// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021-2022 Intel Corporation */ #undef pr_fmt #define pr_fmt(fmt) "tdx: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include /* MMIO direction */ #define EPT_READ 0 #define EPT_WRITE 1 /* Port I/O direction */ #define PORT_READ 0 #define PORT_WRITE 1 /* See Exit Qualification for I/O Instructions in VMX documentation */ #define VE_IS_IO_IN(e) ((e) & BIT(3)) #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) #define VE_GET_PORT_NUM(e) ((e) >> 16) #define VE_IS_IO_STRING(e) ((e) & BIT(4)) #define ATTR_DEBUG BIT(0) #define ATTR_SEPT_VE_DISABLE BIT(28) /* TDX Module call error codes */ #define TDCALL_RETURN_CODE(a) ((a) >> 32) #define TDCALL_INVALID_OPERAND 0xc0000100 #define TDREPORT_SUBTYPE_0 0 static atomic_long_t nr_shared; /* Called from __tdx_hypercall() for unrecoverable failure */ noinstr void __noreturn __tdx_hypercall_failed(void) { instrumentation_begin(); panic("TDVMCALL failed. TDX module bug?"); } #ifdef CONFIG_KVM_GUEST long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, unsigned long p3, unsigned long p4) { struct tdx_module_args args = { .r10 = nr, .r11 = p1, .r12 = p2, .r13 = p3, .r14 = p4, }; return __tdx_hypercall(&args); } EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); #endif /* * Used for TDX guests to make calls directly to the TD module. This * should only be used for calls that have no legitimate reason to fail * or where the kernel can not survive the call failing. */ static inline void tdcall(u64 fn, struct tdx_module_args *args) { if (__tdcall_ret(fn, args)) panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); } /** * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT * subtype 0) using TDG.MR.REPORT TDCALL. * @reportdata: Address of the input buffer which contains user-defined * REPORTDATA to be included into TDREPORT. * @tdreport: Address of the output buffer to store TDREPORT. * * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module * v1.0 specification for more information on TDG.MR.REPORT TDCALL. * It is used in the TDX guest driver module to get the TDREPORT0. * * Return 0 on success, -EINVAL for invalid operands, or -EIO on * other TDCALL failures. */ int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) { struct tdx_module_args args = { .rcx = virt_to_phys(tdreport), .rdx = virt_to_phys(reportdata), .r8 = TDREPORT_SUBTYPE_0, }; u64 ret; ret = __tdcall(TDG_MR_REPORT, &args); if (ret) { if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) return -EINVAL; return -EIO; } return 0; } EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); /** * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote * hypercall. * @buf: Address of the directly mapped shared kernel buffer which * contains TDREPORT. The same buffer will be used by VMM to * store the generated TD Quote output. * @size: size of the tdquote buffer (4KB-aligned). * * Refer to section titled "TDG.VP.VMCALL" in the TDX GHCI * v1.0 specification for more information on GetQuote hypercall. * It is used in the TDX guest driver module to get the TD Quote. * * Return 0 on success or error code on failure. */ u64 tdx_hcall_get_quote(u8 *buf, size_t size) { /* Since buf is a shared memory, set the shared (decrypted) bits */ return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0); } EXPORT_SYMBOL_GPL(tdx_hcall_get_quote); static void __noreturn tdx_panic(const char *msg) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = TDVMCALL_REPORT_FATAL_ERROR, .r12 = 0, /* Error code: 0 is Panic */ }; union { /* Define register order according to the GHCI */ struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; char str[64]; } message; /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ strtomem_pad(message.str, msg, '\0'); args.r8 = message.r8; args.r9 = message.r9; args.r14 = message.r14; args.r15 = message.r15; args.rdi = message.rdi; args.rsi = message.rsi; args.rbx = message.rbx; args.rdx = message.rdx; /* * This hypercall should never return and it is not safe * to keep the guest running. Call it forever if it * happens to return. */ while (1) __tdx_hypercall(&args); } static void tdx_parse_tdinfo(u64 *cc_mask) { struct tdx_module_args args = {}; unsigned int gpa_width; u64 td_attr; /* * TDINFO TDX module call is used to get the TD execution environment * information like GPA width, number of available vcpus, debug mode * information, etc. More details about the ABI can be found in TDX * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL * [TDG.VP.INFO]. */ tdcall(TDG_VP_INFO, &args); /* * The highest bit of a guest physical address is the "sharing" bit. * Set it for shared pages and clear it for private pages. * * The GPA width that comes out of this call is critical. TDX guests * can not meaningfully run without it. */ gpa_width = args.rcx & GENMASK(5, 0); *cc_mask = BIT_ULL(gpa_width - 1); /* * The kernel can not handle #VE's when accessing normal kernel * memory. Ensure that no #VE will be delivered for accesses to * TD-private memory. Only VMM-shared memory (MMIO) will #VE. */ td_attr = args.rdx; if (!(td_attr & ATTR_SEPT_VE_DISABLE)) { const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set."; /* Relax SEPT_VE_DISABLE check for debug TD. */ if (td_attr & ATTR_DEBUG) pr_warn("%s\n", msg); else tdx_panic(msg); } } /* * The TDX module spec states that #VE may be injected for a limited set of * reasons: * * - Emulation of the architectural #VE injection on EPT violation; * * - As a result of guest TD execution of a disallowed instruction, * a disallowed MSR access, or CPUID virtualization; * * - A notification to the guest TD about anomalous behavior; * * The last one is opt-in and is not used by the kernel. * * The Intel Software Developer's Manual describes cases when instruction * length field can be used in section "Information for VM Exits Due to * Instruction Execution". * * For TDX, it ultimately means GET_VEINFO provides reliable instruction length * information if #VE occurred due to instruction execution, but not for EPT * violations. */ static int ve_instr_len(struct ve_info *ve) { switch (ve->exit_reason) { case EXIT_REASON_HLT: case EXIT_REASON_MSR_READ: case EXIT_REASON_MSR_WRITE: case EXIT_REASON_CPUID: case EXIT_REASON_IO_INSTRUCTION: /* It is safe to use ve->instr_len for #VE due instructions */ return ve->instr_len; case EXIT_REASON_EPT_VIOLATION: /* * For EPT violations, ve->insn_len is not defined. For those, * the kernel must decode instructions manually and should not * be using this function. */ WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); return 0; default: WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); return ve->instr_len; } } static u64 __cpuidle __halt(const bool irq_disabled) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = hcall_func(EXIT_REASON_HLT), .r12 = irq_disabled, }; /* * Emulate HLT operation via hypercall. More info about ABI * can be found in TDX Guest-Host-Communication Interface * (GHCI), section 3.8 TDG.VP.VMCALL. * * The VMM uses the "IRQ disabled" param to understand IRQ * enabled status (RFLAGS.IF) of the TD guest and to determine * whether or not it should schedule the halted vCPU if an * IRQ becomes pending. E.g. if IRQs are disabled, the VMM * can keep the vCPU in virtual HLT, even if an IRQ is * pending, without hanging/breaking the guest. */ return __tdx_hypercall(&args); } static int handle_halt(struct ve_info *ve) { const bool irq_disabled = irqs_disabled(); if (__halt(irq_disabled)) return -EIO; return ve_instr_len(ve); } void __cpuidle tdx_safe_halt(void) { const bool irq_disabled = false; /* * Use WARN_ONCE() to report the failure. */ if (__halt(irq_disabled)) WARN_ONCE(1, "HLT instruction emulation failed\n"); } static int read_msr(struct pt_regs *regs, struct ve_info *ve) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = hcall_func(EXIT_REASON_MSR_READ), .r12 = regs->cx, }; /* * Emulate the MSR read via hypercall. More info about ABI * can be found in TDX Guest-Host-Communication Interface * (GHCI), section titled "TDG.VP.VMCALL". */ if (__tdx_hypercall(&args)) return -EIO; regs->ax = lower_32_bits(args.r11); regs->dx = upper_32_bits(args.r11); return ve_instr_len(ve); } static int write_msr(struct pt_regs *regs, struct ve_info *ve) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = hcall_func(EXIT_REASON_MSR_WRITE), .r12 = regs->cx, .r13 = (u64)regs->dx << 32 | regs->ax, }; /* * Emulate the MSR write via hypercall. More info about ABI * can be found in TDX Guest-Host-Communication Interface * (GHCI) section titled "TDG.VP.VMCALL". */ if (__tdx_hypercall(&args)) return -EIO; return ve_instr_len(ve); } static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = hcall_func(EXIT_REASON_CPUID), .r12 = regs->ax, .r13 = regs->cx, }; /* * Only allow VMM to control range reserved for hypervisor * communication. * * Return all-zeros for any CPUID outside the range. It matches CPU * behaviour for non-supported leaf. */ if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { regs->ax = regs->bx = regs->cx = regs->dx = 0; return ve_instr_len(ve); } /* * Emulate the CPUID instruction via a hypercall. More info about * ABI can be found in TDX Guest-Host-Communication Interface * (GHCI), section titled "VP.VMCALL". */ if (__tdx_hypercall(&args)) return -EIO; /* * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. * So copy the register contents back to pt_regs. */ regs->ax = args.r12; regs->bx = args.r13; regs->cx = args.r14; regs->dx = args.r15; return ve_instr_len(ve); } static bool mmio_read(int size, unsigned long addr, unsigned long *val) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), .r12 = size, .r13 = EPT_READ, .r14 = addr, }; if (__tdx_hypercall(&args)) return false; *val = args.r11; return true; } static bool mmio_write(int size, unsigned long addr, unsigned long val) { return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, EPT_WRITE, addr, val); } static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) { unsigned long *reg, val, vaddr; char buffer[MAX_INSN_SIZE]; enum insn_mmio_type mmio; struct insn insn = {}; int size, extend_size; u8 extend_val = 0; /* Only in-kernel MMIO is supported */ if (WARN_ON_ONCE(user_mode(regs))) return -EFAULT; if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) return -EFAULT; if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) return -EINVAL; mmio = insn_decode_mmio(&insn, &size); if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) return -EINVAL; if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { reg = insn_get_modrm_reg_ptr(&insn, regs); if (!reg) return -EINVAL; } if (!fault_in_kernel_space(ve->gla)) { WARN_ONCE(1, "Access to userspace address is not supported"); return -EINVAL; } /* * Reject EPT violation #VEs that split pages. * * MMIO accesses are supposed to be naturally aligned and therefore * never cross page boundaries. Seeing split page accesses indicates * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. * * load_unaligned_zeropad() will recover using exception fixups. */ vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) return -EFAULT; /* Handle writes first */ switch (mmio) { case INSN_MMIO_WRITE: memcpy(&val, reg, size); if (!mmio_write(size, ve->gpa, val)) return -EIO; return insn.length; case INSN_MMIO_WRITE_IMM: val = insn.immediate.value; if (!mmio_write(size, ve->gpa, val)) return -EIO; return insn.length; case INSN_MMIO_READ: case INSN_MMIO_READ_ZERO_EXTEND: case INSN_MMIO_READ_SIGN_EXTEND: /* Reads are handled below */ break; case INSN_MMIO_MOVS: case INSN_MMIO_DECODE_FAILED: /* * MMIO was accessed with an instruction that could not be * decoded or handled properly. It was likely not using io.h * helpers or accessed MMIO accidentally. */ return -EINVAL; default: WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); return -EINVAL; } /* Handle reads */ if (!mmio_read(size, ve->gpa, &val)) return -EIO; switch (mmio) { case INSN_MMIO_READ: /* Zero-extend for 32-bit operation */ extend_size = size == 4 ? sizeof(*reg) : 0; break; case INSN_MMIO_READ_ZERO_EXTEND: /* Zero extend based on operand size */ extend_size = insn.opnd_bytes; break; case INSN_MMIO_READ_SIGN_EXTEND: /* Sign extend based on operand size */ extend_size = insn.opnd_bytes; if (size == 1 && val & BIT(7)) extend_val = 0xFF; else if (size > 1 && val & BIT(15)) extend_val = 0xFF; break; default: /* All other cases has to be covered with the first switch() */ WARN_ON_ONCE(1); return -EINVAL; } if (extend_size) memset(reg, extend_val, extend_size); memcpy(reg, &val, size); return insn.length; } static bool handle_in(struct pt_regs *regs, int size, int port) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), .r12 = size, .r13 = PORT_READ, .r14 = port, }; u64 mask = GENMASK(BITS_PER_BYTE * size, 0); bool success; /* * Emulate the I/O read via hypercall. More info about ABI can be found * in TDX Guest-Host-Communication Interface (GHCI) section titled * "TDG.VP.VMCALL". */ success = !__tdx_hypercall(&args); /* Update part of the register affected by the emulated instruction */ regs->ax &= ~mask; if (success) regs->ax |= args.r11 & mask; return success; } static bool handle_out(struct pt_regs *regs, int size, int port) { u64 mask = GENMASK(BITS_PER_BYTE * size, 0); /* * Emulate the I/O write via hypercall. More info about ABI can be found * in TDX Guest-Host-Communication Interface (GHCI) section titled * "TDG.VP.VMCALL". */ return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, PORT_WRITE, port, regs->ax & mask); } /* * Emulate I/O using hypercall. * * Assumes the IO instruction was using ax, which is enforced * by the standard io.h macros. * * Return True on success or False on failure. */ static int handle_io(struct pt_regs *regs, struct ve_info *ve) { u32 exit_qual = ve->exit_qual; int size, port; bool in, ret; if (VE_IS_IO_STRING(exit_qual)) return -EIO; in = VE_IS_IO_IN(exit_qual); size = VE_GET_IO_SIZE(exit_qual); port = VE_GET_PORT_NUM(exit_qual); if (in) ret = handle_in(regs, size, port); else ret = handle_out(regs, size, port); if (!ret) return -EIO; return ve_instr_len(ve); } /* * Early #VE exception handler. Only handles a subset of port I/O. * Intended only for earlyprintk. If failed, return false. */ __init bool tdx_early_handle_ve(struct pt_regs *regs) { struct ve_info ve; int insn_len; tdx_get_ve_info(&ve); if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) return false; insn_len = handle_io(regs, &ve); if (insn_len < 0) return false; regs->ip += insn_len; return true; } void tdx_get_ve_info(struct ve_info *ve) { struct tdx_module_args args = {}; /* * Called during #VE handling to retrieve the #VE info from the * TDX module. * * This has to be called early in #VE handling. A "nested" #VE which * occurs before this will raise a #DF and is not recoverable. * * The call retrieves the #VE info from the TDX module, which also * clears the "#VE valid" flag. This must be done before anything else * because any #VE that occurs while the valid flag is set will lead to * #DF. * * Note, the TDX module treats virtual NMIs as inhibited if the #VE * valid flag is set. It means that NMI=>#VE will not result in a #DF. */ tdcall(TDG_VP_VEINFO_GET, &args); /* Transfer the output parameters */ ve->exit_reason = args.rcx; ve->exit_qual = args.rdx; ve->gla = args.r8; ve->gpa = args.r9; ve->instr_len = lower_32_bits(args.r10); ve->instr_info = upper_32_bits(args.r10); } /* * Handle the user initiated #VE. * * On success, returns the number of bytes RIP should be incremented (>=0) * or -errno on error. */ static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) { switch (ve->exit_reason) { case EXIT_REASON_CPUID: return handle_cpuid(regs, ve); default: pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); return -EIO; } } static inline bool is_private_gpa(u64 gpa) { return gpa == cc_mkenc(gpa); } /* * Handle the kernel #VE. * * On success, returns the number of bytes RIP should be incremented (>=0) * or -errno on error. */ static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) { switch (ve->exit_reason) { case EXIT_REASON_HLT: return handle_halt(ve); case EXIT_REASON_MSR_READ: return read_msr(regs, ve); case EXIT_REASON_MSR_WRITE: return write_msr(regs, ve); case EXIT_REASON_CPUID: return handle_cpuid(regs, ve); case EXIT_REASON_EPT_VIOLATION: if (is_private_gpa(ve->gpa)) panic("Unexpected EPT-violation on private memory."); return handle_mmio(regs, ve); case EXIT_REASON_IO_INSTRUCTION: return handle_io(regs, ve); default: pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); return -EIO; } } bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) { int insn_len; if (user_mode(regs)) insn_len = virt_exception_user(regs, ve); else insn_len = virt_exception_kernel(regs, ve); if (insn_len < 0) return false; /* After successful #VE handling, move the IP */ regs->ip += insn_len; return true; } static bool tdx_tlb_flush_required(bool private) { /* * TDX guest is responsible for flushing TLB on private->shared * transition. VMM is responsible for flushing on shared->private. * * The VMM _can't_ flush private addresses as it can't generate PAs * with the guest's HKID. Shared memory isn't subject to integrity * checking, i.e. the VMM doesn't need to flush for its own protection. * * There's no need to flush when converting from shared to private, * as flushing is the VMM's responsibility in this case, e.g. it must * flush to avoid integrity failures in the face of a buggy or * malicious guest. */ return !private; } static bool tdx_cache_flush_required(void) { /* * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. * TDX doesn't have such capability. * * Flush cache unconditionally. */ return true; } /* * Notify the VMM about page mapping conversion. More info about ABI * can be found in TDX Guest-Host-Communication Interface (GHCI), * section "TDG.VP.VMCALL". */ static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc) { /* Retrying the hypercall a second time should succeed; use 3 just in case */ const int max_retries_per_page = 3; int retry_count = 0; if (!enc) { /* Set the shared (decrypted) bits: */ start |= cc_mkdec(0); end |= cc_mkdec(0); } while (retry_count < max_retries_per_page) { struct tdx_module_args args = { .r10 = TDX_HYPERCALL_STANDARD, .r11 = TDVMCALL_MAP_GPA, .r12 = start, .r13 = end - start }; u64 map_fail_paddr; u64 ret = __tdx_hypercall(&args); if (ret != TDVMCALL_STATUS_RETRY) return !ret; /* * The guest must retry the operation for the pages in the * region starting at the GPA specified in R11. R11 comes * from the untrusted VMM. Sanity check it. */ map_fail_paddr = args.r11; if (map_fail_paddr < start || map_fail_paddr >= end) return false; /* "Consume" a retry without forward progress */ if (map_fail_paddr == start) { retry_count++; continue; } start = map_fail_paddr; retry_count = 0; } return false; } /* * Inform the VMM of the guest's intent for this physical page: shared with * the VMM or private to the guest. The VMM is expected to change its mapping * of the page in response. */ static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) { phys_addr_t start = __pa(vaddr); phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); if (!tdx_map_gpa(start, end, enc)) return false; /* shared->private conversion requires memory to be accepted before use */ if (enc) return tdx_accept_memory(start, end); return true; } static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, bool enc) { /* * Only handle shared->private conversion here. * See the comment in tdx_early_init(). */ if (enc && !tdx_enc_status_changed(vaddr, numpages, enc)) return -EIO; return 0; } static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages, bool enc) { /* * Only handle private->shared conversion here. * See the comment in tdx_early_init(). */ if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc)) return -EIO; if (enc) atomic_long_sub(numpages, &nr_shared); else atomic_long_add(numpages, &nr_shared); return 0; } /* Stop new private<->shared conversions */ static void tdx_kexec_begin(void) { if (!IS_ENABLED(CONFIG_KEXEC_CORE)) return; /* * Crash kernel reaches here with interrupts disabled: can't wait for * conversions to finish. * * If race happened, just report and proceed. */ if (!set_memory_enc_stop_conversion()) pr_warn("Failed to stop shared<->private conversions\n"); } /* Walk direct mapping and convert all shared memory back to private */ static void tdx_kexec_finish(void) { unsigned long addr, end; long found = 0, shared; if (!IS_ENABLED(CONFIG_KEXEC_CORE)) return; lockdep_assert_irqs_disabled(); addr = PAGE_OFFSET; end = PAGE_OFFSET + get_max_mapped(); while (addr < end) { unsigned long size; unsigned int level; pte_t *pte; pte = lookup_address(addr, &level); size = page_level_size(level); if (pte && pte_decrypted(*pte)) { int pages = size / PAGE_SIZE; /* * Touching memory with shared bit set triggers implicit * conversion to shared. * * Make sure nobody touches the shared range from * now on. */ set_pte(pte, __pte(0)); /* * Memory encryption state persists across kexec. * If tdx_enc_status_changed() fails in the first * kernel, it leaves memory in an unknown state. * * If that memory remains shared, accessing it in the * *next* kernel through a private mapping will result * in an unrecoverable guest shutdown. * * The kdump kernel boot is not impacted as it uses * a pre-reserved memory range that is always private. * However, gathering crash information could lead to * a crash if it accesses unconverted memory through * a private mapping which is possible when accessing * that memory through /proc/vmcore, for example. * * In all cases, print error info in order to leave * enough bread crumbs for debugging. */ if (!tdx_enc_status_changed(addr, pages, true)) { pr_err("Failed to unshare range %#lx-%#lx\n", addr, addr + size); } found += pages; } addr += size; } __flush_tlb_all(); shared = atomic_long_read(&nr_shared); if (shared != found) { pr_err("shared page accounting is off\n"); pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found); } } void __init tdx_early_init(void) { struct tdx_module_args args = { .rdx = TDCS_NOTIFY_ENABLES, .r9 = -1ULL, }; u64 cc_mask; u32 eax, sig[3]; cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); if (memcmp(TDX_IDENT, sig, sizeof(sig))) return; setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); /* TSC is the only reliable clock in TDX guest */ setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); cc_vendor = CC_VENDOR_INTEL; tdx_parse_tdinfo(&cc_mask); cc_set_mask(cc_mask); /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ tdcall(TDG_VM_WR, &args); /* * All bits above GPA width are reserved and kernel treats shared bit * as flag, not as part of physical address. * * Adjust physical mask to only cover valid GPA bits. */ physical_mask &= cc_mask - 1; /* * The kernel mapping should match the TDX metadata for the page. * load_unaligned_zeropad() can touch memory *adjacent* to that which is * owned by the caller and can catch even _momentary_ mismatches. Bad * things happen on mismatch: * * - Private mapping => Shared Page == Guest shutdown * - Shared mapping => Private Page == Recoverable #VE * * guest.enc_status_change_prepare() converts the page from * shared=>private before the mapping becomes private. * * guest.enc_status_change_finish() converts the page from * private=>shared after the mapping becomes private. * * In both cases there is a temporary shared mapping to a private page, * which can result in a #VE. But, there is never a private mapping to * a shared page. */ x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; x86_platform.guest.enc_kexec_begin = tdx_kexec_begin; x86_platform.guest.enc_kexec_finish = tdx_kexec_finish; /* * TDX intercepts the RDMSR to read the X2APIC ID in the parallel * bringup low level code. That raises #VE which cannot be handled * there. * * Intel-TDX has a secure RDMSR hypercall, but that needs to be * implemented separately in the low level startup ASM code. * Until that is in place, disable parallel bringup for TDX. */ x86_cpuinit.parallel_bringup = false; pr_info("Guest detected\n"); }