xref: /linux/arch/x86/boot/startup/sme.c (revision 6aacab308a5dfd222b2d23662bbae60c11007cfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 /*
11  * Since we're dealing with identity mappings, physical and virtual
12  * addresses are the same, so override these defines which are ultimately
13  * used by the headers in misc.h.
14  */
15 #define __pa(x)  ((unsigned long)(x))
16 #define __va(x)  ((void *)((unsigned long)(x)))
17 
18 /*
19  * Special hack: we have to be careful, because no indirections are
20  * allowed here, and paravirt_ops is a kind of one. As it will only run in
21  * baremetal anyway, we just keep it from happening. (This list needs to
22  * be extended when new paravirt and debugging variants are added.)
23  */
24 #undef CONFIG_PARAVIRT
25 #undef CONFIG_PARAVIRT_XXL
26 #undef CONFIG_PARAVIRT_SPINLOCKS
27 #undef CONFIG_ARCH_HAS_LAZY_MMU_MODE
28 
29 /*
30  * This code runs before CPU feature bits are set. By default, the
31  * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
32  * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
33  * is provided to handle this situation and, instead, use a variable that
34  * has been set by the early boot code.
35  */
36 #define USE_EARLY_PGTABLE_L5
37 
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/mem_encrypt.h>
41 #include <linux/cc_platform.h>
42 
43 #include <asm/init.h>
44 #include <asm/setup.h>
45 #include <asm/sections.h>
46 #include <asm/coco.h>
47 #include <asm/sev.h>
48 
49 #define PGD_FLAGS		_KERNPG_TABLE_NOENC
50 #define P4D_FLAGS		_KERNPG_TABLE_NOENC
51 #define PUD_FLAGS		_KERNPG_TABLE_NOENC
52 #define PMD_FLAGS		_KERNPG_TABLE_NOENC
53 
54 #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
55 
56 #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
57 #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
58 				 (_PAGE_PAT_LARGE | _PAGE_PWT))
59 
60 #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
61 
62 #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
63 
64 #define PTE_FLAGS_DEC		PTE_FLAGS
65 #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
66 				 (_PAGE_PAT | _PAGE_PWT))
67 
68 #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
69 
70 struct sme_populate_pgd_data {
71 	void    *pgtable_area;
72 	pgd_t   *pgd;
73 
74 	pmdval_t pmd_flags;
75 	pteval_t pte_flags;
76 	unsigned long paddr;
77 
78 	unsigned long vaddr;
79 	unsigned long vaddr_end;
80 };
81 
82 /*
83  * This work area lives in the .init.scratch section, which lives outside of
84  * the kernel proper. It is sized to hold the intermediate copy buffer and
85  * more than enough pagetable pages.
86  *
87  * By using this section, the kernel can be encrypted in place and it
88  * avoids any possibility of boot parameters or initramfs images being
89  * placed such that the in-place encryption logic overwrites them.  This
90  * section is 2MB aligned to allow for simple pagetable setup using only
91  * PMD entries (see vmlinux.lds.S).
92  */
93 static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
94 
95 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
96 {
97 	unsigned long pgd_start, pgd_end, pgd_size;
98 	pgd_t *pgd_p;
99 
100 	pgd_start = ppd->vaddr & PGDIR_MASK;
101 	pgd_end = ppd->vaddr_end & PGDIR_MASK;
102 
103 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
104 
105 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
106 
107 	memset(pgd_p, 0, pgd_size);
108 }
109 
110 static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
111 {
112 	pgd_t *pgd;
113 	p4d_t *p4d;
114 	pud_t *pud;
115 	pmd_t *pmd;
116 
117 	pgd = ppd->pgd + pgd_index(ppd->vaddr);
118 	if (pgd_none(*pgd)) {
119 		p4d = ppd->pgtable_area;
120 		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
121 		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
122 		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
123 	}
124 
125 	p4d = p4d_offset(pgd, ppd->vaddr);
126 	if (p4d_none(*p4d)) {
127 		pud = ppd->pgtable_area;
128 		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
129 		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
130 		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
131 	}
132 
133 	pud = pud_offset(p4d, ppd->vaddr);
134 	if (pud_none(*pud)) {
135 		pmd = ppd->pgtable_area;
136 		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
137 		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
138 		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
139 	}
140 
141 	if (pud_leaf(*pud))
142 		return NULL;
143 
144 	return pud;
145 }
146 
147 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
148 {
149 	pud_t *pud;
150 	pmd_t *pmd;
151 
152 	pud = sme_prepare_pgd(ppd);
153 	if (!pud)
154 		return;
155 
156 	pmd = pmd_offset(pud, ppd->vaddr);
157 	if (pmd_leaf(*pmd))
158 		return;
159 
160 	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
161 }
162 
163 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
164 {
165 	pud_t *pud;
166 	pmd_t *pmd;
167 	pte_t *pte;
168 
169 	pud = sme_prepare_pgd(ppd);
170 	if (!pud)
171 		return;
172 
173 	pmd = pmd_offset(pud, ppd->vaddr);
174 	if (pmd_none(*pmd)) {
175 		pte = ppd->pgtable_area;
176 		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
177 		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
178 		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
179 	}
180 
181 	if (pmd_leaf(*pmd))
182 		return;
183 
184 	pte = pte_offset_kernel(pmd, ppd->vaddr);
185 	if (pte_none(*pte))
186 		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
187 }
188 
189 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
190 {
191 	while (ppd->vaddr < ppd->vaddr_end) {
192 		sme_populate_pgd_large(ppd);
193 
194 		ppd->vaddr += PMD_SIZE;
195 		ppd->paddr += PMD_SIZE;
196 	}
197 }
198 
199 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
200 {
201 	while (ppd->vaddr < ppd->vaddr_end) {
202 		sme_populate_pgd(ppd);
203 
204 		ppd->vaddr += PAGE_SIZE;
205 		ppd->paddr += PAGE_SIZE;
206 	}
207 }
208 
209 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
210 				   pmdval_t pmd_flags, pteval_t pte_flags)
211 {
212 	unsigned long vaddr_end;
213 
214 	ppd->pmd_flags = pmd_flags;
215 	ppd->pte_flags = pte_flags;
216 
217 	/* Save original end value since we modify the struct value */
218 	vaddr_end = ppd->vaddr_end;
219 
220 	/* If start is not 2MB aligned, create PTE entries */
221 	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
222 	__sme_map_range_pte(ppd);
223 
224 	/* Create PMD entries */
225 	ppd->vaddr_end = vaddr_end & PMD_MASK;
226 	__sme_map_range_pmd(ppd);
227 
228 	/* If end is not 2MB aligned, create PTE entries */
229 	ppd->vaddr_end = vaddr_end;
230 	__sme_map_range_pte(ppd);
231 }
232 
233 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
234 {
235 	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
236 }
237 
238 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
239 {
240 	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
241 }
242 
243 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
244 {
245 	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
246 }
247 
248 static unsigned long __init sme_pgtable_calc(unsigned long len)
249 {
250 	unsigned long entries = 0, tables = 0;
251 
252 	/*
253 	 * Perform a relatively simplistic calculation of the pagetable
254 	 * entries that are needed. Those mappings will be covered mostly
255 	 * by 2MB PMD entries so we can conservatively calculate the required
256 	 * number of P4D, PUD and PMD structures needed to perform the
257 	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
258 	 * would be needed for the start and end portion of the address range
259 	 * that fall outside of the 2MB alignment.  This results in, at most,
260 	 * two extra pages to hold PTE entries for each range that is mapped.
261 	 * Incrementing the count for each covers the case where the addresses
262 	 * cross entries.
263 	 */
264 
265 	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
266 	if (PTRS_PER_P4D > 1)
267 		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
268 	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
269 	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
270 	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
271 
272 	/*
273 	 * Now calculate the added pagetable structures needed to populate
274 	 * the new pagetables.
275 	 */
276 
277 	if (PTRS_PER_P4D > 1)
278 		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
279 	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
280 	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
281 
282 	return entries + tables;
283 }
284 
285 void __init sme_encrypt_kernel(struct boot_params *bp)
286 {
287 	unsigned long workarea_start, workarea_end, workarea_len;
288 	unsigned long execute_start, execute_end, execute_len;
289 	unsigned long kernel_start, kernel_end, kernel_len;
290 	unsigned long initrd_start, initrd_end, initrd_len;
291 	struct sme_populate_pgd_data ppd;
292 	unsigned long pgtable_area_len;
293 	unsigned long decrypted_base;
294 
295 	/*
296 	 * This is early code, use an open coded check for SME instead of
297 	 * using cc_platform_has(). This eliminates worries about removing
298 	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
299 	 * function.
300 	 */
301 	if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
302 		return;
303 
304 	/*
305 	 * Prepare for encrypting the kernel and initrd by building new
306 	 * pagetables with the necessary attributes needed to encrypt the
307 	 * kernel in place.
308 	 *
309 	 *   One range of virtual addresses will map the memory occupied
310 	 *   by the kernel and initrd as encrypted.
311 	 *
312 	 *   Another range of virtual addresses will map the memory occupied
313 	 *   by the kernel and initrd as decrypted and write-protected.
314 	 *
315 	 *     The use of write-protect attribute will prevent any of the
316 	 *     memory from being cached.
317 	 */
318 
319 	kernel_start = (unsigned long)rip_rel_ptr(_text);
320 	kernel_end = ALIGN((unsigned long)rip_rel_ptr(_end), PMD_SIZE);
321 	kernel_len = kernel_end - kernel_start;
322 
323 	initrd_start = 0;
324 	initrd_end = 0;
325 	initrd_len = 0;
326 #ifdef CONFIG_BLK_DEV_INITRD
327 	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
328 		     ((unsigned long)bp->ext_ramdisk_size << 32);
329 	if (initrd_len) {
330 		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
331 			       ((unsigned long)bp->ext_ramdisk_image << 32);
332 		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
333 		initrd_len = initrd_end - initrd_start;
334 	}
335 #endif
336 
337 	/*
338 	 * Calculate required number of workarea bytes needed:
339 	 *   executable encryption area size:
340 	 *     stack page (PAGE_SIZE)
341 	 *     encryption routine page (PAGE_SIZE)
342 	 *     intermediate copy buffer (PMD_SIZE)
343 	 *   pagetable structures for the encryption of the kernel
344 	 *   pagetable structures for workarea (in case not currently mapped)
345 	 */
346 	execute_start = workarea_start = (unsigned long)rip_rel_ptr(sme_workarea);
347 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
348 	execute_len = execute_end - execute_start;
349 
350 	/*
351 	 * One PGD for both encrypted and decrypted mappings and a set of
352 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
353 	 */
354 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
355 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
356 	if (initrd_len)
357 		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
358 
359 	/* PUDs and PMDs needed in the current pagetables for the workarea */
360 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
361 
362 	/*
363 	 * The total workarea includes the executable encryption area and
364 	 * the pagetable area. The start of the workarea is already 2MB
365 	 * aligned, align the end of the workarea on a 2MB boundary so that
366 	 * we don't try to create/allocate PTE entries from the workarea
367 	 * before it is mapped.
368 	 */
369 	workarea_len = execute_len + pgtable_area_len;
370 	workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
371 
372 	/*
373 	 * Set the address to the start of where newly created pagetable
374 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
375 	 * structures are created when the workarea is added to the current
376 	 * pagetables and when the new encrypted and decrypted kernel
377 	 * mappings are populated.
378 	 */
379 	ppd.pgtable_area = (void *)execute_end;
380 
381 	/*
382 	 * Make sure the current pagetable structure has entries for
383 	 * addressing the workarea.
384 	 */
385 	ppd.pgd = (pgd_t *)native_read_cr3_pa();
386 	ppd.paddr = workarea_start;
387 	ppd.vaddr = workarea_start;
388 	ppd.vaddr_end = workarea_end;
389 	sme_map_range_decrypted(&ppd);
390 
391 	/* Flush the TLB - no globals so cr3 is enough */
392 	native_write_cr3(__native_read_cr3());
393 
394 	/*
395 	 * A new pagetable structure is being built to allow for the kernel
396 	 * and initrd to be encrypted. It starts with an empty PGD that will
397 	 * then be populated with new PUDs and PMDs as the encrypted and
398 	 * decrypted kernel mappings are created.
399 	 */
400 	ppd.pgd = ppd.pgtable_area;
401 	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
402 	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
403 
404 	/*
405 	 * A different PGD index/entry must be used to get different
406 	 * pagetable entries for the decrypted mapping. Choose the next
407 	 * PGD index and convert it to a virtual address to be used as
408 	 * the base of the mapping.
409 	 */
410 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
411 	if (initrd_len) {
412 		unsigned long check_base;
413 
414 		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
415 		decrypted_base = max(decrypted_base, check_base);
416 	}
417 	decrypted_base <<= PGDIR_SHIFT;
418 
419 	/* Add encrypted kernel (identity) mappings */
420 	ppd.paddr = kernel_start;
421 	ppd.vaddr = kernel_start;
422 	ppd.vaddr_end = kernel_end;
423 	sme_map_range_encrypted(&ppd);
424 
425 	/* Add decrypted, write-protected kernel (non-identity) mappings */
426 	ppd.paddr = kernel_start;
427 	ppd.vaddr = kernel_start + decrypted_base;
428 	ppd.vaddr_end = kernel_end + decrypted_base;
429 	sme_map_range_decrypted_wp(&ppd);
430 
431 	if (initrd_len) {
432 		/* Add encrypted initrd (identity) mappings */
433 		ppd.paddr = initrd_start;
434 		ppd.vaddr = initrd_start;
435 		ppd.vaddr_end = initrd_end;
436 		sme_map_range_encrypted(&ppd);
437 		/*
438 		 * Add decrypted, write-protected initrd (non-identity) mappings
439 		 */
440 		ppd.paddr = initrd_start;
441 		ppd.vaddr = initrd_start + decrypted_base;
442 		ppd.vaddr_end = initrd_end + decrypted_base;
443 		sme_map_range_decrypted_wp(&ppd);
444 	}
445 
446 	/* Add decrypted workarea mappings to both kernel mappings */
447 	ppd.paddr = workarea_start;
448 	ppd.vaddr = workarea_start;
449 	ppd.vaddr_end = workarea_end;
450 	sme_map_range_decrypted(&ppd);
451 
452 	ppd.paddr = workarea_start;
453 	ppd.vaddr = workarea_start + decrypted_base;
454 	ppd.vaddr_end = workarea_end + decrypted_base;
455 	sme_map_range_decrypted(&ppd);
456 
457 	/* Perform the encryption */
458 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
459 			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
460 
461 	if (initrd_len)
462 		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
463 				    initrd_len, workarea_start,
464 				    (unsigned long)ppd.pgd);
465 
466 	/*
467 	 * At this point we are running encrypted.  Remove the mappings for
468 	 * the decrypted areas - all that is needed for this is to remove
469 	 * the PGD entry/entries.
470 	 */
471 	ppd.vaddr = kernel_start + decrypted_base;
472 	ppd.vaddr_end = kernel_end + decrypted_base;
473 	sme_clear_pgd(&ppd);
474 
475 	if (initrd_len) {
476 		ppd.vaddr = initrd_start + decrypted_base;
477 		ppd.vaddr_end = initrd_end + decrypted_base;
478 		sme_clear_pgd(&ppd);
479 	}
480 
481 	ppd.vaddr = workarea_start + decrypted_base;
482 	ppd.vaddr_end = workarea_end + decrypted_base;
483 	sme_clear_pgd(&ppd);
484 
485 	/* Flush the TLB - no globals so cr3 is enough */
486 	native_write_cr3(__native_read_cr3());
487 }
488 
489 void __init sme_enable(struct boot_params *bp)
490 {
491 	unsigned int eax, ebx, ecx, edx;
492 	unsigned long feature_mask;
493 	unsigned long me_mask;
494 	bool snp_en;
495 	u64 msr;
496 
497 	snp_en = snp_init(bp);
498 
499 	/* Check for the SME/SEV support leaf */
500 	eax = 0x80000000;
501 	ecx = 0;
502 	native_cpuid(&eax, &ebx, &ecx, &edx);
503 	if (eax < 0x8000001f)
504 		return;
505 
506 #define AMD_SME_BIT	BIT(0)
507 #define AMD_SEV_BIT	BIT(1)
508 
509 	/*
510 	 * Check for the SME/SEV feature:
511 	 *   CPUID Fn8000_001F[EAX]
512 	 *   - Bit 0 - Secure Memory Encryption support
513 	 *   - Bit 1 - Secure Encrypted Virtualization support
514 	 *   CPUID Fn8000_001F[EBX]
515 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
516 	 */
517 	eax = 0x8000001f;
518 	ecx = 0;
519 	native_cpuid(&eax, &ebx, &ecx, &edx);
520 	/* Check whether SEV or SME is supported */
521 	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
522 		return;
523 
524 	me_mask = 1UL << (ebx & 0x3f);
525 	sev_snp_needs_sfw = !(ebx & BIT(31));
526 
527 	/* Check the SEV MSR whether SEV or SME is enabled */
528 	sev_status = msr = native_rdmsrq(MSR_AMD64_SEV);
529 	feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
530 
531 	/*
532 	 * Any discrepancies between the presence of a CC blob and SNP
533 	 * enablement abort the guest.
534 	 */
535 	if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED))
536 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
537 
538 	/* Check if memory encryption is enabled */
539 	if (feature_mask == AMD_SME_BIT) {
540 		if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
541 			return;
542 
543 		/*
544 		 * No SME if Hypervisor bit is set. This check is here to
545 		 * prevent a guest from trying to enable SME. For running as a
546 		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
547 		 * might be other hypervisors which emulate that MSR as non-zero
548 		 * or even pass it through to the guest.
549 		 * A malicious hypervisor can still trick a guest into this
550 		 * path, but there is no way to protect against that.
551 		 */
552 		eax = 1;
553 		ecx = 0;
554 		native_cpuid(&eax, &ebx, &ecx, &edx);
555 		if (ecx & BIT(31))
556 			return;
557 
558 		/* For SME, check the SYSCFG MSR */
559 		msr = native_rdmsrq(MSR_AMD64_SYSCFG);
560 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
561 			return;
562 	}
563 
564 	sme_me_mask	= me_mask;
565 	physical_mask	&= ~me_mask;
566 	cc_vendor	= CC_VENDOR_AMD;
567 	cc_set_mask(me_mask);
568 }
569 
570 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
571 /* Local version for startup code, which never operates on user page tables */
572 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
573 {
574 	return pgd;
575 }
576 #endif
577