1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <linux/kexec.h> 11 #include <asm/coco.h> 12 #include <asm/tdx.h> 13 #include <asm/vmx.h> 14 #include <asm/ia32.h> 15 #include <asm/insn.h> 16 #include <asm/insn-eval.h> 17 #include <asm/pgtable.h> 18 #include <asm/set_memory.h> 19 #include <asm/traps.h> 20 21 /* MMIO direction */ 22 #define EPT_READ 0 23 #define EPT_WRITE 1 24 25 /* Port I/O direction */ 26 #define PORT_READ 0 27 #define PORT_WRITE 1 28 29 /* See Exit Qualification for I/O Instructions in VMX documentation */ 30 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 31 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 32 #define VE_GET_PORT_NUM(e) ((e) >> 16) 33 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 34 35 #define ATTR_DEBUG BIT(0) 36 #define ATTR_SEPT_VE_DISABLE BIT(28) 37 38 /* TDX Module call error codes */ 39 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 40 #define TDCALL_INVALID_OPERAND 0xc0000100 41 42 #define TDREPORT_SUBTYPE_0 0 43 44 static atomic_long_t nr_shared; 45 46 /* Called from __tdx_hypercall() for unrecoverable failure */ 47 noinstr void __noreturn __tdx_hypercall_failed(void) 48 { 49 instrumentation_begin(); 50 panic("TDVMCALL failed. TDX module bug?"); 51 } 52 53 #ifdef CONFIG_KVM_GUEST 54 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 55 unsigned long p3, unsigned long p4) 56 { 57 struct tdx_module_args args = { 58 .r10 = nr, 59 .r11 = p1, 60 .r12 = p2, 61 .r13 = p3, 62 .r14 = p4, 63 }; 64 65 return __tdx_hypercall(&args); 66 } 67 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 68 #endif 69 70 /* 71 * Used for TDX guests to make calls directly to the TD module. This 72 * should only be used for calls that have no legitimate reason to fail 73 * or where the kernel can not survive the call failing. 74 */ 75 static inline void tdcall(u64 fn, struct tdx_module_args *args) 76 { 77 if (__tdcall_ret(fn, args)) 78 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 79 } 80 81 /** 82 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 83 * subtype 0) using TDG.MR.REPORT TDCALL. 84 * @reportdata: Address of the input buffer which contains user-defined 85 * REPORTDATA to be included into TDREPORT. 86 * @tdreport: Address of the output buffer to store TDREPORT. 87 * 88 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 89 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 90 * It is used in the TDX guest driver module to get the TDREPORT0. 91 * 92 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 93 * other TDCALL failures. 94 */ 95 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 96 { 97 struct tdx_module_args args = { 98 .rcx = virt_to_phys(tdreport), 99 .rdx = virt_to_phys(reportdata), 100 .r8 = TDREPORT_SUBTYPE_0, 101 }; 102 u64 ret; 103 104 ret = __tdcall(TDG_MR_REPORT, &args); 105 if (ret) { 106 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 107 return -EINVAL; 108 return -EIO; 109 } 110 111 return 0; 112 } 113 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 114 115 /** 116 * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote 117 * hypercall. 118 * @buf: Address of the directly mapped shared kernel buffer which 119 * contains TDREPORT. The same buffer will be used by VMM to 120 * store the generated TD Quote output. 121 * @size: size of the tdquote buffer (4KB-aligned). 122 * 123 * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI 124 * v1.0 specification for more information on GetQuote hypercall. 125 * It is used in the TDX guest driver module to get the TD Quote. 126 * 127 * Return 0 on success or error code on failure. 128 */ 129 u64 tdx_hcall_get_quote(u8 *buf, size_t size) 130 { 131 /* Since buf is a shared memory, set the shared (decrypted) bits */ 132 return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0); 133 } 134 EXPORT_SYMBOL_GPL(tdx_hcall_get_quote); 135 136 static void __noreturn tdx_panic(const char *msg) 137 { 138 struct tdx_module_args args = { 139 .r10 = TDX_HYPERCALL_STANDARD, 140 .r11 = TDVMCALL_REPORT_FATAL_ERROR, 141 .r12 = 0, /* Error code: 0 is Panic */ 142 }; 143 union { 144 /* Define register order according to the GHCI */ 145 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; 146 147 char str[64]; 148 } message; 149 150 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ 151 strtomem_pad(message.str, msg, '\0'); 152 153 args.r8 = message.r8; 154 args.r9 = message.r9; 155 args.r14 = message.r14; 156 args.r15 = message.r15; 157 args.rdi = message.rdi; 158 args.rsi = message.rsi; 159 args.rbx = message.rbx; 160 args.rdx = message.rdx; 161 162 /* 163 * This hypercall should never return and it is not safe 164 * to keep the guest running. Call it forever if it 165 * happens to return. 166 */ 167 while (1) 168 __tdx_hypercall(&args); 169 } 170 171 static void tdx_parse_tdinfo(u64 *cc_mask) 172 { 173 struct tdx_module_args args = {}; 174 unsigned int gpa_width; 175 u64 td_attr; 176 177 /* 178 * TDINFO TDX module call is used to get the TD execution environment 179 * information like GPA width, number of available vcpus, debug mode 180 * information, etc. More details about the ABI can be found in TDX 181 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 182 * [TDG.VP.INFO]. 183 */ 184 tdcall(TDG_VP_INFO, &args); 185 186 /* 187 * The highest bit of a guest physical address is the "sharing" bit. 188 * Set it for shared pages and clear it for private pages. 189 * 190 * The GPA width that comes out of this call is critical. TDX guests 191 * can not meaningfully run without it. 192 */ 193 gpa_width = args.rcx & GENMASK(5, 0); 194 *cc_mask = BIT_ULL(gpa_width - 1); 195 196 /* 197 * The kernel can not handle #VE's when accessing normal kernel 198 * memory. Ensure that no #VE will be delivered for accesses to 199 * TD-private memory. Only VMM-shared memory (MMIO) will #VE. 200 */ 201 td_attr = args.rdx; 202 if (!(td_attr & ATTR_SEPT_VE_DISABLE)) { 203 const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set."; 204 205 /* Relax SEPT_VE_DISABLE check for debug TD. */ 206 if (td_attr & ATTR_DEBUG) 207 pr_warn("%s\n", msg); 208 else 209 tdx_panic(msg); 210 } 211 } 212 213 /* 214 * The TDX module spec states that #VE may be injected for a limited set of 215 * reasons: 216 * 217 * - Emulation of the architectural #VE injection on EPT violation; 218 * 219 * - As a result of guest TD execution of a disallowed instruction, 220 * a disallowed MSR access, or CPUID virtualization; 221 * 222 * - A notification to the guest TD about anomalous behavior; 223 * 224 * The last one is opt-in and is not used by the kernel. 225 * 226 * The Intel Software Developer's Manual describes cases when instruction 227 * length field can be used in section "Information for VM Exits Due to 228 * Instruction Execution". 229 * 230 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 231 * information if #VE occurred due to instruction execution, but not for EPT 232 * violations. 233 */ 234 static int ve_instr_len(struct ve_info *ve) 235 { 236 switch (ve->exit_reason) { 237 case EXIT_REASON_HLT: 238 case EXIT_REASON_MSR_READ: 239 case EXIT_REASON_MSR_WRITE: 240 case EXIT_REASON_CPUID: 241 case EXIT_REASON_IO_INSTRUCTION: 242 /* It is safe to use ve->instr_len for #VE due instructions */ 243 return ve->instr_len; 244 case EXIT_REASON_EPT_VIOLATION: 245 /* 246 * For EPT violations, ve->insn_len is not defined. For those, 247 * the kernel must decode instructions manually and should not 248 * be using this function. 249 */ 250 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 251 return 0; 252 default: 253 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 254 return ve->instr_len; 255 } 256 } 257 258 static u64 __cpuidle __halt(const bool irq_disabled) 259 { 260 struct tdx_module_args args = { 261 .r10 = TDX_HYPERCALL_STANDARD, 262 .r11 = hcall_func(EXIT_REASON_HLT), 263 .r12 = irq_disabled, 264 }; 265 266 /* 267 * Emulate HLT operation via hypercall. More info about ABI 268 * can be found in TDX Guest-Host-Communication Interface 269 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 270 * 271 * The VMM uses the "IRQ disabled" param to understand IRQ 272 * enabled status (RFLAGS.IF) of the TD guest and to determine 273 * whether or not it should schedule the halted vCPU if an 274 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 275 * can keep the vCPU in virtual HLT, even if an IRQ is 276 * pending, without hanging/breaking the guest. 277 */ 278 return __tdx_hypercall(&args); 279 } 280 281 static int handle_halt(struct ve_info *ve) 282 { 283 const bool irq_disabled = irqs_disabled(); 284 285 if (__halt(irq_disabled)) 286 return -EIO; 287 288 return ve_instr_len(ve); 289 } 290 291 void __cpuidle tdx_safe_halt(void) 292 { 293 const bool irq_disabled = false; 294 295 /* 296 * Use WARN_ONCE() to report the failure. 297 */ 298 if (__halt(irq_disabled)) 299 WARN_ONCE(1, "HLT instruction emulation failed\n"); 300 } 301 302 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 303 { 304 struct tdx_module_args args = { 305 .r10 = TDX_HYPERCALL_STANDARD, 306 .r11 = hcall_func(EXIT_REASON_MSR_READ), 307 .r12 = regs->cx, 308 }; 309 310 /* 311 * Emulate the MSR read via hypercall. More info about ABI 312 * can be found in TDX Guest-Host-Communication Interface 313 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 314 */ 315 if (__tdx_hypercall(&args)) 316 return -EIO; 317 318 regs->ax = lower_32_bits(args.r11); 319 regs->dx = upper_32_bits(args.r11); 320 return ve_instr_len(ve); 321 } 322 323 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 324 { 325 struct tdx_module_args args = { 326 .r10 = TDX_HYPERCALL_STANDARD, 327 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 328 .r12 = regs->cx, 329 .r13 = (u64)regs->dx << 32 | regs->ax, 330 }; 331 332 /* 333 * Emulate the MSR write via hypercall. More info about ABI 334 * can be found in TDX Guest-Host-Communication Interface 335 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 336 */ 337 if (__tdx_hypercall(&args)) 338 return -EIO; 339 340 return ve_instr_len(ve); 341 } 342 343 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 344 { 345 struct tdx_module_args args = { 346 .r10 = TDX_HYPERCALL_STANDARD, 347 .r11 = hcall_func(EXIT_REASON_CPUID), 348 .r12 = regs->ax, 349 .r13 = regs->cx, 350 }; 351 352 /* 353 * Only allow VMM to control range reserved for hypervisor 354 * communication. 355 * 356 * Return all-zeros for any CPUID outside the range. It matches CPU 357 * behaviour for non-supported leaf. 358 */ 359 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 360 regs->ax = regs->bx = regs->cx = regs->dx = 0; 361 return ve_instr_len(ve); 362 } 363 364 /* 365 * Emulate the CPUID instruction via a hypercall. More info about 366 * ABI can be found in TDX Guest-Host-Communication Interface 367 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 368 */ 369 if (__tdx_hypercall(&args)) 370 return -EIO; 371 372 /* 373 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 374 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 375 * So copy the register contents back to pt_regs. 376 */ 377 regs->ax = args.r12; 378 regs->bx = args.r13; 379 regs->cx = args.r14; 380 regs->dx = args.r15; 381 382 return ve_instr_len(ve); 383 } 384 385 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 386 { 387 struct tdx_module_args args = { 388 .r10 = TDX_HYPERCALL_STANDARD, 389 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 390 .r12 = size, 391 .r13 = EPT_READ, 392 .r14 = addr, 393 }; 394 395 if (__tdx_hypercall(&args)) 396 return false; 397 398 *val = args.r11; 399 return true; 400 } 401 402 static bool mmio_write(int size, unsigned long addr, unsigned long val) 403 { 404 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 405 EPT_WRITE, addr, val); 406 } 407 408 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 409 { 410 unsigned long *reg, val, vaddr; 411 char buffer[MAX_INSN_SIZE]; 412 enum insn_mmio_type mmio; 413 struct insn insn = {}; 414 int size, extend_size; 415 u8 extend_val = 0; 416 417 /* Only in-kernel MMIO is supported */ 418 if (WARN_ON_ONCE(user_mode(regs))) 419 return -EFAULT; 420 421 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 422 return -EFAULT; 423 424 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 425 return -EINVAL; 426 427 mmio = insn_decode_mmio(&insn, &size); 428 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 429 return -EINVAL; 430 431 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 432 reg = insn_get_modrm_reg_ptr(&insn, regs); 433 if (!reg) 434 return -EINVAL; 435 } 436 437 if (!fault_in_kernel_space(ve->gla)) { 438 WARN_ONCE(1, "Access to userspace address is not supported"); 439 return -EINVAL; 440 } 441 442 /* 443 * Reject EPT violation #VEs that split pages. 444 * 445 * MMIO accesses are supposed to be naturally aligned and therefore 446 * never cross page boundaries. Seeing split page accesses indicates 447 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 448 * 449 * load_unaligned_zeropad() will recover using exception fixups. 450 */ 451 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 452 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 453 return -EFAULT; 454 455 /* Handle writes first */ 456 switch (mmio) { 457 case INSN_MMIO_WRITE: 458 memcpy(&val, reg, size); 459 if (!mmio_write(size, ve->gpa, val)) 460 return -EIO; 461 return insn.length; 462 case INSN_MMIO_WRITE_IMM: 463 val = insn.immediate.value; 464 if (!mmio_write(size, ve->gpa, val)) 465 return -EIO; 466 return insn.length; 467 case INSN_MMIO_READ: 468 case INSN_MMIO_READ_ZERO_EXTEND: 469 case INSN_MMIO_READ_SIGN_EXTEND: 470 /* Reads are handled below */ 471 break; 472 case INSN_MMIO_MOVS: 473 case INSN_MMIO_DECODE_FAILED: 474 /* 475 * MMIO was accessed with an instruction that could not be 476 * decoded or handled properly. It was likely not using io.h 477 * helpers or accessed MMIO accidentally. 478 */ 479 return -EINVAL; 480 default: 481 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 482 return -EINVAL; 483 } 484 485 /* Handle reads */ 486 if (!mmio_read(size, ve->gpa, &val)) 487 return -EIO; 488 489 switch (mmio) { 490 case INSN_MMIO_READ: 491 /* Zero-extend for 32-bit operation */ 492 extend_size = size == 4 ? sizeof(*reg) : 0; 493 break; 494 case INSN_MMIO_READ_ZERO_EXTEND: 495 /* Zero extend based on operand size */ 496 extend_size = insn.opnd_bytes; 497 break; 498 case INSN_MMIO_READ_SIGN_EXTEND: 499 /* Sign extend based on operand size */ 500 extend_size = insn.opnd_bytes; 501 if (size == 1 && val & BIT(7)) 502 extend_val = 0xFF; 503 else if (size > 1 && val & BIT(15)) 504 extend_val = 0xFF; 505 break; 506 default: 507 /* All other cases has to be covered with the first switch() */ 508 WARN_ON_ONCE(1); 509 return -EINVAL; 510 } 511 512 if (extend_size) 513 memset(reg, extend_val, extend_size); 514 memcpy(reg, &val, size); 515 return insn.length; 516 } 517 518 static bool handle_in(struct pt_regs *regs, int size, int port) 519 { 520 struct tdx_module_args args = { 521 .r10 = TDX_HYPERCALL_STANDARD, 522 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 523 .r12 = size, 524 .r13 = PORT_READ, 525 .r14 = port, 526 }; 527 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 528 bool success; 529 530 /* 531 * Emulate the I/O read via hypercall. More info about ABI can be found 532 * in TDX Guest-Host-Communication Interface (GHCI) section titled 533 * "TDG.VP.VMCALL<Instruction.IO>". 534 */ 535 success = !__tdx_hypercall(&args); 536 537 /* Update part of the register affected by the emulated instruction */ 538 regs->ax &= ~mask; 539 if (success) 540 regs->ax |= args.r11 & mask; 541 542 return success; 543 } 544 545 static bool handle_out(struct pt_regs *regs, int size, int port) 546 { 547 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 548 549 /* 550 * Emulate the I/O write via hypercall. More info about ABI can be found 551 * in TDX Guest-Host-Communication Interface (GHCI) section titled 552 * "TDG.VP.VMCALL<Instruction.IO>". 553 */ 554 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 555 PORT_WRITE, port, regs->ax & mask); 556 } 557 558 /* 559 * Emulate I/O using hypercall. 560 * 561 * Assumes the IO instruction was using ax, which is enforced 562 * by the standard io.h macros. 563 * 564 * Return True on success or False on failure. 565 */ 566 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 567 { 568 u32 exit_qual = ve->exit_qual; 569 int size, port; 570 bool in, ret; 571 572 if (VE_IS_IO_STRING(exit_qual)) 573 return -EIO; 574 575 in = VE_IS_IO_IN(exit_qual); 576 size = VE_GET_IO_SIZE(exit_qual); 577 port = VE_GET_PORT_NUM(exit_qual); 578 579 580 if (in) 581 ret = handle_in(regs, size, port); 582 else 583 ret = handle_out(regs, size, port); 584 if (!ret) 585 return -EIO; 586 587 return ve_instr_len(ve); 588 } 589 590 /* 591 * Early #VE exception handler. Only handles a subset of port I/O. 592 * Intended only for earlyprintk. If failed, return false. 593 */ 594 __init bool tdx_early_handle_ve(struct pt_regs *regs) 595 { 596 struct ve_info ve; 597 int insn_len; 598 599 tdx_get_ve_info(&ve); 600 601 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 602 return false; 603 604 insn_len = handle_io(regs, &ve); 605 if (insn_len < 0) 606 return false; 607 608 regs->ip += insn_len; 609 return true; 610 } 611 612 void tdx_get_ve_info(struct ve_info *ve) 613 { 614 struct tdx_module_args args = {}; 615 616 /* 617 * Called during #VE handling to retrieve the #VE info from the 618 * TDX module. 619 * 620 * This has to be called early in #VE handling. A "nested" #VE which 621 * occurs before this will raise a #DF and is not recoverable. 622 * 623 * The call retrieves the #VE info from the TDX module, which also 624 * clears the "#VE valid" flag. This must be done before anything else 625 * because any #VE that occurs while the valid flag is set will lead to 626 * #DF. 627 * 628 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 629 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 630 */ 631 tdcall(TDG_VP_VEINFO_GET, &args); 632 633 /* Transfer the output parameters */ 634 ve->exit_reason = args.rcx; 635 ve->exit_qual = args.rdx; 636 ve->gla = args.r8; 637 ve->gpa = args.r9; 638 ve->instr_len = lower_32_bits(args.r10); 639 ve->instr_info = upper_32_bits(args.r10); 640 } 641 642 /* 643 * Handle the user initiated #VE. 644 * 645 * On success, returns the number of bytes RIP should be incremented (>=0) 646 * or -errno on error. 647 */ 648 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 649 { 650 switch (ve->exit_reason) { 651 case EXIT_REASON_CPUID: 652 return handle_cpuid(regs, ve); 653 default: 654 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 655 return -EIO; 656 } 657 } 658 659 static inline bool is_private_gpa(u64 gpa) 660 { 661 return gpa == cc_mkenc(gpa); 662 } 663 664 /* 665 * Handle the kernel #VE. 666 * 667 * On success, returns the number of bytes RIP should be incremented (>=0) 668 * or -errno on error. 669 */ 670 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 671 { 672 switch (ve->exit_reason) { 673 case EXIT_REASON_HLT: 674 return handle_halt(ve); 675 case EXIT_REASON_MSR_READ: 676 return read_msr(regs, ve); 677 case EXIT_REASON_MSR_WRITE: 678 return write_msr(regs, ve); 679 case EXIT_REASON_CPUID: 680 return handle_cpuid(regs, ve); 681 case EXIT_REASON_EPT_VIOLATION: 682 if (is_private_gpa(ve->gpa)) 683 panic("Unexpected EPT-violation on private memory."); 684 return handle_mmio(regs, ve); 685 case EXIT_REASON_IO_INSTRUCTION: 686 return handle_io(regs, ve); 687 default: 688 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 689 return -EIO; 690 } 691 } 692 693 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 694 { 695 int insn_len; 696 697 if (user_mode(regs)) 698 insn_len = virt_exception_user(regs, ve); 699 else 700 insn_len = virt_exception_kernel(regs, ve); 701 if (insn_len < 0) 702 return false; 703 704 /* After successful #VE handling, move the IP */ 705 regs->ip += insn_len; 706 707 return true; 708 } 709 710 static bool tdx_tlb_flush_required(bool private) 711 { 712 /* 713 * TDX guest is responsible for flushing TLB on private->shared 714 * transition. VMM is responsible for flushing on shared->private. 715 * 716 * The VMM _can't_ flush private addresses as it can't generate PAs 717 * with the guest's HKID. Shared memory isn't subject to integrity 718 * checking, i.e. the VMM doesn't need to flush for its own protection. 719 * 720 * There's no need to flush when converting from shared to private, 721 * as flushing is the VMM's responsibility in this case, e.g. it must 722 * flush to avoid integrity failures in the face of a buggy or 723 * malicious guest. 724 */ 725 return !private; 726 } 727 728 static bool tdx_cache_flush_required(void) 729 { 730 /* 731 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 732 * TDX doesn't have such capability. 733 * 734 * Flush cache unconditionally. 735 */ 736 return true; 737 } 738 739 /* 740 * Notify the VMM about page mapping conversion. More info about ABI 741 * can be found in TDX Guest-Host-Communication Interface (GHCI), 742 * section "TDG.VP.VMCALL<MapGPA>". 743 */ 744 static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc) 745 { 746 /* Retrying the hypercall a second time should succeed; use 3 just in case */ 747 const int max_retries_per_page = 3; 748 int retry_count = 0; 749 750 if (!enc) { 751 /* Set the shared (decrypted) bits: */ 752 start |= cc_mkdec(0); 753 end |= cc_mkdec(0); 754 } 755 756 while (retry_count < max_retries_per_page) { 757 struct tdx_module_args args = { 758 .r10 = TDX_HYPERCALL_STANDARD, 759 .r11 = TDVMCALL_MAP_GPA, 760 .r12 = start, 761 .r13 = end - start }; 762 763 u64 map_fail_paddr; 764 u64 ret = __tdx_hypercall(&args); 765 766 if (ret != TDVMCALL_STATUS_RETRY) 767 return !ret; 768 /* 769 * The guest must retry the operation for the pages in the 770 * region starting at the GPA specified in R11. R11 comes 771 * from the untrusted VMM. Sanity check it. 772 */ 773 map_fail_paddr = args.r11; 774 if (map_fail_paddr < start || map_fail_paddr >= end) 775 return false; 776 777 /* "Consume" a retry without forward progress */ 778 if (map_fail_paddr == start) { 779 retry_count++; 780 continue; 781 } 782 783 start = map_fail_paddr; 784 retry_count = 0; 785 } 786 787 return false; 788 } 789 790 /* 791 * Inform the VMM of the guest's intent for this physical page: shared with 792 * the VMM or private to the guest. The VMM is expected to change its mapping 793 * of the page in response. 794 */ 795 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 796 { 797 phys_addr_t start = __pa(vaddr); 798 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 799 800 if (!tdx_map_gpa(start, end, enc)) 801 return false; 802 803 /* shared->private conversion requires memory to be accepted before use */ 804 if (enc) 805 return tdx_accept_memory(start, end); 806 807 return true; 808 } 809 810 static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, 811 bool enc) 812 { 813 /* 814 * Only handle shared->private conversion here. 815 * See the comment in tdx_early_init(). 816 */ 817 if (enc && !tdx_enc_status_changed(vaddr, numpages, enc)) 818 return -EIO; 819 820 return 0; 821 } 822 823 static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages, 824 bool enc) 825 { 826 /* 827 * Only handle private->shared conversion here. 828 * See the comment in tdx_early_init(). 829 */ 830 if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc)) 831 return -EIO; 832 833 if (enc) 834 atomic_long_sub(numpages, &nr_shared); 835 else 836 atomic_long_add(numpages, &nr_shared); 837 838 return 0; 839 } 840 841 /* Stop new private<->shared conversions */ 842 static void tdx_kexec_begin(void) 843 { 844 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 845 return; 846 847 /* 848 * Crash kernel reaches here with interrupts disabled: can't wait for 849 * conversions to finish. 850 * 851 * If race happened, just report and proceed. 852 */ 853 if (!set_memory_enc_stop_conversion()) 854 pr_warn("Failed to stop shared<->private conversions\n"); 855 } 856 857 /* Walk direct mapping and convert all shared memory back to private */ 858 static void tdx_kexec_finish(void) 859 { 860 unsigned long addr, end; 861 long found = 0, shared; 862 863 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 864 return; 865 866 lockdep_assert_irqs_disabled(); 867 868 addr = PAGE_OFFSET; 869 end = PAGE_OFFSET + get_max_mapped(); 870 871 while (addr < end) { 872 unsigned long size; 873 unsigned int level; 874 pte_t *pte; 875 876 pte = lookup_address(addr, &level); 877 size = page_level_size(level); 878 879 if (pte && pte_decrypted(*pte)) { 880 int pages = size / PAGE_SIZE; 881 882 /* 883 * Touching memory with shared bit set triggers implicit 884 * conversion to shared. 885 * 886 * Make sure nobody touches the shared range from 887 * now on. 888 */ 889 set_pte(pte, __pte(0)); 890 891 /* 892 * Memory encryption state persists across kexec. 893 * If tdx_enc_status_changed() fails in the first 894 * kernel, it leaves memory in an unknown state. 895 * 896 * If that memory remains shared, accessing it in the 897 * *next* kernel through a private mapping will result 898 * in an unrecoverable guest shutdown. 899 * 900 * The kdump kernel boot is not impacted as it uses 901 * a pre-reserved memory range that is always private. 902 * However, gathering crash information could lead to 903 * a crash if it accesses unconverted memory through 904 * a private mapping which is possible when accessing 905 * that memory through /proc/vmcore, for example. 906 * 907 * In all cases, print error info in order to leave 908 * enough bread crumbs for debugging. 909 */ 910 if (!tdx_enc_status_changed(addr, pages, true)) { 911 pr_err("Failed to unshare range %#lx-%#lx\n", 912 addr, addr + size); 913 } 914 915 found += pages; 916 } 917 918 addr += size; 919 } 920 921 __flush_tlb_all(); 922 923 shared = atomic_long_read(&nr_shared); 924 if (shared != found) { 925 pr_err("shared page accounting is off\n"); 926 pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found); 927 } 928 } 929 930 void __init tdx_early_init(void) 931 { 932 struct tdx_module_args args = { 933 .rdx = TDCS_NOTIFY_ENABLES, 934 .r9 = -1ULL, 935 }; 936 u64 cc_mask; 937 u32 eax, sig[3]; 938 939 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 940 941 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 942 return; 943 944 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 945 946 /* TSC is the only reliable clock in TDX guest */ 947 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); 948 949 cc_vendor = CC_VENDOR_INTEL; 950 tdx_parse_tdinfo(&cc_mask); 951 cc_set_mask(cc_mask); 952 953 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ 954 tdcall(TDG_VM_WR, &args); 955 956 /* 957 * All bits above GPA width are reserved and kernel treats shared bit 958 * as flag, not as part of physical address. 959 * 960 * Adjust physical mask to only cover valid GPA bits. 961 */ 962 physical_mask &= cc_mask - 1; 963 964 /* 965 * The kernel mapping should match the TDX metadata for the page. 966 * load_unaligned_zeropad() can touch memory *adjacent* to that which is 967 * owned by the caller and can catch even _momentary_ mismatches. Bad 968 * things happen on mismatch: 969 * 970 * - Private mapping => Shared Page == Guest shutdown 971 * - Shared mapping => Private Page == Recoverable #VE 972 * 973 * guest.enc_status_change_prepare() converts the page from 974 * shared=>private before the mapping becomes private. 975 * 976 * guest.enc_status_change_finish() converts the page from 977 * private=>shared after the mapping becomes private. 978 * 979 * In both cases there is a temporary shared mapping to a private page, 980 * which can result in a #VE. But, there is never a private mapping to 981 * a shared page. 982 */ 983 x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; 984 x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; 985 986 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 987 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 988 989 x86_platform.guest.enc_kexec_begin = tdx_kexec_begin; 990 x86_platform.guest.enc_kexec_finish = tdx_kexec_finish; 991 992 /* 993 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel 994 * bringup low level code. That raises #VE which cannot be handled 995 * there. 996 * 997 * Intel-TDX has a secure RDMSR hypercall, but that needs to be 998 * implemented separately in the low level startup ASM code. 999 * Until that is in place, disable parallel bringup for TDX. 1000 */ 1001 x86_cpuinit.parallel_bringup = false; 1002 1003 pr_info("Guest detected\n"); 1004 } 1005