xref: /linux/arch/x86/boot/startup/sme.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  */
9 
10 /*
11  * Since we're dealing with identity mappings, physical and virtual
12  * addresses are the same, so override these defines which are ultimately
13  * used by the headers in misc.h.
14  */
15 #define __pa(x)  ((unsigned long)(x))
16 #define __va(x)  ((void *)((unsigned long)(x)))
17 
18 /*
19  * Special hack: we have to be careful, because no indirections are
20  * allowed here, and paravirt_ops is a kind of one. As it will only run in
21  * baremetal anyway, we just keep it from happening. (This list needs to
22  * be extended when new paravirt and debugging variants are added.)
23  */
24 #undef CONFIG_PARAVIRT
25 #undef CONFIG_PARAVIRT_XXL
26 #undef CONFIG_PARAVIRT_SPINLOCKS
27 
28 /*
29  * This code runs before CPU feature bits are set. By default, the
30  * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
31  * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
32  * is provided to handle this situation and, instead, use a variable that
33  * has been set by the early boot code.
34  */
35 #define USE_EARLY_PGTABLE_L5
36 
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/mem_encrypt.h>
40 #include <linux/cc_platform.h>
41 
42 #include <asm/init.h>
43 #include <asm/setup.h>
44 #include <asm/sections.h>
45 #include <asm/coco.h>
46 #include <asm/sev.h>
47 
48 #define PGD_FLAGS		_KERNPG_TABLE_NOENC
49 #define P4D_FLAGS		_KERNPG_TABLE_NOENC
50 #define PUD_FLAGS		_KERNPG_TABLE_NOENC
51 #define PMD_FLAGS		_KERNPG_TABLE_NOENC
52 
53 #define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
54 
55 #define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
56 #define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
57 				 (_PAGE_PAT_LARGE | _PAGE_PWT))
58 
59 #define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
60 
61 #define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
62 
63 #define PTE_FLAGS_DEC		PTE_FLAGS
64 #define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
65 				 (_PAGE_PAT | _PAGE_PWT))
66 
67 #define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
68 
69 struct sme_populate_pgd_data {
70 	void    *pgtable_area;
71 	pgd_t   *pgd;
72 
73 	pmdval_t pmd_flags;
74 	pteval_t pte_flags;
75 	unsigned long paddr;
76 
77 	unsigned long vaddr;
78 	unsigned long vaddr_end;
79 };
80 
81 /*
82  * This work area lives in the .init.scratch section, which lives outside of
83  * the kernel proper. It is sized to hold the intermediate copy buffer and
84  * more than enough pagetable pages.
85  *
86  * By using this section, the kernel can be encrypted in place and it
87  * avoids any possibility of boot parameters or initramfs images being
88  * placed such that the in-place encryption logic overwrites them.  This
89  * section is 2MB aligned to allow for simple pagetable setup using only
90  * PMD entries (see vmlinux.lds.S).
91  */
92 static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
93 
94 static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
95 {
96 	unsigned long pgd_start, pgd_end, pgd_size;
97 	pgd_t *pgd_p;
98 
99 	pgd_start = ppd->vaddr & PGDIR_MASK;
100 	pgd_end = ppd->vaddr_end & PGDIR_MASK;
101 
102 	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
103 
104 	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
105 
106 	memset(pgd_p, 0, pgd_size);
107 }
108 
109 static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
110 {
111 	pgd_t *pgd;
112 	p4d_t *p4d;
113 	pud_t *pud;
114 	pmd_t *pmd;
115 
116 	pgd = ppd->pgd + pgd_index(ppd->vaddr);
117 	if (pgd_none(*pgd)) {
118 		p4d = ppd->pgtable_area;
119 		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
120 		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
121 		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
122 	}
123 
124 	p4d = p4d_offset(pgd, ppd->vaddr);
125 	if (p4d_none(*p4d)) {
126 		pud = ppd->pgtable_area;
127 		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
128 		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
129 		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
130 	}
131 
132 	pud = pud_offset(p4d, ppd->vaddr);
133 	if (pud_none(*pud)) {
134 		pmd = ppd->pgtable_area;
135 		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
136 		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
137 		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
138 	}
139 
140 	if (pud_leaf(*pud))
141 		return NULL;
142 
143 	return pud;
144 }
145 
146 static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
147 {
148 	pud_t *pud;
149 	pmd_t *pmd;
150 
151 	pud = sme_prepare_pgd(ppd);
152 	if (!pud)
153 		return;
154 
155 	pmd = pmd_offset(pud, ppd->vaddr);
156 	if (pmd_leaf(*pmd))
157 		return;
158 
159 	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
160 }
161 
162 static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
163 {
164 	pud_t *pud;
165 	pmd_t *pmd;
166 	pte_t *pte;
167 
168 	pud = sme_prepare_pgd(ppd);
169 	if (!pud)
170 		return;
171 
172 	pmd = pmd_offset(pud, ppd->vaddr);
173 	if (pmd_none(*pmd)) {
174 		pte = ppd->pgtable_area;
175 		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
176 		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
177 		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
178 	}
179 
180 	if (pmd_leaf(*pmd))
181 		return;
182 
183 	pte = pte_offset_kernel(pmd, ppd->vaddr);
184 	if (pte_none(*pte))
185 		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
186 }
187 
188 static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
189 {
190 	while (ppd->vaddr < ppd->vaddr_end) {
191 		sme_populate_pgd_large(ppd);
192 
193 		ppd->vaddr += PMD_SIZE;
194 		ppd->paddr += PMD_SIZE;
195 	}
196 }
197 
198 static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
199 {
200 	while (ppd->vaddr < ppd->vaddr_end) {
201 		sme_populate_pgd(ppd);
202 
203 		ppd->vaddr += PAGE_SIZE;
204 		ppd->paddr += PAGE_SIZE;
205 	}
206 }
207 
208 static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
209 				   pmdval_t pmd_flags, pteval_t pte_flags)
210 {
211 	unsigned long vaddr_end;
212 
213 	ppd->pmd_flags = pmd_flags;
214 	ppd->pte_flags = pte_flags;
215 
216 	/* Save original end value since we modify the struct value */
217 	vaddr_end = ppd->vaddr_end;
218 
219 	/* If start is not 2MB aligned, create PTE entries */
220 	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
221 	__sme_map_range_pte(ppd);
222 
223 	/* Create PMD entries */
224 	ppd->vaddr_end = vaddr_end & PMD_MASK;
225 	__sme_map_range_pmd(ppd);
226 
227 	/* If end is not 2MB aligned, create PTE entries */
228 	ppd->vaddr_end = vaddr_end;
229 	__sme_map_range_pte(ppd);
230 }
231 
232 static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
233 {
234 	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
235 }
236 
237 static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
238 {
239 	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
240 }
241 
242 static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
243 {
244 	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
245 }
246 
247 static unsigned long __head sme_pgtable_calc(unsigned long len)
248 {
249 	unsigned long entries = 0, tables = 0;
250 
251 	/*
252 	 * Perform a relatively simplistic calculation of the pagetable
253 	 * entries that are needed. Those mappings will be covered mostly
254 	 * by 2MB PMD entries so we can conservatively calculate the required
255 	 * number of P4D, PUD and PMD structures needed to perform the
256 	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
257 	 * would be needed for the start and end portion of the address range
258 	 * that fall outside of the 2MB alignment.  This results in, at most,
259 	 * two extra pages to hold PTE entries for each range that is mapped.
260 	 * Incrementing the count for each covers the case where the addresses
261 	 * cross entries.
262 	 */
263 
264 	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
265 	if (PTRS_PER_P4D > 1)
266 		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
267 	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
268 	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
269 	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
270 
271 	/*
272 	 * Now calculate the added pagetable structures needed to populate
273 	 * the new pagetables.
274 	 */
275 
276 	if (PTRS_PER_P4D > 1)
277 		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
278 	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
279 	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
280 
281 	return entries + tables;
282 }
283 
284 void __head sme_encrypt_kernel(struct boot_params *bp)
285 {
286 	unsigned long workarea_start, workarea_end, workarea_len;
287 	unsigned long execute_start, execute_end, execute_len;
288 	unsigned long kernel_start, kernel_end, kernel_len;
289 	unsigned long initrd_start, initrd_end, initrd_len;
290 	struct sme_populate_pgd_data ppd;
291 	unsigned long pgtable_area_len;
292 	unsigned long decrypted_base;
293 
294 	/*
295 	 * This is early code, use an open coded check for SME instead of
296 	 * using cc_platform_has(). This eliminates worries about removing
297 	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
298 	 * function.
299 	 */
300 	if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
301 		return;
302 
303 	/*
304 	 * Prepare for encrypting the kernel and initrd by building new
305 	 * pagetables with the necessary attributes needed to encrypt the
306 	 * kernel in place.
307 	 *
308 	 *   One range of virtual addresses will map the memory occupied
309 	 *   by the kernel and initrd as encrypted.
310 	 *
311 	 *   Another range of virtual addresses will map the memory occupied
312 	 *   by the kernel and initrd as decrypted and write-protected.
313 	 *
314 	 *     The use of write-protect attribute will prevent any of the
315 	 *     memory from being cached.
316 	 */
317 
318 	kernel_start = (unsigned long)rip_rel_ptr(_text);
319 	kernel_end = ALIGN((unsigned long)rip_rel_ptr(_end), PMD_SIZE);
320 	kernel_len = kernel_end - kernel_start;
321 
322 	initrd_start = 0;
323 	initrd_end = 0;
324 	initrd_len = 0;
325 #ifdef CONFIG_BLK_DEV_INITRD
326 	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
327 		     ((unsigned long)bp->ext_ramdisk_size << 32);
328 	if (initrd_len) {
329 		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
330 			       ((unsigned long)bp->ext_ramdisk_image << 32);
331 		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
332 		initrd_len = initrd_end - initrd_start;
333 	}
334 #endif
335 
336 	/*
337 	 * Calculate required number of workarea bytes needed:
338 	 *   executable encryption area size:
339 	 *     stack page (PAGE_SIZE)
340 	 *     encryption routine page (PAGE_SIZE)
341 	 *     intermediate copy buffer (PMD_SIZE)
342 	 *   pagetable structures for the encryption of the kernel
343 	 *   pagetable structures for workarea (in case not currently mapped)
344 	 */
345 	execute_start = workarea_start = (unsigned long)rip_rel_ptr(sme_workarea);
346 	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
347 	execute_len = execute_end - execute_start;
348 
349 	/*
350 	 * One PGD for both encrypted and decrypted mappings and a set of
351 	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
352 	 */
353 	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
354 	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
355 	if (initrd_len)
356 		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
357 
358 	/* PUDs and PMDs needed in the current pagetables for the workarea */
359 	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
360 
361 	/*
362 	 * The total workarea includes the executable encryption area and
363 	 * the pagetable area. The start of the workarea is already 2MB
364 	 * aligned, align the end of the workarea on a 2MB boundary so that
365 	 * we don't try to create/allocate PTE entries from the workarea
366 	 * before it is mapped.
367 	 */
368 	workarea_len = execute_len + pgtable_area_len;
369 	workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
370 
371 	/*
372 	 * Set the address to the start of where newly created pagetable
373 	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
374 	 * structures are created when the workarea is added to the current
375 	 * pagetables and when the new encrypted and decrypted kernel
376 	 * mappings are populated.
377 	 */
378 	ppd.pgtable_area = (void *)execute_end;
379 
380 	/*
381 	 * Make sure the current pagetable structure has entries for
382 	 * addressing the workarea.
383 	 */
384 	ppd.pgd = (pgd_t *)native_read_cr3_pa();
385 	ppd.paddr = workarea_start;
386 	ppd.vaddr = workarea_start;
387 	ppd.vaddr_end = workarea_end;
388 	sme_map_range_decrypted(&ppd);
389 
390 	/* Flush the TLB - no globals so cr3 is enough */
391 	native_write_cr3(__native_read_cr3());
392 
393 	/*
394 	 * A new pagetable structure is being built to allow for the kernel
395 	 * and initrd to be encrypted. It starts with an empty PGD that will
396 	 * then be populated with new PUDs and PMDs as the encrypted and
397 	 * decrypted kernel mappings are created.
398 	 */
399 	ppd.pgd = ppd.pgtable_area;
400 	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
401 	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
402 
403 	/*
404 	 * A different PGD index/entry must be used to get different
405 	 * pagetable entries for the decrypted mapping. Choose the next
406 	 * PGD index and convert it to a virtual address to be used as
407 	 * the base of the mapping.
408 	 */
409 	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
410 	if (initrd_len) {
411 		unsigned long check_base;
412 
413 		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
414 		decrypted_base = max(decrypted_base, check_base);
415 	}
416 	decrypted_base <<= PGDIR_SHIFT;
417 
418 	/* Add encrypted kernel (identity) mappings */
419 	ppd.paddr = kernel_start;
420 	ppd.vaddr = kernel_start;
421 	ppd.vaddr_end = kernel_end;
422 	sme_map_range_encrypted(&ppd);
423 
424 	/* Add decrypted, write-protected kernel (non-identity) mappings */
425 	ppd.paddr = kernel_start;
426 	ppd.vaddr = kernel_start + decrypted_base;
427 	ppd.vaddr_end = kernel_end + decrypted_base;
428 	sme_map_range_decrypted_wp(&ppd);
429 
430 	if (initrd_len) {
431 		/* Add encrypted initrd (identity) mappings */
432 		ppd.paddr = initrd_start;
433 		ppd.vaddr = initrd_start;
434 		ppd.vaddr_end = initrd_end;
435 		sme_map_range_encrypted(&ppd);
436 		/*
437 		 * Add decrypted, write-protected initrd (non-identity) mappings
438 		 */
439 		ppd.paddr = initrd_start;
440 		ppd.vaddr = initrd_start + decrypted_base;
441 		ppd.vaddr_end = initrd_end + decrypted_base;
442 		sme_map_range_decrypted_wp(&ppd);
443 	}
444 
445 	/* Add decrypted workarea mappings to both kernel mappings */
446 	ppd.paddr = workarea_start;
447 	ppd.vaddr = workarea_start;
448 	ppd.vaddr_end = workarea_end;
449 	sme_map_range_decrypted(&ppd);
450 
451 	ppd.paddr = workarea_start;
452 	ppd.vaddr = workarea_start + decrypted_base;
453 	ppd.vaddr_end = workarea_end + decrypted_base;
454 	sme_map_range_decrypted(&ppd);
455 
456 	/* Perform the encryption */
457 	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
458 			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
459 
460 	if (initrd_len)
461 		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
462 				    initrd_len, workarea_start,
463 				    (unsigned long)ppd.pgd);
464 
465 	/*
466 	 * At this point we are running encrypted.  Remove the mappings for
467 	 * the decrypted areas - all that is needed for this is to remove
468 	 * the PGD entry/entries.
469 	 */
470 	ppd.vaddr = kernel_start + decrypted_base;
471 	ppd.vaddr_end = kernel_end + decrypted_base;
472 	sme_clear_pgd(&ppd);
473 
474 	if (initrd_len) {
475 		ppd.vaddr = initrd_start + decrypted_base;
476 		ppd.vaddr_end = initrd_end + decrypted_base;
477 		sme_clear_pgd(&ppd);
478 	}
479 
480 	ppd.vaddr = workarea_start + decrypted_base;
481 	ppd.vaddr_end = workarea_end + decrypted_base;
482 	sme_clear_pgd(&ppd);
483 
484 	/* Flush the TLB - no globals so cr3 is enough */
485 	native_write_cr3(__native_read_cr3());
486 }
487 
488 void __head sme_enable(struct boot_params *bp)
489 {
490 	unsigned int eax, ebx, ecx, edx;
491 	unsigned long feature_mask;
492 	unsigned long me_mask;
493 	bool snp_en;
494 	u64 msr;
495 
496 	snp_en = snp_init(bp);
497 
498 	/* Check for the SME/SEV support leaf */
499 	eax = 0x80000000;
500 	ecx = 0;
501 	native_cpuid(&eax, &ebx, &ecx, &edx);
502 	if (eax < 0x8000001f)
503 		return;
504 
505 #define AMD_SME_BIT	BIT(0)
506 #define AMD_SEV_BIT	BIT(1)
507 
508 	/*
509 	 * Check for the SME/SEV feature:
510 	 *   CPUID Fn8000_001F[EAX]
511 	 *   - Bit 0 - Secure Memory Encryption support
512 	 *   - Bit 1 - Secure Encrypted Virtualization support
513 	 *   CPUID Fn8000_001F[EBX]
514 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
515 	 */
516 	eax = 0x8000001f;
517 	ecx = 0;
518 	native_cpuid(&eax, &ebx, &ecx, &edx);
519 	/* Check whether SEV or SME is supported */
520 	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
521 		return;
522 
523 	me_mask = 1UL << (ebx & 0x3f);
524 
525 	/* Check the SEV MSR whether SEV or SME is enabled */
526 	sev_status = msr = native_rdmsrq(MSR_AMD64_SEV);
527 	feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
528 
529 	/*
530 	 * Any discrepancies between the presence of a CC blob and SNP
531 	 * enablement abort the guest.
532 	 */
533 	if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED))
534 		snp_abort();
535 
536 	/* Check if memory encryption is enabled */
537 	if (feature_mask == AMD_SME_BIT) {
538 		if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
539 			return;
540 
541 		/*
542 		 * No SME if Hypervisor bit is set. This check is here to
543 		 * prevent a guest from trying to enable SME. For running as a
544 		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
545 		 * might be other hypervisors which emulate that MSR as non-zero
546 		 * or even pass it through to the guest.
547 		 * A malicious hypervisor can still trick a guest into this
548 		 * path, but there is no way to protect against that.
549 		 */
550 		eax = 1;
551 		ecx = 0;
552 		native_cpuid(&eax, &ebx, &ecx, &edx);
553 		if (ecx & BIT(31))
554 			return;
555 
556 		/* For SME, check the SYSCFG MSR */
557 		msr = native_rdmsrq(MSR_AMD64_SYSCFG);
558 		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
559 			return;
560 	}
561 
562 	sme_me_mask	= me_mask;
563 	physical_mask	&= ~me_mask;
564 	cc_vendor	= CC_VENDOR_AMD;
565 	cc_set_mask(me_mask);
566 }
567 
568 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
569 /* Local version for startup code, which never operates on user page tables */
570 __weak
571 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
572 {
573 	return pgd;
574 }
575 #endif
576