf) 589 c->x86 += (tfms >> 20) & 0xff; 590 if (c->x86 >= 0x6) 591 c->x86_model += ((tfms >> 16) & 0xf) << 4; 592 593 if (cap0 & (1<<19)) { 594 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 595 c->x86_cache_alignment = c->x86_clflush_size; 596 } 597 } 598 } 599 600 void get_cpu_cap(struct cpuinfo_x86 *c) 601 { 602 u32 tfms, xlvl; 603 u32 ebx; 604 605 /* Intel-defined flags: level 0x00000001 */ 606 if (c->cpuid_level >= 0x00000001) { 607 u32 capability, excap; 608 609 cpuid(0x00000001, &tfms, &ebx, &excap, &capability); 610 c->x86_capability[0] = capability; 611 c->x86_capability[4] = excap; 612 } 613 614 /* Additional Intel-defined flags: level 0x00000007 */ 615 if (c->cpuid_level >= 0x00000007) { 616 u32 eax, ebx, ecx, edx; 617 618 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 619 620 c->x86_capability[9] = ebx; 621 } 622 623 /* Extended state features: level 0x0000000d */ 624 if (c->cpuid_level >= 0x0000000d) { 625 u32 eax, ebx, ecx, edx; 626 627 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 628 629 c->x86_capability[10] = eax; 630 } 631 632 /* Additional Intel-defined flags: level 0x0000000F */ 633 if (c->cpuid_level >= 0x0000000F) { 634 u32 eax, ebx, ecx, edx; 635 636 /* QoS sub-leaf, EAX=0Fh, ECX=0 */ 637 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx); 638 c->x86_capability[11] = edx; 639 if (cpu_has(c, X86_FEATURE_CQM_LLC)) { 640 /* will be overridden if occupancy monitoring exists */ 641 c->x86_cache_max_rmid = ebx; 642 643 /* QoS sub-leaf, EAX=0Fh, ECX=1 */ 644 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx); 645 c->x86_capability[12] = edx; 646 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) { 647 c->x86_cache_max_rmid = ecx; 648 c->x86_cache_occ_scale = ebx; 649 } 650 } else { 651 c->x86_cache_max_rmid = -1; 652 c->x86_cache_occ_scale = -1; 653 } 654 } 655 656 /* AMD-defined flags: level 0x80000001 */ 657 xlvl = cpuid_eax(0x80000000); 658 c->extended_cpuid_level = xlvl; 659 660 if ((xlvl & 0xffff0000) == 0x80000000) { 661 if (xlvl >= 0x80000001) { 662 c->x86_capability[1] = cpuid_edx(0x80000001); 663 c->x86_capability[6] = cpuid_ecx(0x80000001); 664 } 665 } 666 667 if (c->extended_cpuid_level >= 0x80000008) { 668 u32 eax = cpuid_eax(0x80000008); 669 670 c->x86_virt_bits = (eax >> 8) & 0xff; 671 c->x86_phys_bits = eax & 0xff; 672 } 673 #ifdef CONFIG_X86_32 674 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) 675 c->x86_phys_bits = 36; 676 #endif 677 678 if (c->extended_cpuid_level >= 0x80000007) 679 c->x86_power = cpuid_edx(0x80000007); 680 681 init_scattered_cpuid_features(c); 682 } 683 684 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 685 { 686 #ifdef CONFIG_X86_32 687 int i; 688 689 /* 690 * First of all, decide if this is a 486 or higher 691 * It's a 486 if we can modify the AC flag 692 */ 693 if (flag_is_changeable_p(X86_EFLAGS_AC)) 694 c->x86 = 4; 695 else 696 c->x86 = 3; 697 698 for (i = 0; i < X86_VENDOR_NUM; i++) 699 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 700 c->x86_vendor_id[0] = 0; 701 cpu_devs[i]->c_identify(c); 702 if (c->x86_vendor_id[0]) { 703 get_cpu_vendor(c); 704 break; 705 } 706 } 707 #endif 708 } 709 710 /* 711 * Do minimum CPU detection early. 712 * Fields really needed: vendor, cpuid_level, family, model, mask, 713 * cache alignment. 714 * The others are not touched to avoid unwanted side effects. 715 * 716 * WARNING: this function is only called on the BP. Don't add code here 717 * that is supposed to run on all CPUs. 718 */ 719 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 720 { 721 #ifdef CONFIG_X86_64 722 c->x86_clflush_size = 64; 723 c->x86_phys_bits = 36; 724 c->x86_virt_bits = 48; 725 #else 726 c->x86_clflush_size = 32; 727 c->x86_phys_bits = 32; 728 c->x86_virt_bits = 32; 729 #endif 730 c->x86_cache_alignment = c->x86_clflush_size; 731 732 memset(&c->x86_capability, 0, sizeof c->x86_capability); 733 c->extended_cpuid_level = 0; 734 735 if (!have_cpuid_p()) 736 identify_cpu_without_cpuid(c); 737 738 /* cyrix could have cpuid enabled via c_identify()*/ 739 if (!have_cpuid_p()) 740 return; 741 742 cpu_detect(c); 743 get_cpu_vendor(c); 744 get_cpu_cap(c); 745 746 if (this_cpu->c_early_init) 747 this_cpu->c_early_init(c); 748 749 c->cpu_index = 0; 750 filter_cpuid_features(c, false); 751 752 if (this_cpu->c_bsp_init) 753 this_cpu->c_bsp_init(c); 754 755 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 756 fpu__init_system(c); 757 } 758 759 void __init early_cpu_init(void) 760 { 761 const struct cpu_dev *const *cdev; 762 int count = 0; 763 764 #ifdef CONFIG_PROCESSOR_SELECT 765 printk(KERN_INFO "KERNEL supported cpus:\n"); 766 #endif 767 768 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 769 const struct cpu_dev *cpudev = *cdev; 770 771 if (count >= X86_VENDOR_NUM) 772 break; 773 cpu_devs[count] = cpudev; 774 count++; 775 776 #ifdef CONFIG_PROCESSOR_SELECT 777 { 778 unsigned int j; 779 780 for (j = 0; j < 2; j++) { 781 if (!cpudev->c_ident[j]) 782 continue; 783 printk(KERN_INFO " %s %s\n", cpudev->c_vendor, 784 cpudev->c_ident[j]); 785 } 786 } 787 #endif 788 } 789 early_identify_cpu(&boot_cpu_data); 790 } 791 792 /* 793 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 794 * unfortunately, that's not true in practice because of early VIA 795 * chips and (more importantly) broken virtualizers that are not easy 796 * to detect. In the latter case it doesn't even *fail* reliably, so 797 * probing for it doesn't even work. Disable it completely on 32-bit 798 * unless we can find a reliable way to detect all the broken cases. 799 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 800 */ 801 static void detect_nopl(struct cpuinfo_x86 *c) 802 { 803 #ifdef CONFIG_X86_32 804 clear_cpu_cap(c, X86_FEATURE_NOPL); 805 #else 806 set_cpu_cap(c, X86_FEATURE_NOPL); 807 #endif 808 } 809 810 static void generic_identify(struct cpuinfo_x86 *c) 811 { 812 c->extended_cpuid_level = 0; 813 814 if (!have_cpuid_p()) 815 identify_cpu_without_cpuid(c); 816 817 /* cyrix could have cpuid enabled via c_identify()*/ 818 if (!have_cpuid_p()) 819 return; 820 821 cpu_detect(c); 822 823 get_cpu_vendor(c); 824 825 get_cpu_cap(c); 826 827 if (c->cpuid_level >= 0x00000001) { 828 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; 829 #ifdef CONFIG_X86_32 830 # ifdef CONFIG_SMP 831 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 832 # else 833 c->apicid = c->initial_apicid; 834 # endif 835 #endif 836 c->phys_proc_id = c->initial_apicid; 837 } 838 839 get_model_name(c); /* Default name */ 840 841 detect_nopl(c); 842 } 843 844 static void x86_init_cache_qos(struct cpuinfo_x86 *c) 845 { 846 /* 847 * The heavy lifting of max_rmid and cache_occ_scale are handled 848 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu 849 * in case CQM bits really aren't there in this CPU. 850 */ 851 if (c != &boot_cpu_data) { 852 boot_cpu_data.x86_cache_max_rmid = 853 min(boot_cpu_data.x86_cache_max_rmid, 854 c->x86_cache_max_rmid); 855 } 856 } 857 858 /* 859 * This does the hard work of actually picking apart the CPU stuff... 860 */ 861 static void identify_cpu(struct cpuinfo_x86 *c) 862 { 863 int i; 864 865 c->loops_per_jiffy = loops_per_jiffy; 866 c->x86_cache_size = -1; 867 c->x86_vendor = X86_VENDOR_UNKNOWN; 868 c->x86_model = c->x86_mask = 0; /* So far unknown... */ 869 c->x86_vendor_id[0] = '\0'; /* Unset */ 870 c->x86_model_id[0] = '\0'; /* Unset */ 871 c->x86_max_cores = 1; 872 c->x86_coreid_bits = 0; 873 #ifdef CONFIG_X86_64 874 c->x86_clflush_size = 64; 875 c->x86_phys_bits = 36; 876 c->x86_virt_bits = 48; 877 #else 878 c->cpuid_level = -1; /* CPUID not detected */ 879 c->x86_clflush_size = 32; 880 c->x86_phys_bits = 32; 881 c->x86_virt_bits = 32; 882 #endif 883 c->x86_cache_alignment = c->x86_clflush_size; 884 memset(&c->x86_capability, 0, sizeof c->x86_capability); 885 886 generic_identify(c); 887 888 if (this_cpu->c_identify) 889 this_cpu->c_identify(c); 890 891 /* Clear/Set all flags overriden by options, after probe */ 892 for (i = 0; i < NCAPINTS; i++) { 893 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 894 c->x86_capability[i] |= cpu_caps_set[i]; 895 } 896 897 #ifdef CONFIG_X86_64 898 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); 899 #endif 900 901 /* 902 * Vendor-specific initialization. In this section we 903 * canonicalize the feature flags, meaning if there are 904 * features a certain CPU supports which CPUID doesn't 905 * tell us, CPUID claiming incorrect flags, or other bugs, 906 * we handle them here. 907 * 908 * At the end of this section, c->x86_capability better 909 * indicate the features this CPU genuinely supports! 910 */ 911 if (this_cpu->c_init) 912 this_cpu->c_init(c); 913 914 /* Disable the PN if appropriate */ 915 squash_the_stupid_serial_number(c); 916 917 /* Set up SMEP/SMAP */ 918 setup_smep(c); 919 setup_smap(c); 920 921 /* 922 * The vendor-specific functions might have changed features. 923 * Now we do "generic changes." 924 */ 925 926 /* Filter out anything that depends on CPUID levels we don't have */ 927 filter_cpuid_features(c, true); 928 929 /* If the model name is still unset, do table lookup. */ 930 if (!c->x86_model_id[0]) { 931 const char *p; 932 p = table_lookup_model(c); 933 if (p) 934 strcpy(c->x86_model_id, p); 935 else 936 /* Last resort... */ 937 sprintf(c->x86_model_id, "%02x/%02x", 938 c->x86, c->x86_model); 939 } 940 941 #ifdef CONFIG_X86_64 942 detect_ht(c); 943 #endif 944 945 init_hypervisor(c); 946 x86_init_rdrand(c); 947 x86_init_cache_qos(c); 948 949 /* 950 * Clear/Set all flags overriden by options, need do it 951 * before following smp all cpus cap AND. 952 */ 953 for (i = 0; i < NCAPINTS; i++) { 954 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 955 c->x86_capability[i] |= cpu_caps_set[i]; 956 } 957 958 /* 959 * On SMP, boot_cpu_data holds the common feature set between 960 * all CPUs; so make sure that we indicate which features are 961 * common between the CPUs. The first time this routine gets 962 * executed, c == &boot_cpu_data. 963 */ 964 if (c != &boot_cpu_data) { 965 /* AND the already accumulated flags with these */ 966 for (i = 0; i < NCAPINTS; i++) 967 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 968 969 /* OR, i.e. replicate the bug flags */ 970 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 971 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 972 } 973 974 /* Init Machine Check Exception if available. */ 975 mcheck_cpu_init(c); 976 977 select_idle_routine(c); 978 979 #ifdef CONFIG_NUMA 980 numa_add_cpu(smp_processor_id()); 981 #endif 982 } 983 984 /* 985 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 986 * on 32-bit kernels: 987 */ 988 #ifdef CONFIG_X86_32 989 void enable_sep_cpu(void) 990 { 991 struct tss_struct *tss; 992 int cpu; 993 994 cpu = get_cpu(); 995 tss = &per_cpu(cpu_tss, cpu); 996 997 if (!boot_cpu_has(X86_FEATURE_SEP)) 998 goto out; 999 1000 /* 1001 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 1002 * see the big comment in struct x86_hw_tss's definition. 1003 */ 1004 1005 tss->x86_tss.ss1 = __KERNEL_CS; 1006 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); 1007 1008 wrmsr(MSR_IA32_SYSENTER_ESP, 1009 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack), 1010 0); 1011 1012 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); 1013 1014 out: 1015 put_cpu(); 1016 } 1017 #endif 1018 1019 void __init identify_boot_cpu(void) 1020 { 1021 identify_cpu(&boot_cpu_data); 1022 init_amd_e400_c1e_mask(); 1023 #ifdef CONFIG_X86_32 1024 sysenter_setup(); 1025 enable_sep_cpu(); 1026 #endif 1027 cpu_detect_tlb(&boot_cpu_data); 1028 } 1029 1030 void identify_secondary_cpu(struct cpuinfo_x86 *c) 1031 { 1032 BUG_ON(c == &boot_cpu_data); 1033 identify_cpu(c); 1034 #ifdef CONFIG_X86_32 1035 enable_sep_cpu(); 1036 #endif 1037 mtrr_ap_init(); 1038 } 1039 1040 struct msr_range { 1041 unsigned min; 1042 unsigned max; 1043 }; 1044 1045 static const struct msr_range msr_range_array[] = { 1046 { 0x00000000, 0x00000418}, 1047 { 0xc0000000, 0xc000040b}, 1048 { 0xc0010000, 0xc0010142}, 1049 { 0xc0011000, 0xc001103b}, 1050 }; 1051 1052 static void __print_cpu_msr(void) 1053 { 1054 unsigned index_min, index_max; 1055 unsigned index; 1056 u64 val; 1057 int i; 1058 1059 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { 1060 index_min = msr_range_array[i].min; 1061 index_max = msr_range_array[i].max; 1062 1063 for (index = index_min; index < index_max; index++) { 1064 if (rdmsrl_safe(index, &val)) 1065 continue; 1066 printk(KERN_INFO " MSR%08x: %016llx\n", index, val); 1067 } 1068 } 1069 } 1070 1071 static int show_msr; 1072 1073 static __init int setup_show_msr(char *arg) 1074 { 1075 int num; 1076 1077 get_option(&arg, &num); 1078 1079 if (num > 0) 1080 show_msr = num; 1081 return 1; 1082 } 1083 __setup("show_msr=", setup_show_msr); 1084 1085 static __init int setup_noclflush(char *arg) 1086 { 1087 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); 1088 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); 1089 return 1; 1090 } 1091 __setup("noclflush", setup_noclflush); 1092 1093 void print_cpu_info(struct cpuinfo_x86 *c) 1094 { 1095 const char *vendor = NULL; 1096 1097 if (c->x86_vendor < X86_VENDOR_NUM) { 1098 vendor = this_cpu->c_vendor; 1099 } else { 1100 if (c->cpuid_level >= 0) 1101 vendor = c->x86_vendor_id; 1102 } 1103 1104 if (vendor && !strstr(c->x86_model_id, vendor)) 1105 printk(KERN_CONT "%s ", vendor); 1106 1107 if (c->x86_model_id[0]) 1108 printk(KERN_CONT "%s", c->x86_model_id); 1109 else 1110 printk(KERN_CONT "%d86", c->x86); 1111 1112 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model); 1113 1114 if (c->x86_mask || c->cpuid_level >= 0) 1115 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask); 1116 else 1117 printk(KERN_CONT ")\n"); 1118 1119 print_cpu_msr(c); 1120 } 1121 1122 void print_cpu_msr(struct cpuinfo_x86 *c) 1123 { 1124 if (c->cpu_index < show_msr) 1125 __print_cpu_msr(); 1126 } 1127 1128 static __init int setup_disablecpuid(char *arg) 1129 { 1130 int bit; 1131 1132 if (get_option(&arg, &bit) && bit < NCAPINTS*32) 1133 setup_clear_cpu_cap(bit); 1134 else 1135 return 0; 1136 1137 return 1; 1138 } 1139 __setup("clearcpuid=", setup_disablecpuid); 1140 1141 #ifdef CONFIG_X86_64 1142 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table }; 1143 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1, 1144 (unsigned long) debug_idt_table }; 1145 1146 DEFINE_PER_CPU_FIRST(union irq_stack_union, 1147 irq_stack_union) __aligned(PAGE_SIZE) __visible; 1148 1149 /* 1150 * The following percpu variables are hot. Align current_task to 1151 * cacheline size such that they fall in the same cacheline. 1152 */ 1153 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = 1154 &init_task; 1155 EXPORT_PER_CPU_SYMBOL(current_task); 1156 1157 DEFINE_PER_CPU(char *, irq_stack_ptr) = 1158 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64; 1159 1160 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; 1161 1162 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1163 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1164 1165 /* 1166 * Special IST stacks which the CPU switches to when it calls 1167 * an IST-marked descriptor entry. Up to 7 stacks (hardware 1168 * limit), all of them are 4K, except the debug stack which 1169 * is 8K. 1170 */ 1171 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { 1172 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ, 1173 [DEBUG_STACK - 1] = DEBUG_STKSZ 1174 }; 1175 1176 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks 1177 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); 1178 1179 /* May not be marked __init: used by software suspend */ 1180 void syscall_init(void) 1181 { 1182 /* 1183 * LSTAR and STAR live in a bit strange symbiosis. 1184 * They both write to the same internal register. STAR allows to 1185 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. 1186 */ 1187 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32); 1188 wrmsrl(MSR_LSTAR, entry_SYSCALL_64); 1189 1190 #ifdef CONFIG_IA32_EMULATION 1191 wrmsrl(MSR_CSTAR, entry_SYSCALL_compat); 1192 /* 1193 * This only works on Intel CPUs. 1194 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 1195 * This does not cause SYSENTER to jump to the wrong location, because 1196 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 1197 */ 1198 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 1199 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1200 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 1201 #else 1202 wrmsrl(MSR_CSTAR, ignore_sysret); 1203 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 1204 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 1205 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 1206 #endif 1207 1208 /* Flags to clear on syscall */ 1209 wrmsrl(MSR_SYSCALL_MASK, 1210 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| 1211 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); 1212 } 1213 1214 /* 1215 * Copies of the original ist values from the tss are only accessed during 1216 * debugging, no special alignment required. 1217 */ 1218 DEFINE_PER_CPU(struct orig_ist, orig_ist); 1219 1220 static DEFINE_PER_CPU(unsigned long, debug_stack_addr); 1221 DEFINE_PER_CPU(int, debug_stack_usage); 1222 1223 int is_debug_stack(unsigned long addr) 1224 { 1225 return __this_cpu_read(debug_stack_usage) || 1226 (addr <= __this_cpu_read(debug_stack_addr) && 1227 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ)); 1228 } 1229 NOKPROBE_SYMBOL(is_debug_stack); 1230 1231 DEFINE_PER_CPU(u32, debug_idt_ctr); 1232 1233 void debug_stack_set_zero(void) 1234 { 1235 this_cpu_inc(debug_idt_ctr); 1236 load_current_idt(); 1237 } 1238 NOKPROBE_SYMBOL(debug_stack_set_zero); 1239 1240 void debug_stack_reset(void) 1241 { 1242 if (WARN_ON(!this_cpu_read(debug_idt_ctr))) 1243 return; 1244 if (this_cpu_dec_return(debug_idt_ctr) == 0) 1245 load_current_idt(); 1246 } 1247 NOKPROBE_SYMBOL(debug_stack_reset); 1248 1249 #else /* CONFIG_X86_64 */ 1250 1251 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; 1252 EXPORT_PER_CPU_SYMBOL(current_task); 1253 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; 1254 EXPORT_PER_CPU_SYMBOL(__preempt_count); 1255 1256 /* 1257 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find 1258 * the top of the kernel stack. Use an extra percpu variable to track the 1259 * top of the kernel stack directly. 1260 */ 1261 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = 1262 (unsigned long)&init_thread_union + THREAD_SIZE; 1263 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); 1264 1265 #ifdef CONFIG_CC_STACKPROTECTOR 1266 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 1267 #endif 1268 1269 #endif /* CONFIG_X86_64 */ 1270 1271 /* 1272 * Clear all 6 debug registers: 1273 */ 1274 static void clear_all_debug_regs(void) 1275 { 1276 int i; 1277 1278 for (i = 0; i < 8; i++) { 1279 /* Ignore db4, db5 */ 1280 if ((i == 4) || (i == 5)) 1281 continue; 1282 1283 set_debugreg(0, i); 1284 } 1285 } 1286 1287 #ifdef CONFIG_KGDB 1288 /* 1289 * Restore debug regs if using kgdbwait and you have a kernel debugger 1290 * connection established. 1291 */ 1292 static void dbg_restore_debug_regs(void) 1293 { 1294 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 1295 arch_kgdb_ops.correct_hw_break(); 1296 } 1297 #else /* ! CONFIG_KGDB */ 1298 #define dbg_restore_debug_regs() 1299 #endif /* ! CONFIG_KGDB */ 1300 1301 static void wait_for_master_cpu(int cpu) 1302 { 1303 #ifdef CONFIG_SMP 1304 /* 1305 * wait for ACK from master CPU before continuing 1306 * with AP initialization 1307 */ 1308 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); 1309 while (!cpumask_test_cpu(cpu, cpu_callout_mask)) 1310 cpu_relax(); 1311 #endif 1312 } 1313 1314 /* 1315 * cpu_init() initializes state that is per-CPU. Some data is already 1316 * initialized (naturally) in the bootstrap process, such as the GDT 1317 * and IDT. We reload them nevertheless, this function acts as a 1318 * 'CPU state barrier', nothing should get across. 1319 * A lot of state is already set up in PDA init for 64 bit 1320 */ 1321 #ifdef CONFIG_X86_64 1322 1323 void cpu_init(void) 1324 { 1325 struct orig_ist *oist; 1326 struct task_struct *me; 1327 struct tss_struct *t; 1328 unsigned long v; 1329 int cpu = stack_smp_processor_id(); 1330 int i; 1331 1332 wait_for_master_cpu(cpu); 1333 1334 /* 1335 * Initialize the CR4 shadow before doing anything that could 1336 * try to read it. 1337 */ 1338 cr4_init_shadow(); 1339 1340 /* 1341 * Load microcode on this cpu if a valid microcode is available. 1342 * This is early microcode loading procedure. 1343 */ 1344 load_ucode_ap(); 1345 1346 t = &per_cpu(cpu_tss, cpu); 1347 oist = &per_cpu(orig_ist, cpu); 1348 1349 #ifdef CONFIG_NUMA 1350 if (this_cpu_read(numa_node) == 0 && 1351 early_cpu_to_node(cpu) != NUMA_NO_NODE) 1352 set_numa_node(early_cpu_to_node(cpu)); 1353 #endif 1354 1355 me = current; 1356 1357 pr_debug("Initializing CPU#%d\n", cpu); 1358 1359 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1360 1361 /* 1362 * Initialize the per-CPU GDT with the boot GDT, 1363 * and set up the GDT descriptor: 1364 */ 1365 1366 switch_to_new_gdt(cpu); 1367 loadsegment(fs, 0); 1368 1369 load_current_idt(); 1370 1371 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 1372 syscall_init(); 1373 1374 wrmsrl(MSR_FS_BASE, 0); 1375 wrmsrl(MSR_KERNEL_GS_BASE, 0); 1376 barrier(); 1377 1378 x86_configure_nx(); 1379 x2apic_setup(); 1380 1381 /* 1382 * set up and load the per-CPU TSS 1383 */ 1384 if (!oist->ist[0]) { 1385 char *estacks = per_cpu(exception_stacks, cpu); 1386 1387 for (v = 0; v < N_EXCEPTION_STACKS; v++) { 1388 estacks += exception_stack_sizes[v]; 1389 oist->ist[v] = t->x86_tss.ist[v] = 1390 (unsigned long)estacks; 1391 if (v == DEBUG_STACK-1) 1392 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks; 1393 } 1394 } 1395 1396 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1397 1398 /* 1399 * <= is required because the CPU will access up to 1400 * 8 bits beyond the end of the IO permission bitmap. 1401 */ 1402 for (i = 0; i <= IO_BITMAP_LONGS; i++) 1403 t->io_bitmap[i] = ~0UL; 1404 1405 atomic_inc(&init_mm.mm_count); 1406 me->active_mm = &init_mm; 1407 BUG_ON(me->mm); 1408 enter_lazy_tlb(&init_mm, me); 1409 1410 load_sp0(t, ¤t->thread); 1411 set_tss_desc(cpu, t); 1412 load_TR_desc(); 1413 load_LDT(&init_mm.context); 1414 1415 clear_all_debug_regs(); 1416 dbg_restore_debug_regs(); 1417 1418 fpu__init_cpu(); 1419 1420 if (is_uv_system()) 1421 uv_cpu_init(); 1422 } 1423 1424 #else 1425 1426 void cpu_init(void) 1427 { 1428 int cpu = smp_processor_id(); 1429 struct task_struct *curr = current; 1430 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 1431 struct thread_struct *thread = &curr->thread; 1432 1433 wait_for_master_cpu(cpu); 1434 1435 /* 1436 * Initialize the CR4 shadow before doing anything that could 1437 * try to read it. 1438 */ 1439 cr4_init_shadow(); 1440 1441 show_ucode_info_early(); 1442 1443 printk(KERN_INFO "Initializing CPU#%d\n", cpu); 1444 1445 if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de) 1446 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 1447 1448 load_current_idt(); 1449 switch_to_new_gdt(cpu); 1450 1451 /* 1452 * Set up and load the per-CPU TSS and LDT 1453 */ 1454 atomic_inc(&init_mm.mm_count); 1455 curr->active_mm = &init_mm; 1456 BUG_ON(curr->mm); 1457 enter_lazy_tlb(&init_mm, curr); 1458 1459 load_sp0(t, thread); 1460 set_tss_desc(cpu, t); 1461 load_TR_desc(); 1462 load_LDT(&init_mm.context); 1463 1464 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); 1465 1466 #ifdef CONFIG_DOUBLEFAULT 1467 /* Set up doublefault TSS pointer in the GDT */ 1468 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); 1469 #endif 1470 1471 clear_all_debug_regs(); 1472 dbg_restore_debug_regs(); 1473 1474 fpu__init_cpu(); 1475 } 1476 #endif 1477 1478 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS 1479 void warn_pre_alternatives(void) 1480 { 1481 WARN(1, "You're using static_cpu_has before alternatives have run!\n"); 1482 } 1483 EXPORT_SYMBOL_GPL(warn_pre_alternatives); 1484 #endif 1485 1486 inline bool __static_cpu_has_safe(u16 bit) 1487 { 1488 return boot_cpu_has(bit); 1489 } 1490 EXPORT_SYMBOL_GPL(__static_cpu_has_safe); 1491