xref: /linux/arch/x86/boot/compressed/sev.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AMD Encrypted Register State Support
4  *
5  * Author: Joerg Roedel <jroedel@suse.de>
6  */
7 
8 /*
9  * misc.h needs to be first because it knows how to include the other kernel
10  * headers in the pre-decompression code in a way that does not break
11  * compilation.
12  */
13 #include "misc.h"
14 
15 #include <asm/bootparam.h>
16 #include <asm/pgtable_types.h>
17 #include <asm/sev.h>
18 #include <asm/trapnr.h>
19 #include <asm/trap_pf.h>
20 #include <asm/msr-index.h>
21 #include <asm/fpu/xcr.h>
22 #include <asm/ptrace.h>
23 #include <asm/svm.h>
24 #include <asm/cpuid.h>
25 
26 #include "error.h"
27 #include "../msr.h"
28 
29 static struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
30 struct ghcb *boot_ghcb;
31 
32 /*
33  * Copy a version of this function here - insn-eval.c can't be used in
34  * pre-decompression code.
35  */
36 static bool insn_has_rep_prefix(struct insn *insn)
37 {
38 	insn_byte_t p;
39 	int i;
40 
41 	insn_get_prefixes(insn);
42 
43 	for_each_insn_prefix(insn, i, p) {
44 		if (p == 0xf2 || p == 0xf3)
45 			return true;
46 	}
47 
48 	return false;
49 }
50 
51 /*
52  * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
53  * doesn't use segments.
54  */
55 static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
56 {
57 	return 0UL;
58 }
59 
60 static inline u64 sev_es_rd_ghcb_msr(void)
61 {
62 	struct msr m;
63 
64 	boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);
65 
66 	return m.q;
67 }
68 
69 static inline void sev_es_wr_ghcb_msr(u64 val)
70 {
71 	struct msr m;
72 
73 	m.q = val;
74 	boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
75 }
76 
77 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
78 {
79 	char buffer[MAX_INSN_SIZE];
80 	int ret;
81 
82 	memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
83 
84 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
85 	if (ret < 0)
86 		return ES_DECODE_FAILED;
87 
88 	return ES_OK;
89 }
90 
91 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
92 				   void *dst, char *buf, size_t size)
93 {
94 	memcpy(dst, buf, size);
95 
96 	return ES_OK;
97 }
98 
99 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
100 				  void *src, char *buf, size_t size)
101 {
102 	memcpy(buf, src, size);
103 
104 	return ES_OK;
105 }
106 
107 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
108 {
109 	return ES_OK;
110 }
111 
112 static bool fault_in_kernel_space(unsigned long address)
113 {
114 	return false;
115 }
116 
117 #undef __init
118 #define __init
119 
120 #undef __head
121 #define __head
122 
123 #define __BOOT_COMPRESSED
124 
125 /* Basic instruction decoding support needed */
126 #include "../../lib/inat.c"
127 #include "../../lib/insn.c"
128 
129 /* Include code for early handlers */
130 #include "../../coco/sev/shared.c"
131 
132 static struct svsm_ca *svsm_get_caa(void)
133 {
134 	return boot_svsm_caa;
135 }
136 
137 static u64 svsm_get_caa_pa(void)
138 {
139 	return boot_svsm_caa_pa;
140 }
141 
142 static int svsm_perform_call_protocol(struct svsm_call *call)
143 {
144 	struct ghcb *ghcb;
145 	int ret;
146 
147 	if (boot_ghcb)
148 		ghcb = boot_ghcb;
149 	else
150 		ghcb = NULL;
151 
152 	do {
153 		ret = ghcb ? svsm_perform_ghcb_protocol(ghcb, call)
154 			   : svsm_perform_msr_protocol(call);
155 	} while (ret == -EAGAIN);
156 
157 	return ret;
158 }
159 
160 bool sev_snp_enabled(void)
161 {
162 	return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
163 }
164 
165 static void __page_state_change(unsigned long paddr, enum psc_op op)
166 {
167 	u64 val;
168 
169 	if (!sev_snp_enabled())
170 		return;
171 
172 	/*
173 	 * If private -> shared then invalidate the page before requesting the
174 	 * state change in the RMP table.
175 	 */
176 	if (op == SNP_PAGE_STATE_SHARED)
177 		pvalidate_4k_page(paddr, paddr, false);
178 
179 	/* Issue VMGEXIT to change the page state in RMP table. */
180 	sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
181 	VMGEXIT();
182 
183 	/* Read the response of the VMGEXIT. */
184 	val = sev_es_rd_ghcb_msr();
185 	if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
186 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
187 
188 	/*
189 	 * Now that page state is changed in the RMP table, validate it so that it is
190 	 * consistent with the RMP entry.
191 	 */
192 	if (op == SNP_PAGE_STATE_PRIVATE)
193 		pvalidate_4k_page(paddr, paddr, true);
194 }
195 
196 void snp_set_page_private(unsigned long paddr)
197 {
198 	__page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
199 }
200 
201 void snp_set_page_shared(unsigned long paddr)
202 {
203 	__page_state_change(paddr, SNP_PAGE_STATE_SHARED);
204 }
205 
206 static bool early_setup_ghcb(void)
207 {
208 	if (set_page_decrypted((unsigned long)&boot_ghcb_page))
209 		return false;
210 
211 	/* Page is now mapped decrypted, clear it */
212 	memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));
213 
214 	boot_ghcb = &boot_ghcb_page;
215 
216 	/* Initialize lookup tables for the instruction decoder */
217 	inat_init_tables();
218 
219 	/* SNP guest requires the GHCB GPA must be registered */
220 	if (sev_snp_enabled())
221 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
222 
223 	return true;
224 }
225 
226 static phys_addr_t __snp_accept_memory(struct snp_psc_desc *desc,
227 				       phys_addr_t pa, phys_addr_t pa_end)
228 {
229 	struct psc_hdr *hdr;
230 	struct psc_entry *e;
231 	unsigned int i;
232 
233 	hdr = &desc->hdr;
234 	memset(hdr, 0, sizeof(*hdr));
235 
236 	e = desc->entries;
237 
238 	i = 0;
239 	while (pa < pa_end && i < VMGEXIT_PSC_MAX_ENTRY) {
240 		hdr->end_entry = i;
241 
242 		e->gfn = pa >> PAGE_SHIFT;
243 		e->operation = SNP_PAGE_STATE_PRIVATE;
244 		if (IS_ALIGNED(pa, PMD_SIZE) && (pa_end - pa) >= PMD_SIZE) {
245 			e->pagesize = RMP_PG_SIZE_2M;
246 			pa += PMD_SIZE;
247 		} else {
248 			e->pagesize = RMP_PG_SIZE_4K;
249 			pa += PAGE_SIZE;
250 		}
251 
252 		e++;
253 		i++;
254 	}
255 
256 	if (vmgexit_psc(boot_ghcb, desc))
257 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
258 
259 	pvalidate_pages(desc);
260 
261 	return pa;
262 }
263 
264 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
265 {
266 	struct snp_psc_desc desc = {};
267 	unsigned int i;
268 	phys_addr_t pa;
269 
270 	if (!boot_ghcb && !early_setup_ghcb())
271 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
272 
273 	pa = start;
274 	while (pa < end)
275 		pa = __snp_accept_memory(&desc, pa, end);
276 }
277 
278 void sev_es_shutdown_ghcb(void)
279 {
280 	if (!boot_ghcb)
281 		return;
282 
283 	if (!sev_es_check_cpu_features())
284 		error("SEV-ES CPU Features missing.");
285 
286 	/*
287 	 * This denotes whether to use the GHCB MSR protocol or the GHCB
288 	 * shared page to perform a GHCB request. Since the GHCB page is
289 	 * being changed to encrypted, it can't be used to perform GHCB
290 	 * requests. Clear the boot_ghcb variable so that the GHCB MSR
291 	 * protocol is used to change the GHCB page over to an encrypted
292 	 * page.
293 	 */
294 	boot_ghcb = NULL;
295 
296 	/*
297 	 * GHCB Page must be flushed from the cache and mapped encrypted again.
298 	 * Otherwise the running kernel will see strange cache effects when
299 	 * trying to use that page.
300 	 */
301 	if (set_page_encrypted((unsigned long)&boot_ghcb_page))
302 		error("Can't map GHCB page encrypted");
303 
304 	/*
305 	 * GHCB page is mapped encrypted again and flushed from the cache.
306 	 * Mark it non-present now to catch bugs when #VC exceptions trigger
307 	 * after this point.
308 	 */
309 	if (set_page_non_present((unsigned long)&boot_ghcb_page))
310 		error("Can't unmap GHCB page");
311 }
312 
313 static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
314 					     unsigned int reason, u64 exit_info_2)
315 {
316 	u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);
317 
318 	vc_ghcb_invalidate(ghcb);
319 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
320 	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
321 	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
322 
323 	sev_es_wr_ghcb_msr(__pa(ghcb));
324 	VMGEXIT();
325 
326 	while (true)
327 		asm volatile("hlt\n" : : : "memory");
328 }
329 
330 bool sev_es_check_ghcb_fault(unsigned long address)
331 {
332 	/* Check whether the fault was on the GHCB page */
333 	return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
334 }
335 
336 void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
337 {
338 	struct es_em_ctxt ctxt;
339 	enum es_result result;
340 
341 	if (!boot_ghcb && !early_setup_ghcb())
342 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
343 
344 	vc_ghcb_invalidate(boot_ghcb);
345 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
346 	if (result != ES_OK)
347 		goto finish;
348 
349 	result = vc_check_opcode_bytes(&ctxt, exit_code);
350 	if (result != ES_OK)
351 		goto finish;
352 
353 	switch (exit_code) {
354 	case SVM_EXIT_RDTSC:
355 	case SVM_EXIT_RDTSCP:
356 		result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
357 		break;
358 	case SVM_EXIT_IOIO:
359 		result = vc_handle_ioio(boot_ghcb, &ctxt);
360 		break;
361 	case SVM_EXIT_CPUID:
362 		result = vc_handle_cpuid(boot_ghcb, &ctxt);
363 		break;
364 	default:
365 		result = ES_UNSUPPORTED;
366 		break;
367 	}
368 
369 finish:
370 	if (result == ES_OK)
371 		vc_finish_insn(&ctxt);
372 	else if (result != ES_RETRY)
373 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
374 }
375 
376 /*
377  * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
378  * guest side implementation for proper functioning of the guest. If any
379  * of these features are enabled in the hypervisor but are lacking guest
380  * side implementation, the behavior of the guest will be undefined. The
381  * guest could fail in non-obvious way making it difficult to debug.
382  *
383  * As the behavior of reserved feature bits is unknown to be on the
384  * safe side add them to the required features mask.
385  */
386 #define SNP_FEATURES_IMPL_REQ	(MSR_AMD64_SNP_VTOM |			\
387 				 MSR_AMD64_SNP_REFLECT_VC |		\
388 				 MSR_AMD64_SNP_RESTRICTED_INJ |		\
389 				 MSR_AMD64_SNP_ALT_INJ |		\
390 				 MSR_AMD64_SNP_DEBUG_SWAP |		\
391 				 MSR_AMD64_SNP_VMPL_SSS |		\
392 				 MSR_AMD64_SNP_SECURE_TSC |		\
393 				 MSR_AMD64_SNP_VMGEXIT_PARAM |		\
394 				 MSR_AMD64_SNP_VMSA_REG_PROT |		\
395 				 MSR_AMD64_SNP_RESERVED_BIT13 |		\
396 				 MSR_AMD64_SNP_RESERVED_BIT15 |		\
397 				 MSR_AMD64_SNP_RESERVED_MASK)
398 
399 /*
400  * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
401  * by the guest kernel. As and when a new feature is implemented in the
402  * guest kernel, a corresponding bit should be added to the mask.
403  */
404 #define SNP_FEATURES_PRESENT	MSR_AMD64_SNP_DEBUG_SWAP
405 
406 u64 snp_get_unsupported_features(u64 status)
407 {
408 	if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
409 		return 0;
410 
411 	return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
412 }
413 
414 void snp_check_features(void)
415 {
416 	u64 unsupported;
417 
418 	/*
419 	 * Terminate the boot if hypervisor has enabled any feature lacking
420 	 * guest side implementation. Pass on the unsupported features mask through
421 	 * EXIT_INFO_2 of the GHCB protocol so that those features can be reported
422 	 * as part of the guest boot failure.
423 	 */
424 	unsupported = snp_get_unsupported_features(sev_status);
425 	if (unsupported) {
426 		if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
427 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
428 
429 		sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
430 				      GHCB_SNP_UNSUPPORTED, unsupported);
431 	}
432 }
433 
434 /* Search for Confidential Computing blob in the EFI config table. */
435 static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
436 {
437 	unsigned long cfg_table_pa;
438 	unsigned int cfg_table_len;
439 	int ret;
440 
441 	ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
442 	if (ret)
443 		return NULL;
444 
445 	return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
446 								cfg_table_len,
447 								EFI_CC_BLOB_GUID);
448 }
449 
450 /*
451  * Initial set up of SNP relies on information provided by the
452  * Confidential Computing blob, which can be passed to the boot kernel
453  * by firmware/bootloader in the following ways:
454  *
455  * - via an entry in the EFI config table
456  * - via a setup_data structure, as defined by the Linux Boot Protocol
457  *
458  * Scan for the blob in that order.
459  */
460 static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
461 {
462 	struct cc_blob_sev_info *cc_info;
463 
464 	cc_info = find_cc_blob_efi(bp);
465 	if (cc_info)
466 		goto found_cc_info;
467 
468 	cc_info = find_cc_blob_setup_data(bp);
469 	if (!cc_info)
470 		return NULL;
471 
472 found_cc_info:
473 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
474 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
475 
476 	return cc_info;
477 }
478 
479 /*
480  * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
481  * will verify the SNP CPUID/MSR bits.
482  */
483 static bool early_snp_init(struct boot_params *bp)
484 {
485 	struct cc_blob_sev_info *cc_info;
486 
487 	if (!bp)
488 		return false;
489 
490 	cc_info = find_cc_blob(bp);
491 	if (!cc_info)
492 		return false;
493 
494 	/*
495 	 * If a SNP-specific Confidential Computing blob is present, then
496 	 * firmware/bootloader have indicated SNP support. Verifying this
497 	 * involves CPUID checks which will be more reliable if the SNP
498 	 * CPUID table is used. See comments over snp_setup_cpuid_table() for
499 	 * more details.
500 	 */
501 	setup_cpuid_table(cc_info);
502 
503 	/*
504 	 * Record the SVSM Calling Area (CA) address if the guest is not
505 	 * running at VMPL0. The CA will be used to communicate with the
506 	 * SVSM and request its services.
507 	 */
508 	svsm_setup_ca(cc_info);
509 
510 	/*
511 	 * Pass run-time kernel a pointer to CC info via boot_params so EFI
512 	 * config table doesn't need to be searched again during early startup
513 	 * phase.
514 	 */
515 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
516 
517 	return true;
518 }
519 
520 /*
521  * sev_check_cpu_support - Check for SEV support in the CPU capabilities
522  *
523  * Returns < 0 if SEV is not supported, otherwise the position of the
524  * encryption bit in the page table descriptors.
525  */
526 static int sev_check_cpu_support(void)
527 {
528 	unsigned int eax, ebx, ecx, edx;
529 
530 	/* Check for the SME/SEV support leaf */
531 	eax = 0x80000000;
532 	ecx = 0;
533 	native_cpuid(&eax, &ebx, &ecx, &edx);
534 	if (eax < 0x8000001f)
535 		return -ENODEV;
536 
537 	/*
538 	 * Check for the SME/SEV feature:
539 	 *   CPUID Fn8000_001F[EAX]
540 	 *   - Bit 0 - Secure Memory Encryption support
541 	 *   - Bit 1 - Secure Encrypted Virtualization support
542 	 *   CPUID Fn8000_001F[EBX]
543 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
544 	 */
545 	eax = 0x8000001f;
546 	ecx = 0;
547 	native_cpuid(&eax, &ebx, &ecx, &edx);
548 	/* Check whether SEV is supported */
549 	if (!(eax & BIT(1)))
550 		return -ENODEV;
551 
552 	return ebx & 0x3f;
553 }
554 
555 void sev_enable(struct boot_params *bp)
556 {
557 	struct msr m;
558 	int bitpos;
559 	bool snp;
560 
561 	/*
562 	 * bp->cc_blob_address should only be set by boot/compressed kernel.
563 	 * Initialize it to 0 to ensure that uninitialized values from
564 	 * buggy bootloaders aren't propagated.
565 	 */
566 	if (bp)
567 		bp->cc_blob_address = 0;
568 
569 	/*
570 	 * Do an initial SEV capability check before early_snp_init() which
571 	 * loads the CPUID page and the same checks afterwards are done
572 	 * without the hypervisor and are trustworthy.
573 	 *
574 	 * If the HV fakes SEV support, the guest will crash'n'burn
575 	 * which is good enough.
576 	 */
577 
578 	if (sev_check_cpu_support() < 0)
579 		return;
580 
581 	/*
582 	 * Setup/preliminary detection of SNP. This will be sanity-checked
583 	 * against CPUID/MSR values later.
584 	 */
585 	snp = early_snp_init(bp);
586 
587 	/* Now repeat the checks with the SNP CPUID table. */
588 
589 	bitpos = sev_check_cpu_support();
590 	if (bitpos < 0) {
591 		if (snp)
592 			error("SEV-SNP support indicated by CC blob, but not CPUID.");
593 		return;
594 	}
595 
596 	/* Set the SME mask if this is an SEV guest. */
597 	boot_rdmsr(MSR_AMD64_SEV, &m);
598 	sev_status = m.q;
599 	if (!(sev_status & MSR_AMD64_SEV_ENABLED))
600 		return;
601 
602 	/* Negotiate the GHCB protocol version. */
603 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
604 		if (!sev_es_negotiate_protocol())
605 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
606 	}
607 
608 	/*
609 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
610 	 * features.
611 	 */
612 	if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
613 		u64 hv_features;
614 		int ret;
615 
616 		hv_features = get_hv_features();
617 		if (!(hv_features & GHCB_HV_FT_SNP))
618 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
619 
620 		/*
621 		 * Enforce running at VMPL0 or with an SVSM.
622 		 *
623 		 * Use RMPADJUST (see the rmpadjust() function for a description of
624 		 * what the instruction does) to update the VMPL1 permissions of a
625 		 * page. If the guest is running at VMPL0, this will succeed. If the
626 		 * guest is running at any other VMPL, this will fail. Linux SNP guests
627 		 * only ever run at a single VMPL level so permission mask changes of a
628 		 * lesser-privileged VMPL are a don't-care.
629 		 */
630 		ret = rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, 1);
631 
632 		/*
633 		 * Running at VMPL0 is not required if an SVSM is present and the hypervisor
634 		 * supports the required SVSM GHCB events.
635 		 */
636 		if (ret &&
637 		    !(snp_vmpl && (hv_features & GHCB_HV_FT_SNP_MULTI_VMPL)))
638 			sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
639 	}
640 
641 	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
642 		error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");
643 
644 	sme_me_mask = BIT_ULL(bitpos);
645 }
646 
647 /*
648  * sev_get_status - Retrieve the SEV status mask
649  *
650  * Returns 0 if the CPU is not SEV capable, otherwise the value of the
651  * AMD64_SEV MSR.
652  */
653 u64 sev_get_status(void)
654 {
655 	struct msr m;
656 
657 	if (sev_check_cpu_support() < 0)
658 		return 0;
659 
660 	boot_rdmsr(MSR_AMD64_SEV, &m);
661 	return m.q;
662 }
663 
664 void sev_prep_identity_maps(unsigned long top_level_pgt)
665 {
666 	/*
667 	 * The Confidential Computing blob is used very early in uncompressed
668 	 * kernel to find the in-memory CPUID table to handle CPUID
669 	 * instructions. Make sure an identity-mapping exists so it can be
670 	 * accessed after switchover.
671 	 */
672 	if (sev_snp_enabled()) {
673 		unsigned long cc_info_pa = boot_params_ptr->cc_blob_address;
674 		struct cc_blob_sev_info *cc_info;
675 
676 		kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));
677 
678 		cc_info = (struct cc_blob_sev_info *)cc_info_pa;
679 		kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
680 	}
681 
682 	sev_verify_cbit(top_level_pgt);
683 }
684