xref: /linux/arch/x86/boot/compressed/sev.c (revision 705c09bb3cdffb141986598ad4ff9c9b0a66c3bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AMD Encrypted Register State Support
4  *
5  * Author: Joerg Roedel <jroedel@suse.de>
6  */
7 
8 /*
9  * misc.h needs to be first because it knows how to include the other kernel
10  * headers in the pre-decompression code in a way that does not break
11  * compilation.
12  */
13 #include "misc.h"
14 
15 #include <asm/bootparam.h>
16 #include <asm/pgtable_types.h>
17 #include <asm/sev.h>
18 #include <asm/trapnr.h>
19 #include <asm/trap_pf.h>
20 #include <asm/msr-index.h>
21 #include <asm/fpu/xcr.h>
22 #include <asm/ptrace.h>
23 #include <asm/svm.h>
24 #include <asm/cpuid.h>
25 
26 #include "error.h"
27 #include "../msr.h"
28 
29 static struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
30 struct ghcb *boot_ghcb;
31 
32 /*
33  * Copy a version of this function here - insn-eval.c can't be used in
34  * pre-decompression code.
35  */
36 static bool insn_has_rep_prefix(struct insn *insn)
37 {
38 	insn_byte_t p;
39 	int i;
40 
41 	insn_get_prefixes(insn);
42 
43 	for_each_insn_prefix(insn, i, p) {
44 		if (p == 0xf2 || p == 0xf3)
45 			return true;
46 	}
47 
48 	return false;
49 }
50 
51 /*
52  * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
53  * doesn't use segments.
54  */
55 static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
56 {
57 	return 0UL;
58 }
59 
60 static inline u64 sev_es_rd_ghcb_msr(void)
61 {
62 	struct msr m;
63 
64 	boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);
65 
66 	return m.q;
67 }
68 
69 static inline void sev_es_wr_ghcb_msr(u64 val)
70 {
71 	struct msr m;
72 
73 	m.q = val;
74 	boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
75 }
76 
77 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
78 {
79 	char buffer[MAX_INSN_SIZE];
80 	int ret;
81 
82 	memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
83 
84 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
85 	if (ret < 0)
86 		return ES_DECODE_FAILED;
87 
88 	return ES_OK;
89 }
90 
91 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
92 				   void *dst, char *buf, size_t size)
93 {
94 	memcpy(dst, buf, size);
95 
96 	return ES_OK;
97 }
98 
99 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
100 				  void *src, char *buf, size_t size)
101 {
102 	memcpy(buf, src, size);
103 
104 	return ES_OK;
105 }
106 
107 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
108 {
109 	return ES_OK;
110 }
111 
112 static bool fault_in_kernel_space(unsigned long address)
113 {
114 	return false;
115 }
116 
117 #undef __init
118 #define __init
119 
120 #undef __head
121 #define __head
122 
123 #define __BOOT_COMPRESSED
124 
125 /* Basic instruction decoding support needed */
126 #include "../../lib/inat.c"
127 #include "../../lib/insn.c"
128 
129 /* Include code for early handlers */
130 #include "../../kernel/sev-shared.c"
131 
132 bool sev_snp_enabled(void)
133 {
134 	return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
135 }
136 
137 static void __page_state_change(unsigned long paddr, enum psc_op op)
138 {
139 	u64 val;
140 
141 	if (!sev_snp_enabled())
142 		return;
143 
144 	/*
145 	 * If private -> shared then invalidate the page before requesting the
146 	 * state change in the RMP table.
147 	 */
148 	if (op == SNP_PAGE_STATE_SHARED && pvalidate(paddr, RMP_PG_SIZE_4K, 0))
149 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
150 
151 	/* Issue VMGEXIT to change the page state in RMP table. */
152 	sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
153 	VMGEXIT();
154 
155 	/* Read the response of the VMGEXIT. */
156 	val = sev_es_rd_ghcb_msr();
157 	if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
158 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
159 
160 	/*
161 	 * Now that page state is changed in the RMP table, validate it so that it is
162 	 * consistent with the RMP entry.
163 	 */
164 	if (op == SNP_PAGE_STATE_PRIVATE && pvalidate(paddr, RMP_PG_SIZE_4K, 1))
165 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
166 }
167 
168 void snp_set_page_private(unsigned long paddr)
169 {
170 	__page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
171 }
172 
173 void snp_set_page_shared(unsigned long paddr)
174 {
175 	__page_state_change(paddr, SNP_PAGE_STATE_SHARED);
176 }
177 
178 static bool early_setup_ghcb(void)
179 {
180 	if (set_page_decrypted((unsigned long)&boot_ghcb_page))
181 		return false;
182 
183 	/* Page is now mapped decrypted, clear it */
184 	memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));
185 
186 	boot_ghcb = &boot_ghcb_page;
187 
188 	/* Initialize lookup tables for the instruction decoder */
189 	inat_init_tables();
190 
191 	/* SNP guest requires the GHCB GPA must be registered */
192 	if (sev_snp_enabled())
193 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
194 
195 	return true;
196 }
197 
198 static phys_addr_t __snp_accept_memory(struct snp_psc_desc *desc,
199 				       phys_addr_t pa, phys_addr_t pa_end)
200 {
201 	struct psc_hdr *hdr;
202 	struct psc_entry *e;
203 	unsigned int i;
204 
205 	hdr = &desc->hdr;
206 	memset(hdr, 0, sizeof(*hdr));
207 
208 	e = desc->entries;
209 
210 	i = 0;
211 	while (pa < pa_end && i < VMGEXIT_PSC_MAX_ENTRY) {
212 		hdr->end_entry = i;
213 
214 		e->gfn = pa >> PAGE_SHIFT;
215 		e->operation = SNP_PAGE_STATE_PRIVATE;
216 		if (IS_ALIGNED(pa, PMD_SIZE) && (pa_end - pa) >= PMD_SIZE) {
217 			e->pagesize = RMP_PG_SIZE_2M;
218 			pa += PMD_SIZE;
219 		} else {
220 			e->pagesize = RMP_PG_SIZE_4K;
221 			pa += PAGE_SIZE;
222 		}
223 
224 		e++;
225 		i++;
226 	}
227 
228 	if (vmgexit_psc(boot_ghcb, desc))
229 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
230 
231 	pvalidate_pages(desc);
232 
233 	return pa;
234 }
235 
236 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
237 {
238 	struct snp_psc_desc desc = {};
239 	unsigned int i;
240 	phys_addr_t pa;
241 
242 	if (!boot_ghcb && !early_setup_ghcb())
243 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
244 
245 	pa = start;
246 	while (pa < end)
247 		pa = __snp_accept_memory(&desc, pa, end);
248 }
249 
250 void sev_es_shutdown_ghcb(void)
251 {
252 	if (!boot_ghcb)
253 		return;
254 
255 	if (!sev_es_check_cpu_features())
256 		error("SEV-ES CPU Features missing.");
257 
258 	/*
259 	 * GHCB Page must be flushed from the cache and mapped encrypted again.
260 	 * Otherwise the running kernel will see strange cache effects when
261 	 * trying to use that page.
262 	 */
263 	if (set_page_encrypted((unsigned long)&boot_ghcb_page))
264 		error("Can't map GHCB page encrypted");
265 
266 	/*
267 	 * GHCB page is mapped encrypted again and flushed from the cache.
268 	 * Mark it non-present now to catch bugs when #VC exceptions trigger
269 	 * after this point.
270 	 */
271 	if (set_page_non_present((unsigned long)&boot_ghcb_page))
272 		error("Can't unmap GHCB page");
273 }
274 
275 static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
276 					     unsigned int reason, u64 exit_info_2)
277 {
278 	u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);
279 
280 	vc_ghcb_invalidate(ghcb);
281 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
282 	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
283 	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
284 
285 	sev_es_wr_ghcb_msr(__pa(ghcb));
286 	VMGEXIT();
287 
288 	while (true)
289 		asm volatile("hlt\n" : : : "memory");
290 }
291 
292 bool sev_es_check_ghcb_fault(unsigned long address)
293 {
294 	/* Check whether the fault was on the GHCB page */
295 	return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
296 }
297 
298 void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
299 {
300 	struct es_em_ctxt ctxt;
301 	enum es_result result;
302 
303 	if (!boot_ghcb && !early_setup_ghcb())
304 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
305 
306 	vc_ghcb_invalidate(boot_ghcb);
307 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
308 	if (result != ES_OK)
309 		goto finish;
310 
311 	result = vc_check_opcode_bytes(&ctxt, exit_code);
312 	if (result != ES_OK)
313 		goto finish;
314 
315 	switch (exit_code) {
316 	case SVM_EXIT_RDTSC:
317 	case SVM_EXIT_RDTSCP:
318 		result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
319 		break;
320 	case SVM_EXIT_IOIO:
321 		result = vc_handle_ioio(boot_ghcb, &ctxt);
322 		break;
323 	case SVM_EXIT_CPUID:
324 		result = vc_handle_cpuid(boot_ghcb, &ctxt);
325 		break;
326 	default:
327 		result = ES_UNSUPPORTED;
328 		break;
329 	}
330 
331 finish:
332 	if (result == ES_OK)
333 		vc_finish_insn(&ctxt);
334 	else if (result != ES_RETRY)
335 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
336 }
337 
338 static void enforce_vmpl0(void)
339 {
340 	u64 attrs;
341 	int err;
342 
343 	/*
344 	 * RMPADJUST modifies RMP permissions of a lesser-privileged (numerically
345 	 * higher) privilege level. Here, clear the VMPL1 permission mask of the
346 	 * GHCB page. If the guest is not running at VMPL0, this will fail.
347 	 *
348 	 * If the guest is running at VMPL0, it will succeed. Even if that operation
349 	 * modifies permission bits, it is still ok to do so currently because Linux
350 	 * SNP guests are supported only on VMPL0 so VMPL1 or higher permission masks
351 	 * changing is a don't-care.
352 	 */
353 	attrs = 1;
354 	if (rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, attrs))
355 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
356 }
357 
358 /*
359  * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
360  * guest side implementation for proper functioning of the guest. If any
361  * of these features are enabled in the hypervisor but are lacking guest
362  * side implementation, the behavior of the guest will be undefined. The
363  * guest could fail in non-obvious way making it difficult to debug.
364  *
365  * As the behavior of reserved feature bits is unknown to be on the
366  * safe side add them to the required features mask.
367  */
368 #define SNP_FEATURES_IMPL_REQ	(MSR_AMD64_SNP_VTOM |			\
369 				 MSR_AMD64_SNP_REFLECT_VC |		\
370 				 MSR_AMD64_SNP_RESTRICTED_INJ |		\
371 				 MSR_AMD64_SNP_ALT_INJ |		\
372 				 MSR_AMD64_SNP_DEBUG_SWAP |		\
373 				 MSR_AMD64_SNP_VMPL_SSS |		\
374 				 MSR_AMD64_SNP_SECURE_TSC |		\
375 				 MSR_AMD64_SNP_VMGEXIT_PARAM |		\
376 				 MSR_AMD64_SNP_VMSA_REG_PROT |		\
377 				 MSR_AMD64_SNP_RESERVED_BIT13 |		\
378 				 MSR_AMD64_SNP_RESERVED_BIT15 |		\
379 				 MSR_AMD64_SNP_RESERVED_MASK)
380 
381 /*
382  * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
383  * by the guest kernel. As and when a new feature is implemented in the
384  * guest kernel, a corresponding bit should be added to the mask.
385  */
386 #define SNP_FEATURES_PRESENT	MSR_AMD64_SNP_DEBUG_SWAP
387 
388 u64 snp_get_unsupported_features(u64 status)
389 {
390 	if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
391 		return 0;
392 
393 	return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
394 }
395 
396 void snp_check_features(void)
397 {
398 	u64 unsupported;
399 
400 	/*
401 	 * Terminate the boot if hypervisor has enabled any feature lacking
402 	 * guest side implementation. Pass on the unsupported features mask through
403 	 * EXIT_INFO_2 of the GHCB protocol so that those features can be reported
404 	 * as part of the guest boot failure.
405 	 */
406 	unsupported = snp_get_unsupported_features(sev_status);
407 	if (unsupported) {
408 		if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
409 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
410 
411 		sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
412 				      GHCB_SNP_UNSUPPORTED, unsupported);
413 	}
414 }
415 
416 /*
417  * sev_check_cpu_support - Check for SEV support in the CPU capabilities
418  *
419  * Returns < 0 if SEV is not supported, otherwise the position of the
420  * encryption bit in the page table descriptors.
421  */
422 static int sev_check_cpu_support(void)
423 {
424 	unsigned int eax, ebx, ecx, edx;
425 
426 	/* Check for the SME/SEV support leaf */
427 	eax = 0x80000000;
428 	ecx = 0;
429 	native_cpuid(&eax, &ebx, &ecx, &edx);
430 	if (eax < 0x8000001f)
431 		return -ENODEV;
432 
433 	/*
434 	 * Check for the SME/SEV feature:
435 	 *   CPUID Fn8000_001F[EAX]
436 	 *   - Bit 0 - Secure Memory Encryption support
437 	 *   - Bit 1 - Secure Encrypted Virtualization support
438 	 *   CPUID Fn8000_001F[EBX]
439 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
440 	 */
441 	eax = 0x8000001f;
442 	ecx = 0;
443 	native_cpuid(&eax, &ebx, &ecx, &edx);
444 	/* Check whether SEV is supported */
445 	if (!(eax & BIT(1)))
446 		return -ENODEV;
447 
448 	return ebx & 0x3f;
449 }
450 
451 void sev_enable(struct boot_params *bp)
452 {
453 	struct msr m;
454 	int bitpos;
455 	bool snp;
456 
457 	/*
458 	 * bp->cc_blob_address should only be set by boot/compressed kernel.
459 	 * Initialize it to 0 to ensure that uninitialized values from
460 	 * buggy bootloaders aren't propagated.
461 	 */
462 	if (bp)
463 		bp->cc_blob_address = 0;
464 
465 	/*
466 	 * Do an initial SEV capability check before snp_init() which
467 	 * loads the CPUID page and the same checks afterwards are done
468 	 * without the hypervisor and are trustworthy.
469 	 *
470 	 * If the HV fakes SEV support, the guest will crash'n'burn
471 	 * which is good enough.
472 	 */
473 
474 	if (sev_check_cpu_support() < 0)
475 		return;
476 
477 	/*
478 	 * Setup/preliminary detection of SNP. This will be sanity-checked
479 	 * against CPUID/MSR values later.
480 	 */
481 	snp = snp_init(bp);
482 
483 	/* Now repeat the checks with the SNP CPUID table. */
484 
485 	bitpos = sev_check_cpu_support();
486 	if (bitpos < 0) {
487 		if (snp)
488 			error("SEV-SNP support indicated by CC blob, but not CPUID.");
489 		return;
490 	}
491 
492 	/* Set the SME mask if this is an SEV guest. */
493 	boot_rdmsr(MSR_AMD64_SEV, &m);
494 	sev_status = m.q;
495 	if (!(sev_status & MSR_AMD64_SEV_ENABLED))
496 		return;
497 
498 	/* Negotiate the GHCB protocol version. */
499 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
500 		if (!sev_es_negotiate_protocol())
501 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
502 	}
503 
504 	/*
505 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
506 	 * features.
507 	 */
508 	if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
509 		if (!(get_hv_features() & GHCB_HV_FT_SNP))
510 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
511 
512 		enforce_vmpl0();
513 	}
514 
515 	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
516 		error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");
517 
518 	sme_me_mask = BIT_ULL(bitpos);
519 }
520 
521 /*
522  * sev_get_status - Retrieve the SEV status mask
523  *
524  * Returns 0 if the CPU is not SEV capable, otherwise the value of the
525  * AMD64_SEV MSR.
526  */
527 u64 sev_get_status(void)
528 {
529 	struct msr m;
530 
531 	if (sev_check_cpu_support() < 0)
532 		return 0;
533 
534 	boot_rdmsr(MSR_AMD64_SEV, &m);
535 	return m.q;
536 }
537 
538 /* Search for Confidential Computing blob in the EFI config table. */
539 static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
540 {
541 	unsigned long cfg_table_pa;
542 	unsigned int cfg_table_len;
543 	int ret;
544 
545 	ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
546 	if (ret)
547 		return NULL;
548 
549 	return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
550 								cfg_table_len,
551 								EFI_CC_BLOB_GUID);
552 }
553 
554 /*
555  * Initial set up of SNP relies on information provided by the
556  * Confidential Computing blob, which can be passed to the boot kernel
557  * by firmware/bootloader in the following ways:
558  *
559  * - via an entry in the EFI config table
560  * - via a setup_data structure, as defined by the Linux Boot Protocol
561  *
562  * Scan for the blob in that order.
563  */
564 static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
565 {
566 	struct cc_blob_sev_info *cc_info;
567 
568 	cc_info = find_cc_blob_efi(bp);
569 	if (cc_info)
570 		goto found_cc_info;
571 
572 	cc_info = find_cc_blob_setup_data(bp);
573 	if (!cc_info)
574 		return NULL;
575 
576 found_cc_info:
577 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
578 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
579 
580 	return cc_info;
581 }
582 
583 /*
584  * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
585  * will verify the SNP CPUID/MSR bits.
586  */
587 bool snp_init(struct boot_params *bp)
588 {
589 	struct cc_blob_sev_info *cc_info;
590 
591 	if (!bp)
592 		return false;
593 
594 	cc_info = find_cc_blob(bp);
595 	if (!cc_info)
596 		return false;
597 
598 	/*
599 	 * If a SNP-specific Confidential Computing blob is present, then
600 	 * firmware/bootloader have indicated SNP support. Verifying this
601 	 * involves CPUID checks which will be more reliable if the SNP
602 	 * CPUID table is used. See comments over snp_setup_cpuid_table() for
603 	 * more details.
604 	 */
605 	setup_cpuid_table(cc_info);
606 
607 	/*
608 	 * Pass run-time kernel a pointer to CC info via boot_params so EFI
609 	 * config table doesn't need to be searched again during early startup
610 	 * phase.
611 	 */
612 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
613 
614 	return true;
615 }
616 
617 void sev_prep_identity_maps(unsigned long top_level_pgt)
618 {
619 	/*
620 	 * The Confidential Computing blob is used very early in uncompressed
621 	 * kernel to find the in-memory CPUID table to handle CPUID
622 	 * instructions. Make sure an identity-mapping exists so it can be
623 	 * accessed after switchover.
624 	 */
625 	if (sev_snp_enabled()) {
626 		unsigned long cc_info_pa = boot_params_ptr->cc_blob_address;
627 		struct cc_blob_sev_info *cc_info;
628 
629 		kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));
630 
631 		cc_info = (struct cc_blob_sev_info *)cc_info_pa;
632 		kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
633 	}
634 
635 	sev_verify_cbit(top_level_pgt);
636 }
637