xref: /linux/arch/x86/boot/compressed/sev.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AMD Encrypted Register State Support
4  *
5  * Author: Joerg Roedel <jroedel@suse.de>
6  */
7 
8 /*
9  * misc.h needs to be first because it knows how to include the other kernel
10  * headers in the pre-decompression code in a way that does not break
11  * compilation.
12  */
13 #include "misc.h"
14 
15 #include <asm/pgtable_types.h>
16 #include <asm/sev.h>
17 #include <asm/trapnr.h>
18 #include <asm/trap_pf.h>
19 #include <asm/msr-index.h>
20 #include <asm/fpu/xcr.h>
21 #include <asm/ptrace.h>
22 #include <asm/svm.h>
23 #include <asm/cpuid.h>
24 
25 #include "error.h"
26 #include "../msr.h"
27 
28 static struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
29 struct ghcb *boot_ghcb;
30 
31 /*
32  * Copy a version of this function here - insn-eval.c can't be used in
33  * pre-decompression code.
34  */
35 static bool insn_has_rep_prefix(struct insn *insn)
36 {
37 	insn_byte_t p;
38 	int i;
39 
40 	insn_get_prefixes(insn);
41 
42 	for_each_insn_prefix(insn, i, p) {
43 		if (p == 0xf2 || p == 0xf3)
44 			return true;
45 	}
46 
47 	return false;
48 }
49 
50 /*
51  * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
52  * doesn't use segments.
53  */
54 static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
55 {
56 	return 0UL;
57 }
58 
59 static inline u64 sev_es_rd_ghcb_msr(void)
60 {
61 	struct msr m;
62 
63 	boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);
64 
65 	return m.q;
66 }
67 
68 static inline void sev_es_wr_ghcb_msr(u64 val)
69 {
70 	struct msr m;
71 
72 	m.q = val;
73 	boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
74 }
75 
76 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
77 {
78 	char buffer[MAX_INSN_SIZE];
79 	int ret;
80 
81 	memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
82 
83 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
84 	if (ret < 0)
85 		return ES_DECODE_FAILED;
86 
87 	return ES_OK;
88 }
89 
90 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
91 				   void *dst, char *buf, size_t size)
92 {
93 	memcpy(dst, buf, size);
94 
95 	return ES_OK;
96 }
97 
98 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
99 				  void *src, char *buf, size_t size)
100 {
101 	memcpy(buf, src, size);
102 
103 	return ES_OK;
104 }
105 
106 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
107 {
108 	return ES_OK;
109 }
110 
111 static bool fault_in_kernel_space(unsigned long address)
112 {
113 	return false;
114 }
115 
116 #undef __init
117 #define __init
118 
119 #define __BOOT_COMPRESSED
120 
121 /* Basic instruction decoding support needed */
122 #include "../../lib/inat.c"
123 #include "../../lib/insn.c"
124 
125 /* Include code for early handlers */
126 #include "../../kernel/sev-shared.c"
127 
128 bool sev_snp_enabled(void)
129 {
130 	return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
131 }
132 
133 static void __page_state_change(unsigned long paddr, enum psc_op op)
134 {
135 	u64 val;
136 
137 	if (!sev_snp_enabled())
138 		return;
139 
140 	/*
141 	 * If private -> shared then invalidate the page before requesting the
142 	 * state change in the RMP table.
143 	 */
144 	if (op == SNP_PAGE_STATE_SHARED && pvalidate(paddr, RMP_PG_SIZE_4K, 0))
145 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
146 
147 	/* Issue VMGEXIT to change the page state in RMP table. */
148 	sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
149 	VMGEXIT();
150 
151 	/* Read the response of the VMGEXIT. */
152 	val = sev_es_rd_ghcb_msr();
153 	if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
154 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
155 
156 	/*
157 	 * Now that page state is changed in the RMP table, validate it so that it is
158 	 * consistent with the RMP entry.
159 	 */
160 	if (op == SNP_PAGE_STATE_PRIVATE && pvalidate(paddr, RMP_PG_SIZE_4K, 1))
161 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
162 }
163 
164 void snp_set_page_private(unsigned long paddr)
165 {
166 	__page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
167 }
168 
169 void snp_set_page_shared(unsigned long paddr)
170 {
171 	__page_state_change(paddr, SNP_PAGE_STATE_SHARED);
172 }
173 
174 static bool early_setup_ghcb(void)
175 {
176 	if (set_page_decrypted((unsigned long)&boot_ghcb_page))
177 		return false;
178 
179 	/* Page is now mapped decrypted, clear it */
180 	memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));
181 
182 	boot_ghcb = &boot_ghcb_page;
183 
184 	/* Initialize lookup tables for the instruction decoder */
185 	inat_init_tables();
186 
187 	/* SNP guest requires the GHCB GPA must be registered */
188 	if (sev_snp_enabled())
189 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
190 
191 	return true;
192 }
193 
194 static phys_addr_t __snp_accept_memory(struct snp_psc_desc *desc,
195 				       phys_addr_t pa, phys_addr_t pa_end)
196 {
197 	struct psc_hdr *hdr;
198 	struct psc_entry *e;
199 	unsigned int i;
200 
201 	hdr = &desc->hdr;
202 	memset(hdr, 0, sizeof(*hdr));
203 
204 	e = desc->entries;
205 
206 	i = 0;
207 	while (pa < pa_end && i < VMGEXIT_PSC_MAX_ENTRY) {
208 		hdr->end_entry = i;
209 
210 		e->gfn = pa >> PAGE_SHIFT;
211 		e->operation = SNP_PAGE_STATE_PRIVATE;
212 		if (IS_ALIGNED(pa, PMD_SIZE) && (pa_end - pa) >= PMD_SIZE) {
213 			e->pagesize = RMP_PG_SIZE_2M;
214 			pa += PMD_SIZE;
215 		} else {
216 			e->pagesize = RMP_PG_SIZE_4K;
217 			pa += PAGE_SIZE;
218 		}
219 
220 		e++;
221 		i++;
222 	}
223 
224 	if (vmgexit_psc(boot_ghcb, desc))
225 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
226 
227 	pvalidate_pages(desc);
228 
229 	return pa;
230 }
231 
232 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
233 {
234 	struct snp_psc_desc desc = {};
235 	unsigned int i;
236 	phys_addr_t pa;
237 
238 	if (!boot_ghcb && !early_setup_ghcb())
239 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
240 
241 	pa = start;
242 	while (pa < end)
243 		pa = __snp_accept_memory(&desc, pa, end);
244 }
245 
246 void sev_es_shutdown_ghcb(void)
247 {
248 	if (!boot_ghcb)
249 		return;
250 
251 	if (!sev_es_check_cpu_features())
252 		error("SEV-ES CPU Features missing.");
253 
254 	/*
255 	 * GHCB Page must be flushed from the cache and mapped encrypted again.
256 	 * Otherwise the running kernel will see strange cache effects when
257 	 * trying to use that page.
258 	 */
259 	if (set_page_encrypted((unsigned long)&boot_ghcb_page))
260 		error("Can't map GHCB page encrypted");
261 
262 	/*
263 	 * GHCB page is mapped encrypted again and flushed from the cache.
264 	 * Mark it non-present now to catch bugs when #VC exceptions trigger
265 	 * after this point.
266 	 */
267 	if (set_page_non_present((unsigned long)&boot_ghcb_page))
268 		error("Can't unmap GHCB page");
269 }
270 
271 static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
272 					     unsigned int reason, u64 exit_info_2)
273 {
274 	u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);
275 
276 	vc_ghcb_invalidate(ghcb);
277 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
278 	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
279 	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
280 
281 	sev_es_wr_ghcb_msr(__pa(ghcb));
282 	VMGEXIT();
283 
284 	while (true)
285 		asm volatile("hlt\n" : : : "memory");
286 }
287 
288 bool sev_es_check_ghcb_fault(unsigned long address)
289 {
290 	/* Check whether the fault was on the GHCB page */
291 	return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
292 }
293 
294 void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
295 {
296 	struct es_em_ctxt ctxt;
297 	enum es_result result;
298 
299 	if (!boot_ghcb && !early_setup_ghcb())
300 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
301 
302 	vc_ghcb_invalidate(boot_ghcb);
303 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
304 	if (result != ES_OK)
305 		goto finish;
306 
307 	switch (exit_code) {
308 	case SVM_EXIT_RDTSC:
309 	case SVM_EXIT_RDTSCP:
310 		result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
311 		break;
312 	case SVM_EXIT_IOIO:
313 		result = vc_handle_ioio(boot_ghcb, &ctxt);
314 		break;
315 	case SVM_EXIT_CPUID:
316 		result = vc_handle_cpuid(boot_ghcb, &ctxt);
317 		break;
318 	default:
319 		result = ES_UNSUPPORTED;
320 		break;
321 	}
322 
323 finish:
324 	if (result == ES_OK)
325 		vc_finish_insn(&ctxt);
326 	else if (result != ES_RETRY)
327 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
328 }
329 
330 static void enforce_vmpl0(void)
331 {
332 	u64 attrs;
333 	int err;
334 
335 	/*
336 	 * RMPADJUST modifies RMP permissions of a lesser-privileged (numerically
337 	 * higher) privilege level. Here, clear the VMPL1 permission mask of the
338 	 * GHCB page. If the guest is not running at VMPL0, this will fail.
339 	 *
340 	 * If the guest is running at VMPL0, it will succeed. Even if that operation
341 	 * modifies permission bits, it is still ok to do so currently because Linux
342 	 * SNP guests are supported only on VMPL0 so VMPL1 or higher permission masks
343 	 * changing is a don't-care.
344 	 */
345 	attrs = 1;
346 	if (rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, attrs))
347 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
348 }
349 
350 /*
351  * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
352  * guest side implementation for proper functioning of the guest. If any
353  * of these features are enabled in the hypervisor but are lacking guest
354  * side implementation, the behavior of the guest will be undefined. The
355  * guest could fail in non-obvious way making it difficult to debug.
356  *
357  * As the behavior of reserved feature bits is unknown to be on the
358  * safe side add them to the required features mask.
359  */
360 #define SNP_FEATURES_IMPL_REQ	(MSR_AMD64_SNP_VTOM |			\
361 				 MSR_AMD64_SNP_REFLECT_VC |		\
362 				 MSR_AMD64_SNP_RESTRICTED_INJ |		\
363 				 MSR_AMD64_SNP_ALT_INJ |		\
364 				 MSR_AMD64_SNP_DEBUG_SWAP |		\
365 				 MSR_AMD64_SNP_VMPL_SSS |		\
366 				 MSR_AMD64_SNP_SECURE_TSC |		\
367 				 MSR_AMD64_SNP_VMGEXIT_PARAM |		\
368 				 MSR_AMD64_SNP_VMSA_REG_PROTECTION |	\
369 				 MSR_AMD64_SNP_RESERVED_BIT13 |		\
370 				 MSR_AMD64_SNP_RESERVED_BIT15 |		\
371 				 MSR_AMD64_SNP_RESERVED_MASK)
372 
373 /*
374  * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
375  * by the guest kernel. As and when a new feature is implemented in the
376  * guest kernel, a corresponding bit should be added to the mask.
377  */
378 #define SNP_FEATURES_PRESENT	MSR_AMD64_SNP_DEBUG_SWAP
379 
380 u64 snp_get_unsupported_features(u64 status)
381 {
382 	if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
383 		return 0;
384 
385 	return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
386 }
387 
388 void snp_check_features(void)
389 {
390 	u64 unsupported;
391 
392 	/*
393 	 * Terminate the boot if hypervisor has enabled any feature lacking
394 	 * guest side implementation. Pass on the unsupported features mask through
395 	 * EXIT_INFO_2 of the GHCB protocol so that those features can be reported
396 	 * as part of the guest boot failure.
397 	 */
398 	unsupported = snp_get_unsupported_features(sev_status);
399 	if (unsupported) {
400 		if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
401 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
402 
403 		sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
404 				      GHCB_SNP_UNSUPPORTED, unsupported);
405 	}
406 }
407 
408 /*
409  * sev_check_cpu_support - Check for SEV support in the CPU capabilities
410  *
411  * Returns < 0 if SEV is not supported, otherwise the position of the
412  * encryption bit in the page table descriptors.
413  */
414 static int sev_check_cpu_support(void)
415 {
416 	unsigned int eax, ebx, ecx, edx;
417 
418 	/* Check for the SME/SEV support leaf */
419 	eax = 0x80000000;
420 	ecx = 0;
421 	native_cpuid(&eax, &ebx, &ecx, &edx);
422 	if (eax < 0x8000001f)
423 		return -ENODEV;
424 
425 	/*
426 	 * Check for the SME/SEV feature:
427 	 *   CPUID Fn8000_001F[EAX]
428 	 *   - Bit 0 - Secure Memory Encryption support
429 	 *   - Bit 1 - Secure Encrypted Virtualization support
430 	 *   CPUID Fn8000_001F[EBX]
431 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
432 	 */
433 	eax = 0x8000001f;
434 	ecx = 0;
435 	native_cpuid(&eax, &ebx, &ecx, &edx);
436 	/* Check whether SEV is supported */
437 	if (!(eax & BIT(1)))
438 		return -ENODEV;
439 
440 	return ebx & 0x3f;
441 }
442 
443 void sev_enable(struct boot_params *bp)
444 {
445 	struct msr m;
446 	int bitpos;
447 	bool snp;
448 
449 	/*
450 	 * bp->cc_blob_address should only be set by boot/compressed kernel.
451 	 * Initialize it to 0 to ensure that uninitialized values from
452 	 * buggy bootloaders aren't propagated.
453 	 */
454 	if (bp)
455 		bp->cc_blob_address = 0;
456 
457 	/*
458 	 * Do an initial SEV capability check before snp_init() which
459 	 * loads the CPUID page and the same checks afterwards are done
460 	 * without the hypervisor and are trustworthy.
461 	 *
462 	 * If the HV fakes SEV support, the guest will crash'n'burn
463 	 * which is good enough.
464 	 */
465 
466 	if (sev_check_cpu_support() < 0)
467 		return;
468 
469 	/*
470 	 * Setup/preliminary detection of SNP. This will be sanity-checked
471 	 * against CPUID/MSR values later.
472 	 */
473 	snp = snp_init(bp);
474 
475 	/* Now repeat the checks with the SNP CPUID table. */
476 
477 	bitpos = sev_check_cpu_support();
478 	if (bitpos < 0) {
479 		if (snp)
480 			error("SEV-SNP support indicated by CC blob, but not CPUID.");
481 		return;
482 	}
483 
484 	/* Set the SME mask if this is an SEV guest. */
485 	boot_rdmsr(MSR_AMD64_SEV, &m);
486 	sev_status = m.q;
487 	if (!(sev_status & MSR_AMD64_SEV_ENABLED))
488 		return;
489 
490 	/* Negotiate the GHCB protocol version. */
491 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
492 		if (!sev_es_negotiate_protocol())
493 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
494 	}
495 
496 	/*
497 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
498 	 * features.
499 	 */
500 	if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
501 		if (!(get_hv_features() & GHCB_HV_FT_SNP))
502 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
503 
504 		enforce_vmpl0();
505 	}
506 
507 	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
508 		error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");
509 
510 	sme_me_mask = BIT_ULL(bitpos);
511 }
512 
513 /*
514  * sev_get_status - Retrieve the SEV status mask
515  *
516  * Returns 0 if the CPU is not SEV capable, otherwise the value of the
517  * AMD64_SEV MSR.
518  */
519 u64 sev_get_status(void)
520 {
521 	struct msr m;
522 
523 	if (sev_check_cpu_support() < 0)
524 		return 0;
525 
526 	boot_rdmsr(MSR_AMD64_SEV, &m);
527 	return m.q;
528 }
529 
530 /* Search for Confidential Computing blob in the EFI config table. */
531 static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
532 {
533 	unsigned long cfg_table_pa;
534 	unsigned int cfg_table_len;
535 	int ret;
536 
537 	ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
538 	if (ret)
539 		return NULL;
540 
541 	return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
542 								cfg_table_len,
543 								EFI_CC_BLOB_GUID);
544 }
545 
546 /*
547  * Initial set up of SNP relies on information provided by the
548  * Confidential Computing blob, which can be passed to the boot kernel
549  * by firmware/bootloader in the following ways:
550  *
551  * - via an entry in the EFI config table
552  * - via a setup_data structure, as defined by the Linux Boot Protocol
553  *
554  * Scan for the blob in that order.
555  */
556 static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
557 {
558 	struct cc_blob_sev_info *cc_info;
559 
560 	cc_info = find_cc_blob_efi(bp);
561 	if (cc_info)
562 		goto found_cc_info;
563 
564 	cc_info = find_cc_blob_setup_data(bp);
565 	if (!cc_info)
566 		return NULL;
567 
568 found_cc_info:
569 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
570 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
571 
572 	return cc_info;
573 }
574 
575 /*
576  * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
577  * will verify the SNP CPUID/MSR bits.
578  */
579 bool snp_init(struct boot_params *bp)
580 {
581 	struct cc_blob_sev_info *cc_info;
582 
583 	if (!bp)
584 		return false;
585 
586 	cc_info = find_cc_blob(bp);
587 	if (!cc_info)
588 		return false;
589 
590 	/*
591 	 * If a SNP-specific Confidential Computing blob is present, then
592 	 * firmware/bootloader have indicated SNP support. Verifying this
593 	 * involves CPUID checks which will be more reliable if the SNP
594 	 * CPUID table is used. See comments over snp_setup_cpuid_table() for
595 	 * more details.
596 	 */
597 	setup_cpuid_table(cc_info);
598 
599 	/*
600 	 * Pass run-time kernel a pointer to CC info via boot_params so EFI
601 	 * config table doesn't need to be searched again during early startup
602 	 * phase.
603 	 */
604 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
605 
606 	return true;
607 }
608 
609 void sev_prep_identity_maps(unsigned long top_level_pgt)
610 {
611 	/*
612 	 * The Confidential Computing blob is used very early in uncompressed
613 	 * kernel to find the in-memory CPUID table to handle CPUID
614 	 * instructions. Make sure an identity-mapping exists so it can be
615 	 * accessed after switchover.
616 	 */
617 	if (sev_snp_enabled()) {
618 		unsigned long cc_info_pa = boot_params_ptr->cc_blob_address;
619 		struct cc_blob_sev_info *cc_info;
620 
621 		kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));
622 
623 		cc_info = (struct cc_blob_sev_info *)cc_info_pa;
624 		kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
625 	}
626 
627 	sev_verify_cbit(top_level_pgt);
628 }
629