1# SPDX-License-Identifier: GPL-2.0 2# Select 32 or 64 bit 3config 64BIT 4 bool "64-bit kernel" if "$(ARCH)" = "x86" 5 default "$(ARCH)" != "i386" 6 help 7 Say yes to build a 64-bit kernel - formerly known as x86_64 8 Say no to build a 32-bit kernel - formerly known as i386 9 10config X86_32 11 def_bool y 12 depends on !64BIT 13 # Options that are inherently 32-bit kernel only: 14 select ARCH_WANT_IPC_PARSE_VERSION 15 select CLKSRC_I8253 16 select CLONE_BACKWARDS 17 select GENERIC_VDSO_32 18 select HAVE_DEBUG_STACKOVERFLOW 19 select KMAP_LOCAL 20 select MODULES_USE_ELF_REL 21 select OLD_SIGACTION 22 select ARCH_SPLIT_ARG64 23 24config X86_64 25 def_bool y 26 depends on 64BIT 27 # Options that are inherently 64-bit kernel only: 28 select ARCH_HAS_GIGANTIC_PAGE 29 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 30 select ARCH_SUPPORTS_PER_VMA_LOCK 31 select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE 32 select HAVE_ARCH_SOFT_DIRTY 33 select MODULES_USE_ELF_RELA 34 select NEED_DMA_MAP_STATE 35 select SWIOTLB 36 select ARCH_HAS_ELFCORE_COMPAT 37 select ZONE_DMA32 38 select EXECMEM if DYNAMIC_FTRACE 39 40config FORCE_DYNAMIC_FTRACE 41 def_bool y 42 depends on X86_32 43 depends on FUNCTION_TRACER 44 select DYNAMIC_FTRACE 45 help 46 We keep the static function tracing (!DYNAMIC_FTRACE) around 47 in order to test the non static function tracing in the 48 generic code, as other architectures still use it. But we 49 only need to keep it around for x86_64. No need to keep it 50 for x86_32. For x86_32, force DYNAMIC_FTRACE. 51# 52# Arch settings 53# 54# ( Note that options that are marked 'if X86_64' could in principle be 55# ported to 32-bit as well. ) 56# 57config X86 58 def_bool y 59 # 60 # Note: keep this list sorted alphabetically 61 # 62 select ACPI_LEGACY_TABLES_LOOKUP if ACPI 63 select ACPI_SYSTEM_POWER_STATES_SUPPORT if ACPI 64 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 65 select ARCH_32BIT_OFF_T if X86_32 66 select ARCH_CLOCKSOURCE_INIT 67 select ARCH_CONFIGURES_CPU_MITIGATIONS 68 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 69 select ARCH_ENABLE_HUGEPAGE_MIGRATION if X86_64 && HUGETLB_PAGE && MIGRATION 70 select ARCH_ENABLE_MEMORY_HOTPLUG if X86_64 71 select ARCH_ENABLE_MEMORY_HOTREMOVE if MEMORY_HOTPLUG 72 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if (PGTABLE_LEVELS > 2) && (X86_64 || X86_PAE) 73 select ARCH_ENABLE_THP_MIGRATION if X86_64 && TRANSPARENT_HUGEPAGE 74 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 75 select ARCH_HAS_CACHE_LINE_SIZE 76 select ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION 77 select ARCH_HAS_CPU_FINALIZE_INIT 78 select ARCH_HAS_CPU_PASID if IOMMU_SVA 79 select ARCH_HAS_CRC32 80 select ARCH_HAS_CRC_T10DIF if X86_64 81 select ARCH_HAS_CURRENT_STACK_POINTER 82 select ARCH_HAS_DEBUG_VIRTUAL 83 select ARCH_HAS_DEBUG_VM_PGTABLE if !X86_PAE 84 select ARCH_HAS_DEVMEM_IS_ALLOWED 85 select ARCH_HAS_DMA_OPS if GART_IOMMU || XEN 86 select ARCH_HAS_EARLY_DEBUG if KGDB 87 select ARCH_HAS_ELF_RANDOMIZE 88 select ARCH_HAS_FAST_MULTIPLIER 89 select ARCH_HAS_FORTIFY_SOURCE 90 select ARCH_HAS_GCOV_PROFILE_ALL 91 select ARCH_HAS_KCOV if X86_64 92 select ARCH_HAS_KERNEL_FPU_SUPPORT 93 select ARCH_HAS_MEM_ENCRYPT 94 select ARCH_HAS_MEMBARRIER_SYNC_CORE 95 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 96 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 97 select ARCH_HAS_PMEM_API if X86_64 98 select ARCH_HAS_PREEMPT_LAZY 99 select ARCH_HAS_PTE_DEVMAP if X86_64 100 select ARCH_HAS_PTE_SPECIAL 101 select ARCH_HAS_HW_PTE_YOUNG 102 select ARCH_HAS_NONLEAF_PMD_YOUNG if PGTABLE_LEVELS > 2 103 select ARCH_HAS_UACCESS_FLUSHCACHE if X86_64 104 select ARCH_HAS_COPY_MC if X86_64 105 select ARCH_HAS_SET_MEMORY 106 select ARCH_HAS_SET_DIRECT_MAP 107 select ARCH_HAS_STRICT_KERNEL_RWX 108 select ARCH_HAS_STRICT_MODULE_RWX 109 select ARCH_HAS_SYNC_CORE_BEFORE_USERMODE 110 select ARCH_HAS_SYSCALL_WRAPPER 111 select ARCH_HAS_UBSAN 112 select ARCH_HAS_DEBUG_WX 113 select ARCH_HAS_ZONE_DMA_SET if EXPERT 114 select ARCH_HAVE_NMI_SAFE_CMPXCHG 115 select ARCH_HAVE_EXTRA_ELF_NOTES 116 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 117 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI 118 select ARCH_MIGHT_HAVE_PC_PARPORT 119 select ARCH_MIGHT_HAVE_PC_SERIO 120 select ARCH_STACKWALK 121 select ARCH_SUPPORTS_ACPI 122 select ARCH_SUPPORTS_ATOMIC_RMW 123 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 124 select ARCH_SUPPORTS_PAGE_TABLE_CHECK if X86_64 125 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64 126 select ARCH_SUPPORTS_KMAP_LOCAL_FORCE_MAP if NR_CPUS <= 4096 127 select ARCH_SUPPORTS_CFI_CLANG if X86_64 128 select ARCH_USES_CFI_TRAPS if X86_64 && CFI_CLANG 129 select ARCH_SUPPORTS_LTO_CLANG 130 select ARCH_SUPPORTS_LTO_CLANG_THIN 131 select ARCH_SUPPORTS_RT 132 select ARCH_SUPPORTS_AUTOFDO_CLANG 133 select ARCH_SUPPORTS_PROPELLER_CLANG if X86_64 134 select ARCH_USE_BUILTIN_BSWAP 135 select ARCH_USE_CMPXCHG_LOCKREF if X86_CMPXCHG64 136 select ARCH_USE_MEMTEST 137 select ARCH_USE_QUEUED_RWLOCKS 138 select ARCH_USE_QUEUED_SPINLOCKS 139 select ARCH_USE_SYM_ANNOTATIONS 140 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 141 select ARCH_WANT_DEFAULT_BPF_JIT if X86_64 142 select ARCH_WANTS_DYNAMIC_TASK_STRUCT 143 select ARCH_WANTS_NO_INSTR 144 select ARCH_WANT_GENERAL_HUGETLB 145 select ARCH_WANT_HUGE_PMD_SHARE 146 select ARCH_WANT_LD_ORPHAN_WARN 147 select ARCH_WANT_OPTIMIZE_DAX_VMEMMAP if X86_64 148 select ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP if X86_64 149 select ARCH_WANTS_THP_SWAP if X86_64 150 select ARCH_HAS_PARANOID_L1D_FLUSH 151 select BUILDTIME_TABLE_SORT 152 select CLKEVT_I8253 153 select CLOCKSOURCE_WATCHDOG 154 # Word-size accesses may read uninitialized data past the trailing \0 155 # in strings and cause false KMSAN reports. 156 select DCACHE_WORD_ACCESS if !KMSAN 157 select DYNAMIC_SIGFRAME 158 select EDAC_ATOMIC_SCRUB 159 select EDAC_SUPPORT 160 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC) 161 select GENERIC_CLOCKEVENTS_BROADCAST_IDLE if GENERIC_CLOCKEVENTS_BROADCAST 162 select GENERIC_CLOCKEVENTS_MIN_ADJUST 163 select GENERIC_CMOS_UPDATE 164 select GENERIC_CPU_AUTOPROBE 165 select GENERIC_CPU_DEVICES 166 select GENERIC_CPU_VULNERABILITIES 167 select GENERIC_EARLY_IOREMAP 168 select GENERIC_ENTRY 169 select GENERIC_IOMAP 170 select GENERIC_IRQ_EFFECTIVE_AFF_MASK if SMP 171 select GENERIC_IRQ_MATRIX_ALLOCATOR if X86_LOCAL_APIC 172 select GENERIC_IRQ_MIGRATION if SMP 173 select GENERIC_IRQ_PROBE 174 select GENERIC_IRQ_RESERVATION_MODE 175 select GENERIC_IRQ_SHOW 176 select GENERIC_PENDING_IRQ if SMP 177 select GENERIC_PTDUMP 178 select GENERIC_SMP_IDLE_THREAD 179 select GENERIC_TIME_VSYSCALL 180 select GENERIC_GETTIMEOFDAY 181 select GENERIC_VDSO_TIME_NS 182 select GENERIC_VDSO_OVERFLOW_PROTECT 183 select GUP_GET_PXX_LOW_HIGH if X86_PAE 184 select HARDIRQS_SW_RESEND 185 select HARDLOCKUP_CHECK_TIMESTAMP if X86_64 186 select HAS_IOPORT 187 select HAVE_ACPI_APEI if ACPI 188 select HAVE_ACPI_APEI_NMI if ACPI 189 select HAVE_ALIGNED_STRUCT_PAGE 190 select HAVE_ARCH_AUDITSYSCALL 191 select HAVE_ARCH_HUGE_VMAP if X86_64 || X86_PAE 192 select HAVE_ARCH_HUGE_VMALLOC if X86_64 193 select HAVE_ARCH_JUMP_LABEL 194 select HAVE_ARCH_JUMP_LABEL_RELATIVE 195 select HAVE_ARCH_KASAN if X86_64 196 select HAVE_ARCH_KASAN_VMALLOC if X86_64 197 select HAVE_ARCH_KFENCE 198 select HAVE_ARCH_KMSAN if X86_64 199 select HAVE_ARCH_KGDB 200 select HAVE_ARCH_MMAP_RND_BITS if MMU 201 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if MMU && COMPAT 202 select HAVE_ARCH_COMPAT_MMAP_BASES if MMU && COMPAT 203 select HAVE_ARCH_PREL32_RELOCATIONS 204 select HAVE_ARCH_SECCOMP_FILTER 205 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 206 select HAVE_ARCH_STACKLEAK 207 select HAVE_ARCH_TRACEHOOK 208 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 209 select HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD if X86_64 210 select HAVE_ARCH_USERFAULTFD_WP if X86_64 && USERFAULTFD 211 select HAVE_ARCH_USERFAULTFD_MINOR if X86_64 && USERFAULTFD 212 select HAVE_ARCH_VMAP_STACK if X86_64 213 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 214 select HAVE_ARCH_WITHIN_STACK_FRAMES 215 select HAVE_ASM_MODVERSIONS 216 select HAVE_CMPXCHG_DOUBLE 217 select HAVE_CMPXCHG_LOCAL 218 select HAVE_CONTEXT_TRACKING_USER if X86_64 219 select HAVE_CONTEXT_TRACKING_USER_OFFSTACK if HAVE_CONTEXT_TRACKING_USER 220 select HAVE_C_RECORDMCOUNT 221 select HAVE_OBJTOOL_MCOUNT if HAVE_OBJTOOL 222 select HAVE_OBJTOOL_NOP_MCOUNT if HAVE_OBJTOOL_MCOUNT 223 select HAVE_BUILDTIME_MCOUNT_SORT 224 select HAVE_DEBUG_KMEMLEAK 225 select HAVE_DMA_CONTIGUOUS 226 select HAVE_DYNAMIC_FTRACE 227 select HAVE_DYNAMIC_FTRACE_WITH_REGS 228 select HAVE_DYNAMIC_FTRACE_WITH_ARGS if X86_64 229 select HAVE_FTRACE_REGS_HAVING_PT_REGS if X86_64 230 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 231 select HAVE_SAMPLE_FTRACE_DIRECT if X86_64 232 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI if X86_64 233 select HAVE_EBPF_JIT 234 select HAVE_EFFICIENT_UNALIGNED_ACCESS 235 select HAVE_EISA 236 select HAVE_EXIT_THREAD 237 select HAVE_GUP_FAST 238 select HAVE_FENTRY if X86_64 || DYNAMIC_FTRACE 239 select HAVE_FTRACE_GRAPH_FUNC if HAVE_FUNCTION_GRAPH_TRACER 240 select HAVE_FTRACE_MCOUNT_RECORD 241 select HAVE_FUNCTION_GRAPH_FREGS if HAVE_FUNCTION_GRAPH_TRACER 242 select HAVE_FUNCTION_GRAPH_TRACER if X86_32 || (X86_64 && DYNAMIC_FTRACE) 243 select HAVE_FUNCTION_TRACER 244 select HAVE_GCC_PLUGINS 245 select HAVE_HW_BREAKPOINT 246 select HAVE_IOREMAP_PROT 247 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64 248 select HAVE_IRQ_TIME_ACCOUNTING 249 select HAVE_JUMP_LABEL_HACK if HAVE_OBJTOOL 250 select HAVE_KERNEL_BZIP2 251 select HAVE_KERNEL_GZIP 252 select HAVE_KERNEL_LZ4 253 select HAVE_KERNEL_LZMA 254 select HAVE_KERNEL_LZO 255 select HAVE_KERNEL_XZ 256 select HAVE_KERNEL_ZSTD 257 select HAVE_KPROBES 258 select HAVE_KPROBES_ON_FTRACE 259 select HAVE_FUNCTION_ERROR_INJECTION 260 select HAVE_KRETPROBES 261 select HAVE_RETHOOK 262 select HAVE_LIVEPATCH if X86_64 263 select HAVE_MIXED_BREAKPOINTS_REGS 264 select HAVE_MOD_ARCH_SPECIFIC 265 select HAVE_MOVE_PMD 266 select HAVE_MOVE_PUD 267 select HAVE_NOINSTR_HACK if HAVE_OBJTOOL 268 select HAVE_NMI 269 select HAVE_NOINSTR_VALIDATION if HAVE_OBJTOOL 270 select HAVE_OBJTOOL if X86_64 271 select HAVE_OPTPROBES 272 select HAVE_PAGE_SIZE_4KB 273 select HAVE_PCSPKR_PLATFORM 274 select HAVE_PERF_EVENTS 275 select HAVE_PERF_EVENTS_NMI 276 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && HAVE_PERF_EVENTS_NMI 277 select HAVE_PCI 278 select HAVE_PERF_REGS 279 select HAVE_PERF_USER_STACK_DUMP 280 select MMU_GATHER_RCU_TABLE_FREE if PARAVIRT 281 select MMU_GATHER_MERGE_VMAS 282 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 283 select HAVE_REGS_AND_STACK_ACCESS_API 284 select HAVE_RELIABLE_STACKTRACE if UNWINDER_ORC || STACK_VALIDATION 285 select HAVE_FUNCTION_ARG_ACCESS_API 286 select HAVE_SETUP_PER_CPU_AREA 287 select HAVE_SOFTIRQ_ON_OWN_STACK 288 select HAVE_STACKPROTECTOR if CC_HAS_SANE_STACKPROTECTOR 289 select HAVE_STACK_VALIDATION if HAVE_OBJTOOL 290 select HAVE_STATIC_CALL 291 select HAVE_STATIC_CALL_INLINE if HAVE_OBJTOOL 292 select HAVE_PREEMPT_DYNAMIC_CALL 293 select HAVE_RSEQ 294 select HAVE_RUST if X86_64 295 select HAVE_SYSCALL_TRACEPOINTS 296 select HAVE_UACCESS_VALIDATION if HAVE_OBJTOOL 297 select HAVE_UNSTABLE_SCHED_CLOCK 298 select HAVE_USER_RETURN_NOTIFIER 299 select HAVE_GENERIC_VDSO 300 select VDSO_GETRANDOM if X86_64 301 select HOTPLUG_PARALLEL if SMP && X86_64 302 select HOTPLUG_SMT if SMP 303 select HOTPLUG_SPLIT_STARTUP if SMP && X86_32 304 select IRQ_FORCED_THREADING 305 select LOCK_MM_AND_FIND_VMA 306 select NEED_PER_CPU_EMBED_FIRST_CHUNK 307 select NEED_PER_CPU_PAGE_FIRST_CHUNK 308 select NEED_SG_DMA_LENGTH 309 select NUMA_MEMBLKS if NUMA 310 select PCI_DOMAINS if PCI 311 select PCI_LOCKLESS_CONFIG if PCI 312 select PERF_EVENTS 313 select RTC_LIB 314 select RTC_MC146818_LIB 315 select SPARSE_IRQ 316 select SYSCTL_EXCEPTION_TRACE 317 select THREAD_INFO_IN_TASK 318 select TRACE_IRQFLAGS_SUPPORT 319 select TRACE_IRQFLAGS_NMI_SUPPORT 320 select USER_STACKTRACE_SUPPORT 321 select HAVE_ARCH_KCSAN if X86_64 322 select PROC_PID_ARCH_STATUS if PROC_FS 323 select HAVE_ARCH_NODE_DEV_GROUP if X86_SGX 324 select FUNCTION_ALIGNMENT_16B if X86_64 || X86_ALIGNMENT_16 325 select FUNCTION_ALIGNMENT_4B 326 imply IMA_SECURE_AND_OR_TRUSTED_BOOT if EFI 327 select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE 328 329config INSTRUCTION_DECODER 330 def_bool y 331 depends on KPROBES || PERF_EVENTS || UPROBES 332 333config OUTPUT_FORMAT 334 string 335 default "elf32-i386" if X86_32 336 default "elf64-x86-64" if X86_64 337 338config LOCKDEP_SUPPORT 339 def_bool y 340 341config STACKTRACE_SUPPORT 342 def_bool y 343 344config MMU 345 def_bool y 346 347config ARCH_MMAP_RND_BITS_MIN 348 default 28 if 64BIT 349 default 8 350 351config ARCH_MMAP_RND_BITS_MAX 352 default 32 if 64BIT 353 default 16 354 355config ARCH_MMAP_RND_COMPAT_BITS_MIN 356 default 8 357 358config ARCH_MMAP_RND_COMPAT_BITS_MAX 359 default 16 360 361config SBUS 362 bool 363 364config GENERIC_ISA_DMA 365 def_bool y 366 depends on ISA_DMA_API 367 368config GENERIC_CSUM 369 bool 370 default y if KMSAN || KASAN 371 372config GENERIC_BUG 373 def_bool y 374 depends on BUG 375 select GENERIC_BUG_RELATIVE_POINTERS if X86_64 376 377config GENERIC_BUG_RELATIVE_POINTERS 378 bool 379 380config ARCH_MAY_HAVE_PC_FDC 381 def_bool y 382 depends on ISA_DMA_API 383 384config GENERIC_CALIBRATE_DELAY 385 def_bool y 386 387config ARCH_HAS_CPU_RELAX 388 def_bool y 389 390config ARCH_HIBERNATION_POSSIBLE 391 def_bool y 392 393config ARCH_SUSPEND_POSSIBLE 394 def_bool y 395 396config AUDIT_ARCH 397 def_bool y if X86_64 398 399config KASAN_SHADOW_OFFSET 400 hex 401 depends on KASAN 402 default 0xdffffc0000000000 403 404config HAVE_INTEL_TXT 405 def_bool y 406 depends on INTEL_IOMMU && ACPI 407 408config X86_64_SMP 409 def_bool y 410 depends on X86_64 && SMP 411 412config ARCH_SUPPORTS_UPROBES 413 def_bool y 414 415config FIX_EARLYCON_MEM 416 def_bool y 417 418config DYNAMIC_PHYSICAL_MASK 419 bool 420 421config PGTABLE_LEVELS 422 int 423 default 5 if X86_5LEVEL 424 default 4 if X86_64 425 default 3 if X86_PAE 426 default 2 427 428config CC_HAS_SANE_STACKPROTECTOR 429 bool 430 default $(success,$(srctree)/scripts/gcc-x86_64-has-stack-protector.sh $(CC) $(CLANG_FLAGS)) if 64BIT 431 default $(success,$(srctree)/scripts/gcc-x86_32-has-stack-protector.sh $(CC) $(CLANG_FLAGS)) 432 help 433 We have to make sure stack protector is unconditionally disabled if 434 the compiler produces broken code or if it does not let us control 435 the segment on 32-bit kernels. 436 437menu "Processor type and features" 438 439config SMP 440 bool "Symmetric multi-processing support" 441 help 442 This enables support for systems with more than one CPU. If you have 443 a system with only one CPU, say N. If you have a system with more 444 than one CPU, say Y. 445 446 If you say N here, the kernel will run on uni- and multiprocessor 447 machines, but will use only one CPU of a multiprocessor machine. If 448 you say Y here, the kernel will run on many, but not all, 449 uniprocessor machines. On a uniprocessor machine, the kernel 450 will run faster if you say N here. 451 452 Note that if you say Y here and choose architecture "586" or 453 "Pentium" under "Processor family", the kernel will not work on 486 454 architectures. Similarly, multiprocessor kernels for the "PPro" 455 architecture may not work on all Pentium based boards. 456 457 People using multiprocessor machines who say Y here should also say 458 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power 459 Management" code will be disabled if you say Y here. 460 461 See also <file:Documentation/arch/x86/i386/IO-APIC.rst>, 462 <file:Documentation/admin-guide/lockup-watchdogs.rst> and the SMP-HOWTO available at 463 <http://www.tldp.org/docs.html#howto>. 464 465 If you don't know what to do here, say N. 466 467config X86_X2APIC 468 bool "Support x2apic" 469 depends on X86_LOCAL_APIC && X86_64 && (IRQ_REMAP || HYPERVISOR_GUEST) 470 help 471 This enables x2apic support on CPUs that have this feature. 472 473 This allows 32-bit apic IDs (so it can support very large systems), 474 and accesses the local apic via MSRs not via mmio. 475 476 Some Intel systems circa 2022 and later are locked into x2APIC mode 477 and can not fall back to the legacy APIC modes if SGX or TDX are 478 enabled in the BIOS. They will boot with very reduced functionality 479 without enabling this option. 480 481 If you don't know what to do here, say N. 482 483config X86_POSTED_MSI 484 bool "Enable MSI and MSI-x delivery by posted interrupts" 485 depends on X86_64 && IRQ_REMAP 486 help 487 This enables MSIs that are under interrupt remapping to be delivered as 488 posted interrupts to the host kernel. Interrupt throughput can 489 potentially be improved by coalescing CPU notifications during high 490 frequency bursts. 491 492 If you don't know what to do here, say N. 493 494config X86_MPPARSE 495 bool "Enable MPS table" if ACPI 496 default y 497 depends on X86_LOCAL_APIC 498 help 499 For old smp systems that do not have proper acpi support. Newer systems 500 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it 501 502config X86_CPU_RESCTRL 503 bool "x86 CPU resource control support" 504 depends on X86 && (CPU_SUP_INTEL || CPU_SUP_AMD) 505 select KERNFS 506 select PROC_CPU_RESCTRL if PROC_FS 507 help 508 Enable x86 CPU resource control support. 509 510 Provide support for the allocation and monitoring of system resources 511 usage by the CPU. 512 513 Intel calls this Intel Resource Director Technology 514 (Intel(R) RDT). More information about RDT can be found in the 515 Intel x86 Architecture Software Developer Manual. 516 517 AMD calls this AMD Platform Quality of Service (AMD QoS). 518 More information about AMD QoS can be found in the AMD64 Technology 519 Platform Quality of Service Extensions manual. 520 521 Say N if unsure. 522 523config X86_FRED 524 bool "Flexible Return and Event Delivery" 525 depends on X86_64 526 help 527 When enabled, try to use Flexible Return and Event Delivery 528 instead of the legacy SYSCALL/SYSENTER/IDT architecture for 529 ring transitions and exception/interrupt handling if the 530 system supports it. 531 532config X86_BIGSMP 533 bool "Support for big SMP systems with more than 8 CPUs" 534 depends on SMP && X86_32 535 help 536 This option is needed for the systems that have more than 8 CPUs. 537 538config X86_EXTENDED_PLATFORM 539 bool "Support for extended (non-PC) x86 platforms" 540 default y 541 help 542 If you disable this option then the kernel will only support 543 standard PC platforms. (which covers the vast majority of 544 systems out there.) 545 546 If you enable this option then you'll be able to select support 547 for the following non-PC x86 platforms, depending on the value of 548 CONFIG_64BIT. 549 550 32-bit platforms (CONFIG_64BIT=n): 551 Goldfish (Android emulator) 552 AMD Elan 553 RDC R-321x SoC 554 SGI 320/540 (Visual Workstation) 555 STA2X11-based (e.g. Northville) 556 Moorestown MID devices 557 558 64-bit platforms (CONFIG_64BIT=y): 559 Numascale NumaChip 560 ScaleMP vSMP 561 SGI Ultraviolet 562 563 If you have one of these systems, or if you want to build a 564 generic distribution kernel, say Y here - otherwise say N. 565 566# This is an alphabetically sorted list of 64 bit extended platforms 567# Please maintain the alphabetic order if and when there are additions 568config X86_NUMACHIP 569 bool "Numascale NumaChip" 570 depends on X86_64 571 depends on X86_EXTENDED_PLATFORM 572 depends on NUMA 573 depends on SMP 574 depends on X86_X2APIC 575 depends on PCI_MMCONFIG 576 help 577 Adds support for Numascale NumaChip large-SMP systems. Needed to 578 enable more than ~168 cores. 579 If you don't have one of these, you should say N here. 580 581config X86_VSMP 582 bool "ScaleMP vSMP" 583 select HYPERVISOR_GUEST 584 select PARAVIRT 585 depends on X86_64 && PCI 586 depends on X86_EXTENDED_PLATFORM 587 depends on SMP 588 help 589 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is 590 supposed to run on these EM64T-based machines. Only choose this option 591 if you have one of these machines. 592 593config X86_UV 594 bool "SGI Ultraviolet" 595 depends on X86_64 596 depends on X86_EXTENDED_PLATFORM 597 depends on NUMA 598 depends on EFI 599 depends on KEXEC_CORE 600 depends on X86_X2APIC 601 depends on PCI 602 help 603 This option is needed in order to support SGI Ultraviolet systems. 604 If you don't have one of these, you should say N here. 605 606# Following is an alphabetically sorted list of 32 bit extended platforms 607# Please maintain the alphabetic order if and when there are additions 608 609config X86_GOLDFISH 610 bool "Goldfish (Virtual Platform)" 611 depends on X86_EXTENDED_PLATFORM 612 help 613 Enable support for the Goldfish virtual platform used primarily 614 for Android development. Unless you are building for the Android 615 Goldfish emulator say N here. 616 617config X86_INTEL_CE 618 bool "CE4100 TV platform" 619 depends on PCI 620 depends on PCI_GODIRECT 621 depends on X86_IO_APIC 622 depends on X86_32 623 depends on X86_EXTENDED_PLATFORM 624 select X86_REBOOTFIXUPS 625 select OF 626 select OF_EARLY_FLATTREE 627 help 628 Select for the Intel CE media processor (CE4100) SOC. 629 This option compiles in support for the CE4100 SOC for settop 630 boxes and media devices. 631 632config X86_INTEL_MID 633 bool "Intel MID platform support" 634 depends on X86_EXTENDED_PLATFORM 635 depends on X86_PLATFORM_DEVICES 636 depends on PCI 637 depends on X86_64 || (PCI_GOANY && X86_32) 638 depends on X86_IO_APIC 639 select I2C 640 select DW_APB_TIMER 641 select INTEL_SCU_PCI 642 help 643 Select to build a kernel capable of supporting Intel MID (Mobile 644 Internet Device) platform systems which do not have the PCI legacy 645 interfaces. If you are building for a PC class system say N here. 646 647 Intel MID platforms are based on an Intel processor and chipset which 648 consume less power than most of the x86 derivatives. 649 650config X86_INTEL_QUARK 651 bool "Intel Quark platform support" 652 depends on X86_32 653 depends on X86_EXTENDED_PLATFORM 654 depends on X86_PLATFORM_DEVICES 655 depends on X86_TSC 656 depends on PCI 657 depends on PCI_GOANY 658 depends on X86_IO_APIC 659 select IOSF_MBI 660 select INTEL_IMR 661 select COMMON_CLK 662 help 663 Select to include support for Quark X1000 SoC. 664 Say Y here if you have a Quark based system such as the Arduino 665 compatible Intel Galileo. 666 667config X86_INTEL_LPSS 668 bool "Intel Low Power Subsystem Support" 669 depends on X86 && ACPI && PCI 670 select COMMON_CLK 671 select PINCTRL 672 select IOSF_MBI 673 help 674 Select to build support for Intel Low Power Subsystem such as 675 found on Intel Lynxpoint PCH. Selecting this option enables 676 things like clock tree (common clock framework) and pincontrol 677 which are needed by the LPSS peripheral drivers. 678 679config X86_AMD_PLATFORM_DEVICE 680 bool "AMD ACPI2Platform devices support" 681 depends on ACPI 682 select COMMON_CLK 683 select PINCTRL 684 help 685 Select to interpret AMD specific ACPI device to platform device 686 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets. 687 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is 688 implemented under PINCTRL subsystem. 689 690config IOSF_MBI 691 tristate "Intel SoC IOSF Sideband support for SoC platforms" 692 depends on PCI 693 help 694 This option enables sideband register access support for Intel SoC 695 platforms. On these platforms the IOSF sideband is used in lieu of 696 MSR's for some register accesses, mostly but not limited to thermal 697 and power. Drivers may query the availability of this device to 698 determine if they need the sideband in order to work on these 699 platforms. The sideband is available on the following SoC products. 700 This list is not meant to be exclusive. 701 - BayTrail 702 - Braswell 703 - Quark 704 705 You should say Y if you are running a kernel on one of these SoC's. 706 707config IOSF_MBI_DEBUG 708 bool "Enable IOSF sideband access through debugfs" 709 depends on IOSF_MBI && DEBUG_FS 710 help 711 Select this option to expose the IOSF sideband access registers (MCR, 712 MDR, MCRX) through debugfs to write and read register information from 713 different units on the SoC. This is most useful for obtaining device 714 state information for debug and analysis. As this is a general access 715 mechanism, users of this option would have specific knowledge of the 716 device they want to access. 717 718 If you don't require the option or are in doubt, say N. 719 720config X86_RDC321X 721 bool "RDC R-321x SoC" 722 depends on X86_32 723 depends on X86_EXTENDED_PLATFORM 724 select M486 725 select X86_REBOOTFIXUPS 726 help 727 This option is needed for RDC R-321x system-on-chip, also known 728 as R-8610-(G). 729 If you don't have one of these chips, you should say N here. 730 731config X86_32_NON_STANDARD 732 bool "Support non-standard 32-bit SMP architectures" 733 depends on X86_32 && SMP 734 depends on X86_EXTENDED_PLATFORM 735 help 736 This option compiles in the bigsmp and STA2X11 default 737 subarchitectures. It is intended for a generic binary 738 kernel. If you select them all, kernel will probe it one by 739 one and will fallback to default. 740 741# Alphabetically sorted list of Non standard 32 bit platforms 742 743config X86_SUPPORTS_MEMORY_FAILURE 744 def_bool y 745 # MCE code calls memory_failure(): 746 depends on X86_MCE 747 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags: 748 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH: 749 depends on X86_64 || !SPARSEMEM 750 select ARCH_SUPPORTS_MEMORY_FAILURE 751 752config STA2X11 753 bool "STA2X11 Companion Chip Support" 754 depends on X86_32_NON_STANDARD && PCI 755 select SWIOTLB 756 select MFD_STA2X11 757 select GPIOLIB 758 help 759 This adds support for boards based on the STA2X11 IO-Hub, 760 a.k.a. "ConneXt". The chip is used in place of the standard 761 PC chipset, so all "standard" peripherals are missing. If this 762 option is selected the kernel will still be able to boot on 763 standard PC machines. 764 765config X86_32_IRIS 766 tristate "Eurobraille/Iris poweroff module" 767 depends on X86_32 768 help 769 The Iris machines from EuroBraille do not have APM or ACPI support 770 to shut themselves down properly. A special I/O sequence is 771 needed to do so, which is what this module does at 772 kernel shutdown. 773 774 This is only for Iris machines from EuroBraille. 775 776 If unused, say N. 777 778config SCHED_OMIT_FRAME_POINTER 779 def_bool y 780 prompt "Single-depth WCHAN output" 781 depends on X86 782 help 783 Calculate simpler /proc/<PID>/wchan values. If this option 784 is disabled then wchan values will recurse back to the 785 caller function. This provides more accurate wchan values, 786 at the expense of slightly more scheduling overhead. 787 788 If in doubt, say "Y". 789 790menuconfig HYPERVISOR_GUEST 791 bool "Linux guest support" 792 help 793 Say Y here to enable options for running Linux under various hyper- 794 visors. This option enables basic hypervisor detection and platform 795 setup. 796 797 If you say N, all options in this submenu will be skipped and 798 disabled, and Linux guest support won't be built in. 799 800if HYPERVISOR_GUEST 801 802config PARAVIRT 803 bool "Enable paravirtualization code" 804 depends on HAVE_STATIC_CALL 805 help 806 This changes the kernel so it can modify itself when it is run 807 under a hypervisor, potentially improving performance significantly 808 over full virtualization. However, when run without a hypervisor 809 the kernel is theoretically slower and slightly larger. 810 811config PARAVIRT_XXL 812 bool 813 814config PARAVIRT_DEBUG 815 bool "paravirt-ops debugging" 816 depends on PARAVIRT && DEBUG_KERNEL 817 help 818 Enable to debug paravirt_ops internals. Specifically, BUG if 819 a paravirt_op is missing when it is called. 820 821config PARAVIRT_SPINLOCKS 822 bool "Paravirtualization layer for spinlocks" 823 depends on PARAVIRT && SMP 824 help 825 Paravirtualized spinlocks allow a pvops backend to replace the 826 spinlock implementation with something virtualization-friendly 827 (for example, block the virtual CPU rather than spinning). 828 829 It has a minimal impact on native kernels and gives a nice performance 830 benefit on paravirtualized KVM / Xen kernels. 831 832 If you are unsure how to answer this question, answer Y. 833 834config X86_HV_CALLBACK_VECTOR 835 def_bool n 836 837source "arch/x86/xen/Kconfig" 838 839config KVM_GUEST 840 bool "KVM Guest support (including kvmclock)" 841 depends on PARAVIRT 842 select PARAVIRT_CLOCK 843 select ARCH_CPUIDLE_HALTPOLL 844 select X86_HV_CALLBACK_VECTOR 845 default y 846 help 847 This option enables various optimizations for running under the KVM 848 hypervisor. It includes a paravirtualized clock, so that instead 849 of relying on a PIT (or probably other) emulation by the 850 underlying device model, the host provides the guest with 851 timing infrastructure such as time of day, and system time 852 853config ARCH_CPUIDLE_HALTPOLL 854 def_bool n 855 prompt "Disable host haltpoll when loading haltpoll driver" 856 help 857 If virtualized under KVM, disable host haltpoll. 858 859config PVH 860 bool "Support for running PVH guests" 861 help 862 This option enables the PVH entry point for guest virtual machines 863 as specified in the x86/HVM direct boot ABI. 864 865config PARAVIRT_TIME_ACCOUNTING 866 bool "Paravirtual steal time accounting" 867 depends on PARAVIRT 868 help 869 Select this option to enable fine granularity task steal time 870 accounting. Time spent executing other tasks in parallel with 871 the current vCPU is discounted from the vCPU power. To account for 872 that, there can be a small performance impact. 873 874 If in doubt, say N here. 875 876config PARAVIRT_CLOCK 877 bool 878 879config JAILHOUSE_GUEST 880 bool "Jailhouse non-root cell support" 881 depends on X86_64 && PCI 882 select X86_PM_TIMER 883 help 884 This option allows to run Linux as guest in a Jailhouse non-root 885 cell. You can leave this option disabled if you only want to start 886 Jailhouse and run Linux afterwards in the root cell. 887 888config ACRN_GUEST 889 bool "ACRN Guest support" 890 depends on X86_64 891 select X86_HV_CALLBACK_VECTOR 892 help 893 This option allows to run Linux as guest in the ACRN hypervisor. ACRN is 894 a flexible, lightweight reference open-source hypervisor, built with 895 real-time and safety-criticality in mind. It is built for embedded 896 IOT with small footprint and real-time features. More details can be 897 found in https://projectacrn.org/. 898 899config INTEL_TDX_GUEST 900 bool "Intel TDX (Trust Domain Extensions) - Guest Support" 901 depends on X86_64 && CPU_SUP_INTEL 902 depends on X86_X2APIC 903 depends on EFI_STUB 904 select ARCH_HAS_CC_PLATFORM 905 select X86_MEM_ENCRYPT 906 select X86_MCE 907 select UNACCEPTED_MEMORY 908 help 909 Support running as a guest under Intel TDX. Without this support, 910 the guest kernel can not boot or run under TDX. 911 TDX includes memory encryption and integrity capabilities 912 which protect the confidentiality and integrity of guest 913 memory contents and CPU state. TDX guests are protected from 914 some attacks from the VMM. 915 916endif # HYPERVISOR_GUEST 917 918source "arch/x86/Kconfig.cpu" 919 920config HPET_TIMER 921 def_bool X86_64 922 prompt "HPET Timer Support" if X86_32 923 help 924 Use the IA-PC HPET (High Precision Event Timer) to manage 925 time in preference to the PIT and RTC, if a HPET is 926 present. 927 HPET is the next generation timer replacing legacy 8254s. 928 The HPET provides a stable time base on SMP 929 systems, unlike the TSC, but it is more expensive to access, 930 as it is off-chip. The interface used is documented 931 in the HPET spec, revision 1. 932 933 You can safely choose Y here. However, HPET will only be 934 activated if the platform and the BIOS support this feature. 935 Otherwise the 8254 will be used for timing services. 936 937 Choose N to continue using the legacy 8254 timer. 938 939config HPET_EMULATE_RTC 940 def_bool y 941 depends on HPET_TIMER && (RTC_DRV_CMOS=m || RTC_DRV_CMOS=y) 942 943# Mark as expert because too many people got it wrong. 944# The code disables itself when not needed. 945config DMI 946 default y 947 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK 948 bool "Enable DMI scanning" if EXPERT 949 help 950 Enabled scanning of DMI to identify machine quirks. Say Y 951 here unless you have verified that your setup is not 952 affected by entries in the DMI blacklist. Required by PNP 953 BIOS code. 954 955config GART_IOMMU 956 bool "Old AMD GART IOMMU support" 957 select IOMMU_HELPER 958 select SWIOTLB 959 depends on X86_64 && PCI && AMD_NB 960 help 961 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron 962 GART based hardware IOMMUs. 963 964 The GART supports full DMA access for devices with 32-bit access 965 limitations, on systems with more than 3 GB. This is usually needed 966 for USB, sound, many IDE/SATA chipsets and some other devices. 967 968 Newer systems typically have a modern AMD IOMMU, supported via 969 the CONFIG_AMD_IOMMU=y config option. 970 971 In normal configurations this driver is only active when needed: 972 there's more than 3 GB of memory and the system contains a 973 32-bit limited device. 974 975 If unsure, say Y. 976 977config BOOT_VESA_SUPPORT 978 bool 979 help 980 If true, at least one selected framebuffer driver can take advantage 981 of VESA video modes set at an early boot stage via the vga= parameter. 982 983config MAXSMP 984 bool "Enable Maximum number of SMP Processors and NUMA Nodes" 985 depends on X86_64 && SMP && DEBUG_KERNEL 986 select CPUMASK_OFFSTACK 987 help 988 Enable maximum number of CPUS and NUMA Nodes for this architecture. 989 If unsure, say N. 990 991# 992# The maximum number of CPUs supported: 993# 994# The main config value is NR_CPUS, which defaults to NR_CPUS_DEFAULT, 995# and which can be configured interactively in the 996# [NR_CPUS_RANGE_BEGIN ... NR_CPUS_RANGE_END] range. 997# 998# The ranges are different on 32-bit and 64-bit kernels, depending on 999# hardware capabilities and scalability features of the kernel. 1000# 1001# ( If MAXSMP is enabled we just use the highest possible value and disable 1002# interactive configuration. ) 1003# 1004 1005config NR_CPUS_RANGE_BEGIN 1006 int 1007 default NR_CPUS_RANGE_END if MAXSMP 1008 default 1 if !SMP 1009 default 2 1010 1011config NR_CPUS_RANGE_END 1012 int 1013 depends on X86_32 1014 default 64 if SMP && X86_BIGSMP 1015 default 8 if SMP && !X86_BIGSMP 1016 default 1 if !SMP 1017 1018config NR_CPUS_RANGE_END 1019 int 1020 depends on X86_64 1021 default 8192 if SMP && CPUMASK_OFFSTACK 1022 default 512 if SMP && !CPUMASK_OFFSTACK 1023 default 1 if !SMP 1024 1025config NR_CPUS_DEFAULT 1026 int 1027 depends on X86_32 1028 default 32 if X86_BIGSMP 1029 default 8 if SMP 1030 default 1 if !SMP 1031 1032config NR_CPUS_DEFAULT 1033 int 1034 depends on X86_64 1035 default 8192 if MAXSMP 1036 default 64 if SMP 1037 default 1 if !SMP 1038 1039config NR_CPUS 1040 int "Maximum number of CPUs" if SMP && !MAXSMP 1041 range NR_CPUS_RANGE_BEGIN NR_CPUS_RANGE_END 1042 default NR_CPUS_DEFAULT 1043 help 1044 This allows you to specify the maximum number of CPUs which this 1045 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum 1046 supported value is 8192, otherwise the maximum value is 512. The 1047 minimum value which makes sense is 2. 1048 1049 This is purely to save memory: each supported CPU adds about 8KB 1050 to the kernel image. 1051 1052config SCHED_CLUSTER 1053 bool "Cluster scheduler support" 1054 depends on SMP 1055 default y 1056 help 1057 Cluster scheduler support improves the CPU scheduler's decision 1058 making when dealing with machines that have clusters of CPUs. 1059 Cluster usually means a couple of CPUs which are placed closely 1060 by sharing mid-level caches, last-level cache tags or internal 1061 busses. 1062 1063config SCHED_SMT 1064 def_bool y if SMP 1065 1066config SCHED_MC 1067 def_bool y 1068 prompt "Multi-core scheduler support" 1069 depends on SMP 1070 help 1071 Multi-core scheduler support improves the CPU scheduler's decision 1072 making when dealing with multi-core CPU chips at a cost of slightly 1073 increased overhead in some places. If unsure say N here. 1074 1075config SCHED_MC_PRIO 1076 bool "CPU core priorities scheduler support" 1077 depends on SCHED_MC 1078 select X86_INTEL_PSTATE if CPU_SUP_INTEL 1079 select X86_AMD_PSTATE if CPU_SUP_AMD && ACPI 1080 select CPU_FREQ 1081 default y 1082 help 1083 Intel Turbo Boost Max Technology 3.0 enabled CPUs have a 1084 core ordering determined at manufacturing time, which allows 1085 certain cores to reach higher turbo frequencies (when running 1086 single threaded workloads) than others. 1087 1088 Enabling this kernel feature teaches the scheduler about 1089 the TBM3 (aka ITMT) priority order of the CPU cores and adjusts the 1090 scheduler's CPU selection logic accordingly, so that higher 1091 overall system performance can be achieved. 1092 1093 This feature will have no effect on CPUs without this feature. 1094 1095 If unsure say Y here. 1096 1097config UP_LATE_INIT 1098 def_bool y 1099 depends on !SMP && X86_LOCAL_APIC 1100 1101config X86_UP_APIC 1102 bool "Local APIC support on uniprocessors" if !PCI_MSI 1103 default PCI_MSI 1104 depends on X86_32 && !SMP && !X86_32_NON_STANDARD 1105 help 1106 A local APIC (Advanced Programmable Interrupt Controller) is an 1107 integrated interrupt controller in the CPU. If you have a single-CPU 1108 system which has a processor with a local APIC, you can say Y here to 1109 enable and use it. If you say Y here even though your machine doesn't 1110 have a local APIC, then the kernel will still run with no slowdown at 1111 all. The local APIC supports CPU-generated self-interrupts (timer, 1112 performance counters), and the NMI watchdog which detects hard 1113 lockups. 1114 1115config X86_UP_IOAPIC 1116 bool "IO-APIC support on uniprocessors" 1117 depends on X86_UP_APIC 1118 help 1119 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an 1120 SMP-capable replacement for PC-style interrupt controllers. Most 1121 SMP systems and many recent uniprocessor systems have one. 1122 1123 If you have a single-CPU system with an IO-APIC, you can say Y here 1124 to use it. If you say Y here even though your machine doesn't have 1125 an IO-APIC, then the kernel will still run with no slowdown at all. 1126 1127config X86_LOCAL_APIC 1128 def_bool y 1129 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI 1130 select IRQ_DOMAIN_HIERARCHY 1131 1132config ACPI_MADT_WAKEUP 1133 def_bool y 1134 depends on X86_64 1135 depends on ACPI 1136 depends on SMP 1137 depends on X86_LOCAL_APIC 1138 1139config X86_IO_APIC 1140 def_bool y 1141 depends on X86_LOCAL_APIC || X86_UP_IOAPIC 1142 1143config X86_REROUTE_FOR_BROKEN_BOOT_IRQS 1144 bool "Reroute for broken boot IRQs" 1145 depends on X86_IO_APIC 1146 help 1147 This option enables a workaround that fixes a source of 1148 spurious interrupts. This is recommended when threaded 1149 interrupt handling is used on systems where the generation of 1150 superfluous "boot interrupts" cannot be disabled. 1151 1152 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ 1153 entry in the chipset's IO-APIC is masked (as, e.g. the RT 1154 kernel does during interrupt handling). On chipsets where this 1155 boot IRQ generation cannot be disabled, this workaround keeps 1156 the original IRQ line masked so that only the equivalent "boot 1157 IRQ" is delivered to the CPUs. The workaround also tells the 1158 kernel to set up the IRQ handler on the boot IRQ line. In this 1159 way only one interrupt is delivered to the kernel. Otherwise 1160 the spurious second interrupt may cause the kernel to bring 1161 down (vital) interrupt lines. 1162 1163 Only affects "broken" chipsets. Interrupt sharing may be 1164 increased on these systems. 1165 1166config X86_MCE 1167 bool "Machine Check / overheating reporting" 1168 select GENERIC_ALLOCATOR 1169 default y 1170 help 1171 Machine Check support allows the processor to notify the 1172 kernel if it detects a problem (e.g. overheating, data corruption). 1173 The action the kernel takes depends on the severity of the problem, 1174 ranging from warning messages to halting the machine. 1175 1176config X86_MCELOG_LEGACY 1177 bool "Support for deprecated /dev/mcelog character device" 1178 depends on X86_MCE 1179 help 1180 Enable support for /dev/mcelog which is needed by the old mcelog 1181 userspace logging daemon. Consider switching to the new generation 1182 rasdaemon solution. 1183 1184config X86_MCE_INTEL 1185 def_bool y 1186 prompt "Intel MCE features" 1187 depends on X86_MCE && X86_LOCAL_APIC 1188 help 1189 Additional support for intel specific MCE features such as 1190 the thermal monitor. 1191 1192config X86_MCE_AMD 1193 def_bool y 1194 prompt "AMD MCE features" 1195 depends on X86_MCE && X86_LOCAL_APIC 1196 help 1197 Additional support for AMD specific MCE features such as 1198 the DRAM Error Threshold. 1199 1200config X86_ANCIENT_MCE 1201 bool "Support for old Pentium 5 / WinChip machine checks" 1202 depends on X86_32 && X86_MCE 1203 help 1204 Include support for machine check handling on old Pentium 5 or WinChip 1205 systems. These typically need to be enabled explicitly on the command 1206 line. 1207 1208config X86_MCE_THRESHOLD 1209 depends on X86_MCE_AMD || X86_MCE_INTEL 1210 def_bool y 1211 1212config X86_MCE_INJECT 1213 depends on X86_MCE && X86_LOCAL_APIC && DEBUG_FS 1214 tristate "Machine check injector support" 1215 help 1216 Provide support for injecting machine checks for testing purposes. 1217 If you don't know what a machine check is and you don't do kernel 1218 QA it is safe to say n. 1219 1220source "arch/x86/events/Kconfig" 1221 1222config X86_LEGACY_VM86 1223 bool "Legacy VM86 support" 1224 depends on X86_32 1225 help 1226 This option allows user programs to put the CPU into V8086 1227 mode, which is an 80286-era approximation of 16-bit real mode. 1228 1229 Some very old versions of X and/or vbetool require this option 1230 for user mode setting. Similarly, DOSEMU will use it if 1231 available to accelerate real mode DOS programs. However, any 1232 recent version of DOSEMU, X, or vbetool should be fully 1233 functional even without kernel VM86 support, as they will all 1234 fall back to software emulation. Nevertheless, if you are using 1235 a 16-bit DOS program where 16-bit performance matters, vm86 1236 mode might be faster than emulation and you might want to 1237 enable this option. 1238 1239 Note that any app that works on a 64-bit kernel is unlikely to 1240 need this option, as 64-bit kernels don't, and can't, support 1241 V8086 mode. This option is also unrelated to 16-bit protected 1242 mode and is not needed to run most 16-bit programs under Wine. 1243 1244 Enabling this option increases the complexity of the kernel 1245 and slows down exception handling a tiny bit. 1246 1247 If unsure, say N here. 1248 1249config VM86 1250 bool 1251 default X86_LEGACY_VM86 1252 1253config X86_16BIT 1254 bool "Enable support for 16-bit segments" if EXPERT 1255 default y 1256 depends on MODIFY_LDT_SYSCALL 1257 help 1258 This option is required by programs like Wine to run 16-bit 1259 protected mode legacy code on x86 processors. Disabling 1260 this option saves about 300 bytes on i386, or around 6K text 1261 plus 16K runtime memory on x86-64, 1262 1263config X86_ESPFIX32 1264 def_bool y 1265 depends on X86_16BIT && X86_32 1266 1267config X86_ESPFIX64 1268 def_bool y 1269 depends on X86_16BIT && X86_64 1270 1271config X86_VSYSCALL_EMULATION 1272 bool "Enable vsyscall emulation" if EXPERT 1273 default y 1274 depends on X86_64 1275 help 1276 This enables emulation of the legacy vsyscall page. Disabling 1277 it is roughly equivalent to booting with vsyscall=none, except 1278 that it will also disable the helpful warning if a program 1279 tries to use a vsyscall. With this option set to N, offending 1280 programs will just segfault, citing addresses of the form 1281 0xffffffffff600?00. 1282 1283 This option is required by many programs built before 2013, and 1284 care should be used even with newer programs if set to N. 1285 1286 Disabling this option saves about 7K of kernel size and 1287 possibly 4K of additional runtime pagetable memory. 1288 1289config X86_IOPL_IOPERM 1290 bool "IOPERM and IOPL Emulation" 1291 default y 1292 help 1293 This enables the ioperm() and iopl() syscalls which are necessary 1294 for legacy applications. 1295 1296 Legacy IOPL support is an overbroad mechanism which allows user 1297 space aside of accessing all 65536 I/O ports also to disable 1298 interrupts. To gain this access the caller needs CAP_SYS_RAWIO 1299 capabilities and permission from potentially active security 1300 modules. 1301 1302 The emulation restricts the functionality of the syscall to 1303 only allowing the full range I/O port access, but prevents the 1304 ability to disable interrupts from user space which would be 1305 granted if the hardware IOPL mechanism would be used. 1306 1307config TOSHIBA 1308 tristate "Toshiba Laptop support" 1309 depends on X86_32 1310 help 1311 This adds a driver to safely access the System Management Mode of 1312 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does 1313 not work on models with a Phoenix BIOS. The System Management Mode 1314 is used to set the BIOS and power saving options on Toshiba portables. 1315 1316 For information on utilities to make use of this driver see the 1317 Toshiba Linux utilities web site at: 1318 <http://www.buzzard.org.uk/toshiba/>. 1319 1320 Say Y if you intend to run this kernel on a Toshiba portable. 1321 Say N otherwise. 1322 1323config X86_REBOOTFIXUPS 1324 bool "Enable X86 board specific fixups for reboot" 1325 depends on X86_32 1326 help 1327 This enables chipset and/or board specific fixups to be done 1328 in order to get reboot to work correctly. This is only needed on 1329 some combinations of hardware and BIOS. The symptom, for which 1330 this config is intended, is when reboot ends with a stalled/hung 1331 system. 1332 1333 Currently, the only fixup is for the Geode machines using 1334 CS5530A and CS5536 chipsets and the RDC R-321x SoC. 1335 1336 Say Y if you want to enable the fixup. Currently, it's safe to 1337 enable this option even if you don't need it. 1338 Say N otherwise. 1339 1340config MICROCODE 1341 def_bool y 1342 depends on CPU_SUP_AMD || CPU_SUP_INTEL 1343 1344config MICROCODE_INITRD32 1345 def_bool y 1346 depends on MICROCODE && X86_32 && BLK_DEV_INITRD 1347 1348config MICROCODE_LATE_LOADING 1349 bool "Late microcode loading (DANGEROUS)" 1350 default n 1351 depends on MICROCODE && SMP 1352 help 1353 Loading microcode late, when the system is up and executing instructions 1354 is a tricky business and should be avoided if possible. Just the sequence 1355 of synchronizing all cores and SMT threads is one fragile dance which does 1356 not guarantee that cores might not softlock after the loading. Therefore, 1357 use this at your own risk. Late loading taints the kernel unless the 1358 microcode header indicates that it is safe for late loading via the 1359 minimal revision check. This minimal revision check can be enforced on 1360 the kernel command line with "microcode.minrev=Y". 1361 1362config MICROCODE_LATE_FORCE_MINREV 1363 bool "Enforce late microcode loading minimal revision check" 1364 default n 1365 depends on MICROCODE_LATE_LOADING 1366 help 1367 To prevent that users load microcode late which modifies already 1368 in use features, newer microcode patches have a minimum revision field 1369 in the microcode header, which tells the kernel which minimum 1370 revision must be active in the CPU to safely load that new microcode 1371 late into the running system. If disabled the check will not 1372 be enforced but the kernel will be tainted when the minimal 1373 revision check fails. 1374 1375 This minimal revision check can also be controlled via the 1376 "microcode.minrev" parameter on the kernel command line. 1377 1378 If unsure say Y. 1379 1380config X86_MSR 1381 tristate "/dev/cpu/*/msr - Model-specific register support" 1382 help 1383 This device gives privileged processes access to the x86 1384 Model-Specific Registers (MSRs). It is a character device with 1385 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr. 1386 MSR accesses are directed to a specific CPU on multi-processor 1387 systems. 1388 1389config X86_CPUID 1390 tristate "/dev/cpu/*/cpuid - CPU information support" 1391 help 1392 This device gives processes access to the x86 CPUID instruction to 1393 be executed on a specific processor. It is a character device 1394 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to 1395 /dev/cpu/31/cpuid. 1396 1397choice 1398 prompt "High Memory Support" 1399 default HIGHMEM4G 1400 depends on X86_32 1401 1402config NOHIGHMEM 1403 bool "off" 1404 help 1405 Linux can use up to 64 Gigabytes of physical memory on x86 systems. 1406 However, the address space of 32-bit x86 processors is only 4 1407 Gigabytes large. That means that, if you have a large amount of 1408 physical memory, not all of it can be "permanently mapped" by the 1409 kernel. The physical memory that's not permanently mapped is called 1410 "high memory". 1411 1412 If you are compiling a kernel which will never run on a machine with 1413 more than 1 Gigabyte total physical RAM, answer "off" here (default 1414 choice and suitable for most users). This will result in a "3GB/1GB" 1415 split: 3GB are mapped so that each process sees a 3GB virtual memory 1416 space and the remaining part of the 4GB virtual memory space is used 1417 by the kernel to permanently map as much physical memory as 1418 possible. 1419 1420 If the machine has between 1 and 4 Gigabytes physical RAM, then 1421 answer "4GB" here. 1422 1423 If more than 4 Gigabytes is used then answer "64GB" here. This 1424 selection turns Intel PAE (Physical Address Extension) mode on. 1425 PAE implements 3-level paging on IA32 processors. PAE is fully 1426 supported by Linux, PAE mode is implemented on all recent Intel 1427 processors (Pentium Pro and better). NOTE: If you say "64GB" here, 1428 then the kernel will not boot on CPUs that don't support PAE! 1429 1430 The actual amount of total physical memory will either be 1431 auto detected or can be forced by using a kernel command line option 1432 such as "mem=256M". (Try "man bootparam" or see the documentation of 1433 your boot loader (lilo or loadlin) about how to pass options to the 1434 kernel at boot time.) 1435 1436 If unsure, say "off". 1437 1438config HIGHMEM4G 1439 bool "4GB" 1440 help 1441 Select this if you have a 32-bit processor and between 1 and 4 1442 gigabytes of physical RAM. 1443 1444config HIGHMEM64G 1445 bool "64GB" 1446 depends on X86_HAVE_PAE 1447 select X86_PAE 1448 help 1449 Select this if you have a 32-bit processor and more than 4 1450 gigabytes of physical RAM. 1451 1452endchoice 1453 1454choice 1455 prompt "Memory split" if EXPERT 1456 default VMSPLIT_3G 1457 depends on X86_32 1458 help 1459 Select the desired split between kernel and user memory. 1460 1461 If the address range available to the kernel is less than the 1462 physical memory installed, the remaining memory will be available 1463 as "high memory". Accessing high memory is a little more costly 1464 than low memory, as it needs to be mapped into the kernel first. 1465 Note that increasing the kernel address space limits the range 1466 available to user programs, making the address space there 1467 tighter. Selecting anything other than the default 3G/1G split 1468 will also likely make your kernel incompatible with binary-only 1469 kernel modules. 1470 1471 If you are not absolutely sure what you are doing, leave this 1472 option alone! 1473 1474 config VMSPLIT_3G 1475 bool "3G/1G user/kernel split" 1476 config VMSPLIT_3G_OPT 1477 depends on !X86_PAE 1478 bool "3G/1G user/kernel split (for full 1G low memory)" 1479 config VMSPLIT_2G 1480 bool "2G/2G user/kernel split" 1481 config VMSPLIT_2G_OPT 1482 depends on !X86_PAE 1483 bool "2G/2G user/kernel split (for full 2G low memory)" 1484 config VMSPLIT_1G 1485 bool "1G/3G user/kernel split" 1486endchoice 1487 1488config PAGE_OFFSET 1489 hex 1490 default 0xB0000000 if VMSPLIT_3G_OPT 1491 default 0x80000000 if VMSPLIT_2G 1492 default 0x78000000 if VMSPLIT_2G_OPT 1493 default 0x40000000 if VMSPLIT_1G 1494 default 0xC0000000 1495 depends on X86_32 1496 1497config HIGHMEM 1498 def_bool y 1499 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G) 1500 1501config X86_PAE 1502 bool "PAE (Physical Address Extension) Support" 1503 depends on X86_32 && X86_HAVE_PAE 1504 select PHYS_ADDR_T_64BIT 1505 select SWIOTLB 1506 help 1507 PAE is required for NX support, and furthermore enables 1508 larger swapspace support for non-overcommit purposes. It 1509 has the cost of more pagetable lookup overhead, and also 1510 consumes more pagetable space per process. 1511 1512config X86_5LEVEL 1513 bool "Enable 5-level page tables support" 1514 default y 1515 select DYNAMIC_MEMORY_LAYOUT 1516 select SPARSEMEM_VMEMMAP 1517 depends on X86_64 1518 help 1519 5-level paging enables access to larger address space: 1520 up to 128 PiB of virtual address space and 4 PiB of 1521 physical address space. 1522 1523 It will be supported by future Intel CPUs. 1524 1525 A kernel with the option enabled can be booted on machines that 1526 support 4- or 5-level paging. 1527 1528 See Documentation/arch/x86/x86_64/5level-paging.rst for more 1529 information. 1530 1531 Say N if unsure. 1532 1533config X86_DIRECT_GBPAGES 1534 def_bool y 1535 depends on X86_64 1536 help 1537 Certain kernel features effectively disable kernel 1538 linear 1 GB mappings (even if the CPU otherwise 1539 supports them), so don't confuse the user by printing 1540 that we have them enabled. 1541 1542config X86_CPA_STATISTICS 1543 bool "Enable statistic for Change Page Attribute" 1544 depends on DEBUG_FS 1545 help 1546 Expose statistics about the Change Page Attribute mechanism, which 1547 helps to determine the effectiveness of preserving large and huge 1548 page mappings when mapping protections are changed. 1549 1550config X86_MEM_ENCRYPT 1551 select ARCH_HAS_FORCE_DMA_UNENCRYPTED 1552 select DYNAMIC_PHYSICAL_MASK 1553 def_bool n 1554 1555config AMD_MEM_ENCRYPT 1556 bool "AMD Secure Memory Encryption (SME) support" 1557 depends on X86_64 && CPU_SUP_AMD 1558 depends on EFI_STUB 1559 select DMA_COHERENT_POOL 1560 select ARCH_USE_MEMREMAP_PROT 1561 select INSTRUCTION_DECODER 1562 select ARCH_HAS_CC_PLATFORM 1563 select X86_MEM_ENCRYPT 1564 select UNACCEPTED_MEMORY 1565 select CRYPTO_LIB_AESGCM 1566 help 1567 Say yes to enable support for the encryption of system memory. 1568 This requires an AMD processor that supports Secure Memory 1569 Encryption (SME). 1570 1571# Common NUMA Features 1572config NUMA 1573 bool "NUMA Memory Allocation and Scheduler Support" 1574 depends on SMP 1575 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP) 1576 default y if X86_BIGSMP 1577 select USE_PERCPU_NUMA_NODE_ID 1578 select OF_NUMA if OF 1579 help 1580 Enable NUMA (Non-Uniform Memory Access) support. 1581 1582 The kernel will try to allocate memory used by a CPU on the 1583 local memory controller of the CPU and add some more 1584 NUMA awareness to the kernel. 1585 1586 For 64-bit this is recommended if the system is Intel Core i7 1587 (or later), AMD Opteron, or EM64T NUMA. 1588 1589 For 32-bit this is only needed if you boot a 32-bit 1590 kernel on a 64-bit NUMA platform. 1591 1592 Otherwise, you should say N. 1593 1594config AMD_NUMA 1595 def_bool y 1596 prompt "Old style AMD Opteron NUMA detection" 1597 depends on X86_64 && NUMA && PCI 1598 help 1599 Enable AMD NUMA node topology detection. You should say Y here if 1600 you have a multi processor AMD system. This uses an old method to 1601 read the NUMA configuration directly from the builtin Northbridge 1602 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead, 1603 which also takes priority if both are compiled in. 1604 1605config X86_64_ACPI_NUMA 1606 def_bool y 1607 prompt "ACPI NUMA detection" 1608 depends on X86_64 && NUMA && ACPI && PCI 1609 select ACPI_NUMA 1610 help 1611 Enable ACPI SRAT based node topology detection. 1612 1613config NODES_SHIFT 1614 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP 1615 range 1 10 1616 default "10" if MAXSMP 1617 default "6" if X86_64 1618 default "3" 1619 depends on NUMA 1620 help 1621 Specify the maximum number of NUMA Nodes available on the target 1622 system. Increases memory reserved to accommodate various tables. 1623 1624config ARCH_FLATMEM_ENABLE 1625 def_bool y 1626 depends on X86_32 && !NUMA 1627 1628config ARCH_SPARSEMEM_ENABLE 1629 def_bool y 1630 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD 1631 select SPARSEMEM_STATIC if X86_32 1632 select SPARSEMEM_VMEMMAP_ENABLE if X86_64 1633 1634config ARCH_SPARSEMEM_DEFAULT 1635 def_bool X86_64 || (NUMA && X86_32) 1636 1637config ARCH_SELECT_MEMORY_MODEL 1638 def_bool y 1639 depends on ARCH_SPARSEMEM_ENABLE && ARCH_FLATMEM_ENABLE 1640 1641config ARCH_MEMORY_PROBE 1642 bool "Enable sysfs memory/probe interface" 1643 depends on MEMORY_HOTPLUG 1644 help 1645 This option enables a sysfs memory/probe interface for testing. 1646 See Documentation/admin-guide/mm/memory-hotplug.rst for more information. 1647 If you are unsure how to answer this question, answer N. 1648 1649config ARCH_PROC_KCORE_TEXT 1650 def_bool y 1651 depends on X86_64 && PROC_KCORE 1652 1653config ILLEGAL_POINTER_VALUE 1654 hex 1655 default 0 if X86_32 1656 default 0xdead000000000000 if X86_64 1657 1658config X86_PMEM_LEGACY_DEVICE 1659 bool 1660 1661config X86_PMEM_LEGACY 1662 tristate "Support non-standard NVDIMMs and ADR protected memory" 1663 depends on PHYS_ADDR_T_64BIT 1664 depends on BLK_DEV 1665 select X86_PMEM_LEGACY_DEVICE 1666 select NUMA_KEEP_MEMINFO if NUMA 1667 select LIBNVDIMM 1668 help 1669 Treat memory marked using the non-standard e820 type of 12 as used 1670 by the Intel Sandy Bridge-EP reference BIOS as protected memory. 1671 The kernel will offer these regions to the 'pmem' driver so 1672 they can be used for persistent storage. 1673 1674 Say Y if unsure. 1675 1676config HIGHPTE 1677 bool "Allocate 3rd-level pagetables from highmem" 1678 depends on HIGHMEM 1679 help 1680 The VM uses one page table entry for each page of physical memory. 1681 For systems with a lot of RAM, this can be wasteful of precious 1682 low memory. Setting this option will put user-space page table 1683 entries in high memory. 1684 1685config X86_CHECK_BIOS_CORRUPTION 1686 bool "Check for low memory corruption" 1687 help 1688 Periodically check for memory corruption in low memory, which 1689 is suspected to be caused by BIOS. Even when enabled in the 1690 configuration, it is disabled at runtime. Enable it by 1691 setting "memory_corruption_check=1" on the kernel command 1692 line. By default it scans the low 64k of memory every 60 1693 seconds; see the memory_corruption_check_size and 1694 memory_corruption_check_period parameters in 1695 Documentation/admin-guide/kernel-parameters.rst to adjust this. 1696 1697 When enabled with the default parameters, this option has 1698 almost no overhead, as it reserves a relatively small amount 1699 of memory and scans it infrequently. It both detects corruption 1700 and prevents it from affecting the running system. 1701 1702 It is, however, intended as a diagnostic tool; if repeatable 1703 BIOS-originated corruption always affects the same memory, 1704 you can use memmap= to prevent the kernel from using that 1705 memory. 1706 1707config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK 1708 bool "Set the default setting of memory_corruption_check" 1709 depends on X86_CHECK_BIOS_CORRUPTION 1710 default y 1711 help 1712 Set whether the default state of memory_corruption_check is 1713 on or off. 1714 1715config MATH_EMULATION 1716 bool 1717 depends on MODIFY_LDT_SYSCALL 1718 prompt "Math emulation" if X86_32 && (M486SX || MELAN) 1719 help 1720 Linux can emulate a math coprocessor (used for floating point 1721 operations) if you don't have one. 486DX and Pentium processors have 1722 a math coprocessor built in, 486SX and 386 do not, unless you added 1723 a 487DX or 387, respectively. (The messages during boot time can 1724 give you some hints here ["man dmesg"].) Everyone needs either a 1725 coprocessor or this emulation. 1726 1727 If you don't have a math coprocessor, you need to say Y here; if you 1728 say Y here even though you have a coprocessor, the coprocessor will 1729 be used nevertheless. (This behavior can be changed with the kernel 1730 command line option "no387", which comes handy if your coprocessor 1731 is broken. Try "man bootparam" or see the documentation of your boot 1732 loader (lilo or loadlin) about how to pass options to the kernel at 1733 boot time.) This means that it is a good idea to say Y here if you 1734 intend to use this kernel on different machines. 1735 1736 More information about the internals of the Linux math coprocessor 1737 emulation can be found in <file:arch/x86/math-emu/README>. 1738 1739 If you are not sure, say Y; apart from resulting in a 66 KB bigger 1740 kernel, it won't hurt. 1741 1742config MTRR 1743 def_bool y 1744 prompt "MTRR (Memory Type Range Register) support" if EXPERT 1745 help 1746 On Intel P6 family processors (Pentium Pro, Pentium II and later) 1747 the Memory Type Range Registers (MTRRs) may be used to control 1748 processor access to memory ranges. This is most useful if you have 1749 a video (VGA) card on a PCI or AGP bus. Enabling write-combining 1750 allows bus write transfers to be combined into a larger transfer 1751 before bursting over the PCI/AGP bus. This can increase performance 1752 of image write operations 2.5 times or more. Saying Y here creates a 1753 /proc/mtrr file which may be used to manipulate your processor's 1754 MTRRs. Typically the X server should use this. 1755 1756 This code has a reasonably generic interface so that similar 1757 control registers on other processors can be easily supported 1758 as well: 1759 1760 The Cyrix 6x86, 6x86MX and M II processors have Address Range 1761 Registers (ARRs) which provide a similar functionality to MTRRs. For 1762 these, the ARRs are used to emulate the MTRRs. 1763 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two 1764 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing 1765 write-combining. All of these processors are supported by this code 1766 and it makes sense to say Y here if you have one of them. 1767 1768 Saying Y here also fixes a problem with buggy SMP BIOSes which only 1769 set the MTRRs for the boot CPU and not for the secondary CPUs. This 1770 can lead to all sorts of problems, so it's good to say Y here. 1771 1772 You can safely say Y even if your machine doesn't have MTRRs, you'll 1773 just add about 9 KB to your kernel. 1774 1775 See <file:Documentation/arch/x86/mtrr.rst> for more information. 1776 1777config MTRR_SANITIZER 1778 def_bool y 1779 prompt "MTRR cleanup support" 1780 depends on MTRR 1781 help 1782 Convert MTRR layout from continuous to discrete, so X drivers can 1783 add writeback entries. 1784 1785 Can be disabled with disable_mtrr_cleanup on the kernel command line. 1786 The largest mtrr entry size for a continuous block can be set with 1787 mtrr_chunk_size. 1788 1789 If unsure, say Y. 1790 1791config MTRR_SANITIZER_ENABLE_DEFAULT 1792 int "MTRR cleanup enable value (0-1)" 1793 range 0 1 1794 default "0" 1795 depends on MTRR_SANITIZER 1796 help 1797 Enable mtrr cleanup default value 1798 1799config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT 1800 int "MTRR cleanup spare reg num (0-7)" 1801 range 0 7 1802 default "1" 1803 depends on MTRR_SANITIZER 1804 help 1805 mtrr cleanup spare entries default, it can be changed via 1806 mtrr_spare_reg_nr=N on the kernel command line. 1807 1808config X86_PAT 1809 def_bool y 1810 prompt "x86 PAT support" if EXPERT 1811 depends on MTRR 1812 select ARCH_USES_PG_ARCH_2 1813 help 1814 Use PAT attributes to setup page level cache control. 1815 1816 PATs are the modern equivalents of MTRRs and are much more 1817 flexible than MTRRs. 1818 1819 Say N here if you see bootup problems (boot crash, boot hang, 1820 spontaneous reboots) or a non-working video driver. 1821 1822 If unsure, say Y. 1823 1824config X86_UMIP 1825 def_bool y 1826 prompt "User Mode Instruction Prevention" if EXPERT 1827 help 1828 User Mode Instruction Prevention (UMIP) is a security feature in 1829 some x86 processors. If enabled, a general protection fault is 1830 issued if the SGDT, SLDT, SIDT, SMSW or STR instructions are 1831 executed in user mode. These instructions unnecessarily expose 1832 information about the hardware state. 1833 1834 The vast majority of applications do not use these instructions. 1835 For the very few that do, software emulation is provided in 1836 specific cases in protected and virtual-8086 modes. Emulated 1837 results are dummy. 1838 1839config CC_HAS_IBT 1840 # GCC >= 9 and binutils >= 2.29 1841 # Retpoline check to work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93654 1842 # Clang/LLVM >= 14 1843 # https://github.com/llvm/llvm-project/commit/e0b89df2e0f0130881bf6c39bf31d7f6aac00e0f 1844 # https://github.com/llvm/llvm-project/commit/dfcf69770bc522b9e411c66454934a37c1f35332 1845 def_bool ((CC_IS_GCC && $(cc-option, -fcf-protection=branch -mindirect-branch-register)) || \ 1846 (CC_IS_CLANG && CLANG_VERSION >= 140000)) && \ 1847 $(as-instr,endbr64) 1848 1849config X86_CET 1850 def_bool n 1851 help 1852 CET features configured (Shadow stack or IBT) 1853 1854config X86_KERNEL_IBT 1855 prompt "Indirect Branch Tracking" 1856 def_bool y 1857 depends on X86_64 && CC_HAS_IBT && HAVE_OBJTOOL 1858 # https://github.com/llvm/llvm-project/commit/9d7001eba9c4cb311e03cd8cdc231f9e579f2d0f 1859 depends on !LD_IS_LLD || LLD_VERSION >= 140000 1860 select OBJTOOL 1861 select X86_CET 1862 help 1863 Build the kernel with support for Indirect Branch Tracking, a 1864 hardware support course-grain forward-edge Control Flow Integrity 1865 protection. It enforces that all indirect calls must land on 1866 an ENDBR instruction, as such, the compiler will instrument the 1867 code with them to make this happen. 1868 1869 In addition to building the kernel with IBT, seal all functions that 1870 are not indirect call targets, avoiding them ever becoming one. 1871 1872 This requires LTO like objtool runs and will slow down the build. It 1873 does significantly reduce the number of ENDBR instructions in the 1874 kernel image. 1875 1876config X86_INTEL_MEMORY_PROTECTION_KEYS 1877 prompt "Memory Protection Keys" 1878 def_bool y 1879 # Note: only available in 64-bit mode 1880 depends on X86_64 && (CPU_SUP_INTEL || CPU_SUP_AMD) 1881 select ARCH_USES_HIGH_VMA_FLAGS 1882 select ARCH_HAS_PKEYS 1883 help 1884 Memory Protection Keys provides a mechanism for enforcing 1885 page-based protections, but without requiring modification of the 1886 page tables when an application changes protection domains. 1887 1888 For details, see Documentation/core-api/protection-keys.rst 1889 1890 If unsure, say y. 1891 1892config ARCH_PKEY_BITS 1893 int 1894 default 4 1895 1896choice 1897 prompt "TSX enable mode" 1898 depends on CPU_SUP_INTEL 1899 default X86_INTEL_TSX_MODE_OFF 1900 help 1901 Intel's TSX (Transactional Synchronization Extensions) feature 1902 allows to optimize locking protocols through lock elision which 1903 can lead to a noticeable performance boost. 1904 1905 On the other hand it has been shown that TSX can be exploited 1906 to form side channel attacks (e.g. TAA) and chances are there 1907 will be more of those attacks discovered in the future. 1908 1909 Therefore TSX is not enabled by default (aka tsx=off). An admin 1910 might override this decision by tsx=on the command line parameter. 1911 Even with TSX enabled, the kernel will attempt to enable the best 1912 possible TAA mitigation setting depending on the microcode available 1913 for the particular machine. 1914 1915 This option allows to set the default tsx mode between tsx=on, =off 1916 and =auto. See Documentation/admin-guide/kernel-parameters.txt for more 1917 details. 1918 1919 Say off if not sure, auto if TSX is in use but it should be used on safe 1920 platforms or on if TSX is in use and the security aspect of tsx is not 1921 relevant. 1922 1923config X86_INTEL_TSX_MODE_OFF 1924 bool "off" 1925 help 1926 TSX is disabled if possible - equals to tsx=off command line parameter. 1927 1928config X86_INTEL_TSX_MODE_ON 1929 bool "on" 1930 help 1931 TSX is always enabled on TSX capable HW - equals the tsx=on command 1932 line parameter. 1933 1934config X86_INTEL_TSX_MODE_AUTO 1935 bool "auto" 1936 help 1937 TSX is enabled on TSX capable HW that is believed to be safe against 1938 side channel attacks- equals the tsx=auto command line parameter. 1939endchoice 1940 1941config X86_SGX 1942 bool "Software Guard eXtensions (SGX)" 1943 depends on X86_64 && CPU_SUP_INTEL && X86_X2APIC 1944 depends on CRYPTO=y 1945 depends on CRYPTO_SHA256=y 1946 select MMU_NOTIFIER 1947 select NUMA_KEEP_MEMINFO if NUMA 1948 select XARRAY_MULTI 1949 help 1950 Intel(R) Software Guard eXtensions (SGX) is a set of CPU instructions 1951 that can be used by applications to set aside private regions of code 1952 and data, referred to as enclaves. An enclave's private memory can 1953 only be accessed by code running within the enclave. Accesses from 1954 outside the enclave, including other enclaves, are disallowed by 1955 hardware. 1956 1957 If unsure, say N. 1958 1959config X86_USER_SHADOW_STACK 1960 bool "X86 userspace shadow stack" 1961 depends on AS_WRUSS 1962 depends on X86_64 1963 select ARCH_USES_HIGH_VMA_FLAGS 1964 select ARCH_HAS_USER_SHADOW_STACK 1965 select X86_CET 1966 help 1967 Shadow stack protection is a hardware feature that detects function 1968 return address corruption. This helps mitigate ROP attacks. 1969 Applications must be enabled to use it, and old userspace does not 1970 get protection "for free". 1971 1972 CPUs supporting shadow stacks were first released in 2020. 1973 1974 See Documentation/arch/x86/shstk.rst for more information. 1975 1976 If unsure, say N. 1977 1978config INTEL_TDX_HOST 1979 bool "Intel Trust Domain Extensions (TDX) host support" 1980 depends on CPU_SUP_INTEL 1981 depends on X86_64 1982 depends on KVM_INTEL 1983 depends on X86_X2APIC 1984 select ARCH_KEEP_MEMBLOCK 1985 depends on CONTIG_ALLOC 1986 depends on !KEXEC_CORE 1987 depends on X86_MCE 1988 help 1989 Intel Trust Domain Extensions (TDX) protects guest VMs from malicious 1990 host and certain physical attacks. This option enables necessary TDX 1991 support in the host kernel to run confidential VMs. 1992 1993 If unsure, say N. 1994 1995config EFI 1996 bool "EFI runtime service support" 1997 depends on ACPI 1998 select UCS2_STRING 1999 select EFI_RUNTIME_WRAPPERS 2000 select ARCH_USE_MEMREMAP_PROT 2001 select EFI_RUNTIME_MAP if KEXEC_CORE 2002 help 2003 This enables the kernel to use EFI runtime services that are 2004 available (such as the EFI variable services). 2005 2006 This option is only useful on systems that have EFI firmware. 2007 In addition, you should use the latest ELILO loader available 2008 at <http://elilo.sourceforge.net> in order to take advantage 2009 of EFI runtime services. However, even with this option, the 2010 resultant kernel should continue to boot on existing non-EFI 2011 platforms. 2012 2013config EFI_STUB 2014 bool "EFI stub support" 2015 depends on EFI 2016 select RELOCATABLE 2017 help 2018 This kernel feature allows a bzImage to be loaded directly 2019 by EFI firmware without the use of a bootloader. 2020 2021 See Documentation/admin-guide/efi-stub.rst for more information. 2022 2023config EFI_HANDOVER_PROTOCOL 2024 bool "EFI handover protocol (DEPRECATED)" 2025 depends on EFI_STUB 2026 default y 2027 help 2028 Select this in order to include support for the deprecated EFI 2029 handover protocol, which defines alternative entry points into the 2030 EFI stub. This is a practice that has no basis in the UEFI 2031 specification, and requires a priori knowledge on the part of the 2032 bootloader about Linux/x86 specific ways of passing the command line 2033 and initrd, and where in memory those assets may be loaded. 2034 2035 If in doubt, say Y. Even though the corresponding support is not 2036 present in upstream GRUB or other bootloaders, most distros build 2037 GRUB with numerous downstream patches applied, and may rely on the 2038 handover protocol as as result. 2039 2040config EFI_MIXED 2041 bool "EFI mixed-mode support" 2042 depends on EFI_STUB && X86_64 2043 help 2044 Enabling this feature allows a 64-bit kernel to be booted 2045 on a 32-bit firmware, provided that your CPU supports 64-bit 2046 mode. 2047 2048 Note that it is not possible to boot a mixed-mode enabled 2049 kernel via the EFI boot stub - a bootloader that supports 2050 the EFI handover protocol must be used. 2051 2052 If unsure, say N. 2053 2054config EFI_RUNTIME_MAP 2055 bool "Export EFI runtime maps to sysfs" if EXPERT 2056 depends on EFI 2057 help 2058 Export EFI runtime memory regions to /sys/firmware/efi/runtime-map. 2059 That memory map is required by the 2nd kernel to set up EFI virtual 2060 mappings after kexec, but can also be used for debugging purposes. 2061 2062 See also Documentation/ABI/testing/sysfs-firmware-efi-runtime-map. 2063 2064source "kernel/Kconfig.hz" 2065 2066config ARCH_SUPPORTS_KEXEC 2067 def_bool y 2068 2069config ARCH_SUPPORTS_KEXEC_FILE 2070 def_bool X86_64 2071 2072config ARCH_SELECTS_KEXEC_FILE 2073 def_bool y 2074 depends on KEXEC_FILE 2075 select HAVE_IMA_KEXEC if IMA 2076 2077config ARCH_SUPPORTS_KEXEC_PURGATORY 2078 def_bool y 2079 2080config ARCH_SUPPORTS_KEXEC_SIG 2081 def_bool y 2082 2083config ARCH_SUPPORTS_KEXEC_SIG_FORCE 2084 def_bool y 2085 2086config ARCH_SUPPORTS_KEXEC_BZIMAGE_VERIFY_SIG 2087 def_bool y 2088 2089config ARCH_SUPPORTS_KEXEC_JUMP 2090 def_bool y 2091 2092config ARCH_SUPPORTS_CRASH_DUMP 2093 def_bool X86_64 || (X86_32 && HIGHMEM) 2094 2095config ARCH_DEFAULT_CRASH_DUMP 2096 def_bool y 2097 2098config ARCH_SUPPORTS_CRASH_HOTPLUG 2099 def_bool y 2100 2101config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 2102 def_bool CRASH_RESERVE 2103 2104config PHYSICAL_START 2105 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP) 2106 default "0x1000000" 2107 help 2108 This gives the physical address where the kernel is loaded. 2109 2110 If the kernel is not relocatable (CONFIG_RELOCATABLE=n) then bzImage 2111 will decompress itself to above physical address and run from there. 2112 Otherwise, bzImage will run from the address where it has been loaded 2113 by the boot loader. The only exception is if it is loaded below the 2114 above physical address, in which case it will relocate itself there. 2115 2116 In normal kdump cases one does not have to set/change this option 2117 as now bzImage can be compiled as a completely relocatable image 2118 (CONFIG_RELOCATABLE=y) and be used to load and run from a different 2119 address. This option is mainly useful for the folks who don't want 2120 to use a bzImage for capturing the crash dump and want to use a 2121 vmlinux instead. vmlinux is not relocatable hence a kernel needs 2122 to be specifically compiled to run from a specific memory area 2123 (normally a reserved region) and this option comes handy. 2124 2125 So if you are using bzImage for capturing the crash dump, 2126 leave the value here unchanged to 0x1000000 and set 2127 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux 2128 for capturing the crash dump change this value to start of 2129 the reserved region. In other words, it can be set based on 2130 the "X" value as specified in the "crashkernel=YM@XM" 2131 command line boot parameter passed to the panic-ed 2132 kernel. Please take a look at Documentation/admin-guide/kdump/kdump.rst 2133 for more details about crash dumps. 2134 2135 Usage of bzImage for capturing the crash dump is recommended as 2136 one does not have to build two kernels. Same kernel can be used 2137 as production kernel and capture kernel. Above option should have 2138 gone away after relocatable bzImage support is introduced. But it 2139 is present because there are users out there who continue to use 2140 vmlinux for dump capture. This option should go away down the 2141 line. 2142 2143 Don't change this unless you know what you are doing. 2144 2145config RELOCATABLE 2146 bool "Build a relocatable kernel" 2147 default y 2148 help 2149 This builds a kernel image that retains relocation information 2150 so it can be loaded someplace besides the default 1MB. 2151 The relocations tend to make the kernel binary about 10% larger, 2152 but are discarded at runtime. 2153 2154 One use is for the kexec on panic case where the recovery kernel 2155 must live at a different physical address than the primary 2156 kernel. 2157 2158 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address 2159 it has been loaded at and the compile time physical address 2160 (CONFIG_PHYSICAL_START) is used as the minimum location. 2161 2162config RANDOMIZE_BASE 2163 bool "Randomize the address of the kernel image (KASLR)" 2164 depends on RELOCATABLE 2165 default y 2166 help 2167 In support of Kernel Address Space Layout Randomization (KASLR), 2168 this randomizes the physical address at which the kernel image 2169 is decompressed and the virtual address where the kernel 2170 image is mapped, as a security feature that deters exploit 2171 attempts relying on knowledge of the location of kernel 2172 code internals. 2173 2174 On 64-bit, the kernel physical and virtual addresses are 2175 randomized separately. The physical address will be anywhere 2176 between 16MB and the top of physical memory (up to 64TB). The 2177 virtual address will be randomized from 16MB up to 1GB (9 bits 2178 of entropy). Note that this also reduces the memory space 2179 available to kernel modules from 1.5GB to 1GB. 2180 2181 On 32-bit, the kernel physical and virtual addresses are 2182 randomized together. They will be randomized from 16MB up to 2183 512MB (8 bits of entropy). 2184 2185 Entropy is generated using the RDRAND instruction if it is 2186 supported. If RDTSC is supported, its value is mixed into 2187 the entropy pool as well. If neither RDRAND nor RDTSC are 2188 supported, then entropy is read from the i8254 timer. The 2189 usable entropy is limited by the kernel being built using 2190 2GB addressing, and that PHYSICAL_ALIGN must be at a 2191 minimum of 2MB. As a result, only 10 bits of entropy are 2192 theoretically possible, but the implementations are further 2193 limited due to memory layouts. 2194 2195 If unsure, say Y. 2196 2197# Relocation on x86 needs some additional build support 2198config X86_NEED_RELOCS 2199 def_bool y 2200 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE) 2201 2202config PHYSICAL_ALIGN 2203 hex "Alignment value to which kernel should be aligned" 2204 default "0x200000" 2205 range 0x2000 0x1000000 if X86_32 2206 range 0x200000 0x1000000 if X86_64 2207 help 2208 This value puts the alignment restrictions on physical address 2209 where kernel is loaded and run from. Kernel is compiled for an 2210 address which meets above alignment restriction. 2211 2212 If bootloader loads the kernel at a non-aligned address and 2213 CONFIG_RELOCATABLE is set, kernel will move itself to nearest 2214 address aligned to above value and run from there. 2215 2216 If bootloader loads the kernel at a non-aligned address and 2217 CONFIG_RELOCATABLE is not set, kernel will ignore the run time 2218 load address and decompress itself to the address it has been 2219 compiled for and run from there. The address for which kernel is 2220 compiled already meets above alignment restrictions. Hence the 2221 end result is that kernel runs from a physical address meeting 2222 above alignment restrictions. 2223 2224 On 32-bit this value must be a multiple of 0x2000. On 64-bit 2225 this value must be a multiple of 0x200000. 2226 2227 Don't change this unless you know what you are doing. 2228 2229config DYNAMIC_MEMORY_LAYOUT 2230 bool 2231 help 2232 This option makes base addresses of vmalloc and vmemmap as well as 2233 __PAGE_OFFSET movable during boot. 2234 2235config RANDOMIZE_MEMORY 2236 bool "Randomize the kernel memory sections" 2237 depends on X86_64 2238 depends on RANDOMIZE_BASE 2239 select DYNAMIC_MEMORY_LAYOUT 2240 default RANDOMIZE_BASE 2241 help 2242 Randomizes the base virtual address of kernel memory sections 2243 (physical memory mapping, vmalloc & vmemmap). This security feature 2244 makes exploits relying on predictable memory locations less reliable. 2245 2246 The order of allocations remains unchanged. Entropy is generated in 2247 the same way as RANDOMIZE_BASE. Current implementation in the optimal 2248 configuration have in average 30,000 different possible virtual 2249 addresses for each memory section. 2250 2251 If unsure, say Y. 2252 2253config RANDOMIZE_MEMORY_PHYSICAL_PADDING 2254 hex "Physical memory mapping padding" if EXPERT 2255 depends on RANDOMIZE_MEMORY 2256 default "0xa" if MEMORY_HOTPLUG 2257 default "0x0" 2258 range 0x1 0x40 if MEMORY_HOTPLUG 2259 range 0x0 0x40 2260 help 2261 Define the padding in terabytes added to the existing physical 2262 memory size during kernel memory randomization. It is useful 2263 for memory hotplug support but reduces the entropy available for 2264 address randomization. 2265 2266 If unsure, leave at the default value. 2267 2268config ADDRESS_MASKING 2269 bool "Linear Address Masking support" 2270 depends on X86_64 2271 depends on COMPILE_TEST || !CPU_MITIGATIONS # wait for LASS 2272 help 2273 Linear Address Masking (LAM) modifies the checking that is applied 2274 to 64-bit linear addresses, allowing software to use of the 2275 untranslated address bits for metadata. 2276 2277 The capability can be used for efficient address sanitizers (ASAN) 2278 implementation and for optimizations in JITs. 2279 2280config HOTPLUG_CPU 2281 def_bool y 2282 depends on SMP 2283 2284config COMPAT_VDSO 2285 def_bool n 2286 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)" 2287 depends on COMPAT_32 2288 help 2289 Certain buggy versions of glibc will crash if they are 2290 presented with a 32-bit vDSO that is not mapped at the address 2291 indicated in its segment table. 2292 2293 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a 2294 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and 2295 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is 2296 the only released version with the bug, but OpenSUSE 9 2297 contains a buggy "glibc 2.3.2". 2298 2299 The symptom of the bug is that everything crashes on startup, saying: 2300 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed! 2301 2302 Saying Y here changes the default value of the vdso32 boot 2303 option from 1 to 0, which turns off the 32-bit vDSO entirely. 2304 This works around the glibc bug but hurts performance. 2305 2306 If unsure, say N: if you are compiling your own kernel, you 2307 are unlikely to be using a buggy version of glibc. 2308 2309choice 2310 prompt "vsyscall table for legacy applications" 2311 depends on X86_64 2312 default LEGACY_VSYSCALL_XONLY 2313 help 2314 Legacy user code that does not know how to find the vDSO expects 2315 to be able to issue three syscalls by calling fixed addresses in 2316 kernel space. Since this location is not randomized with ASLR, 2317 it can be used to assist security vulnerability exploitation. 2318 2319 This setting can be changed at boot time via the kernel command 2320 line parameter vsyscall=[emulate|xonly|none]. Emulate mode 2321 is deprecated and can only be enabled using the kernel command 2322 line. 2323 2324 On a system with recent enough glibc (2.14 or newer) and no 2325 static binaries, you can say None without a performance penalty 2326 to improve security. 2327 2328 If unsure, select "Emulate execution only". 2329 2330 config LEGACY_VSYSCALL_XONLY 2331 bool "Emulate execution only" 2332 help 2333 The kernel traps and emulates calls into the fixed vsyscall 2334 address mapping and does not allow reads. This 2335 configuration is recommended when userspace might use the 2336 legacy vsyscall area but support for legacy binary 2337 instrumentation of legacy code is not needed. It mitigates 2338 certain uses of the vsyscall area as an ASLR-bypassing 2339 buffer. 2340 2341 config LEGACY_VSYSCALL_NONE 2342 bool "None" 2343 help 2344 There will be no vsyscall mapping at all. This will 2345 eliminate any risk of ASLR bypass due to the vsyscall 2346 fixed address mapping. Attempts to use the vsyscalls 2347 will be reported to dmesg, so that either old or 2348 malicious userspace programs can be identified. 2349 2350endchoice 2351 2352config CMDLINE_BOOL 2353 bool "Built-in kernel command line" 2354 help 2355 Allow for specifying boot arguments to the kernel at 2356 build time. On some systems (e.g. embedded ones), it is 2357 necessary or convenient to provide some or all of the 2358 kernel boot arguments with the kernel itself (that is, 2359 to not rely on the boot loader to provide them.) 2360 2361 To compile command line arguments into the kernel, 2362 set this option to 'Y', then fill in the 2363 boot arguments in CONFIG_CMDLINE. 2364 2365 Systems with fully functional boot loaders (i.e. non-embedded) 2366 should leave this option set to 'N'. 2367 2368config CMDLINE 2369 string "Built-in kernel command string" 2370 depends on CMDLINE_BOOL 2371 default "" 2372 help 2373 Enter arguments here that should be compiled into the kernel 2374 image and used at boot time. If the boot loader provides a 2375 command line at boot time, it is appended to this string to 2376 form the full kernel command line, when the system boots. 2377 2378 However, you can use the CONFIG_CMDLINE_OVERRIDE option to 2379 change this behavior. 2380 2381 In most cases, the command line (whether built-in or provided 2382 by the boot loader) should specify the device for the root 2383 file system. 2384 2385config CMDLINE_OVERRIDE 2386 bool "Built-in command line overrides boot loader arguments" 2387 depends on CMDLINE_BOOL && CMDLINE != "" 2388 help 2389 Set this option to 'Y' to have the kernel ignore the boot loader 2390 command line, and use ONLY the built-in command line. 2391 2392 This is used to work around broken boot loaders. This should 2393 be set to 'N' under normal conditions. 2394 2395config MODIFY_LDT_SYSCALL 2396 bool "Enable the LDT (local descriptor table)" if EXPERT 2397 default y 2398 help 2399 Linux can allow user programs to install a per-process x86 2400 Local Descriptor Table (LDT) using the modify_ldt(2) system 2401 call. This is required to run 16-bit or segmented code such as 2402 DOSEMU or some Wine programs. It is also used by some very old 2403 threading libraries. 2404 2405 Enabling this feature adds a small amount of overhead to 2406 context switches and increases the low-level kernel attack 2407 surface. Disabling it removes the modify_ldt(2) system call. 2408 2409 Saying 'N' here may make sense for embedded or server kernels. 2410 2411config STRICT_SIGALTSTACK_SIZE 2412 bool "Enforce strict size checking for sigaltstack" 2413 depends on DYNAMIC_SIGFRAME 2414 help 2415 For historical reasons MINSIGSTKSZ is a constant which became 2416 already too small with AVX512 support. Add a mechanism to 2417 enforce strict checking of the sigaltstack size against the 2418 real size of the FPU frame. This option enables the check 2419 by default. It can also be controlled via the kernel command 2420 line option 'strict_sas_size' independent of this config 2421 switch. Enabling it might break existing applications which 2422 allocate a too small sigaltstack but 'work' because they 2423 never get a signal delivered. 2424 2425 Say 'N' unless you want to really enforce this check. 2426 2427config CFI_AUTO_DEFAULT 2428 bool "Attempt to use FineIBT by default at boot time" 2429 depends on FINEIBT 2430 default y 2431 help 2432 Attempt to use FineIBT by default at boot time. If enabled, 2433 this is the same as booting with "cfi=auto". If disabled, 2434 this is the same as booting with "cfi=kcfi". 2435 2436source "kernel/livepatch/Kconfig" 2437 2438config X86_BUS_LOCK_DETECT 2439 bool "Split Lock Detect and Bus Lock Detect support" 2440 depends on CPU_SUP_INTEL || CPU_SUP_AMD 2441 default y 2442 help 2443 Enable Split Lock Detect and Bus Lock Detect functionalities. 2444 See <file:Documentation/arch/x86/buslock.rst> for more information. 2445 2446endmenu 2447 2448config CC_HAS_NAMED_AS 2449 def_bool $(success,echo 'int __seg_fs fs; int __seg_gs gs;' | $(CC) -x c - -S -o /dev/null) 2450 depends on CC_IS_GCC 2451 2452config CC_HAS_NAMED_AS_FIXED_SANITIZERS 2453 def_bool CC_IS_GCC && GCC_VERSION >= 130300 2454 2455config USE_X86_SEG_SUPPORT 2456 def_bool y 2457 depends on CC_HAS_NAMED_AS 2458 # 2459 # -fsanitize=kernel-address (KASAN) and -fsanitize=thread 2460 # (KCSAN) are incompatible with named address spaces with 2461 # GCC < 13.3 - see GCC PR sanitizer/111736. 2462 # 2463 depends on !(KASAN || KCSAN) || CC_HAS_NAMED_AS_FIXED_SANITIZERS 2464 2465config CC_HAS_SLS 2466 def_bool $(cc-option,-mharden-sls=all) 2467 2468config CC_HAS_RETURN_THUNK 2469 def_bool $(cc-option,-mfunction-return=thunk-extern) 2470 2471config CC_HAS_ENTRY_PADDING 2472 def_bool $(cc-option,-fpatchable-function-entry=16,16) 2473 2474config FUNCTION_PADDING_CFI 2475 int 2476 default 59 if FUNCTION_ALIGNMENT_64B 2477 default 27 if FUNCTION_ALIGNMENT_32B 2478 default 11 if FUNCTION_ALIGNMENT_16B 2479 default 3 if FUNCTION_ALIGNMENT_8B 2480 default 0 2481 2482# Basically: FUNCTION_ALIGNMENT - 5*CFI_CLANG 2483# except Kconfig can't do arithmetic :/ 2484config FUNCTION_PADDING_BYTES 2485 int 2486 default FUNCTION_PADDING_CFI if CFI_CLANG 2487 default FUNCTION_ALIGNMENT 2488 2489config CALL_PADDING 2490 def_bool n 2491 depends on CC_HAS_ENTRY_PADDING && OBJTOOL 2492 select FUNCTION_ALIGNMENT_16B 2493 2494config FINEIBT 2495 def_bool y 2496 depends on X86_KERNEL_IBT && CFI_CLANG && MITIGATION_RETPOLINE 2497 select CALL_PADDING 2498 2499config HAVE_CALL_THUNKS 2500 def_bool y 2501 depends on CC_HAS_ENTRY_PADDING && MITIGATION_RETHUNK && OBJTOOL 2502 2503config CALL_THUNKS 2504 def_bool n 2505 select CALL_PADDING 2506 2507config PREFIX_SYMBOLS 2508 def_bool y 2509 depends on CALL_PADDING && !CFI_CLANG 2510 2511menuconfig CPU_MITIGATIONS 2512 bool "Mitigations for CPU vulnerabilities" 2513 default y 2514 help 2515 Say Y here to enable options which enable mitigations for hardware 2516 vulnerabilities (usually related to speculative execution). 2517 Mitigations can be disabled or restricted to SMT systems at runtime 2518 via the "mitigations" kernel parameter. 2519 2520 If you say N, all mitigations will be disabled. This CANNOT be 2521 overridden at runtime. 2522 2523 Say 'Y', unless you really know what you are doing. 2524 2525if CPU_MITIGATIONS 2526 2527config MITIGATION_PAGE_TABLE_ISOLATION 2528 bool "Remove the kernel mapping in user mode" 2529 default y 2530 depends on (X86_64 || X86_PAE) 2531 help 2532 This feature reduces the number of hardware side channels by 2533 ensuring that the majority of kernel addresses are not mapped 2534 into userspace. 2535 2536 See Documentation/arch/x86/pti.rst for more details. 2537 2538config MITIGATION_RETPOLINE 2539 bool "Avoid speculative indirect branches in kernel" 2540 select OBJTOOL if HAVE_OBJTOOL 2541 default y 2542 help 2543 Compile kernel with the retpoline compiler options to guard against 2544 kernel-to-user data leaks by avoiding speculative indirect 2545 branches. Requires a compiler with -mindirect-branch=thunk-extern 2546 support for full protection. The kernel may run slower. 2547 2548config MITIGATION_RETHUNK 2549 bool "Enable return-thunks" 2550 depends on MITIGATION_RETPOLINE && CC_HAS_RETURN_THUNK 2551 select OBJTOOL if HAVE_OBJTOOL 2552 default y if X86_64 2553 help 2554 Compile the kernel with the return-thunks compiler option to guard 2555 against kernel-to-user data leaks by avoiding return speculation. 2556 Requires a compiler with -mfunction-return=thunk-extern 2557 support for full protection. The kernel may run slower. 2558 2559config MITIGATION_UNRET_ENTRY 2560 bool "Enable UNRET on kernel entry" 2561 depends on CPU_SUP_AMD && MITIGATION_RETHUNK && X86_64 2562 default y 2563 help 2564 Compile the kernel with support for the retbleed=unret mitigation. 2565 2566config MITIGATION_CALL_DEPTH_TRACKING 2567 bool "Mitigate RSB underflow with call depth tracking" 2568 depends on CPU_SUP_INTEL && HAVE_CALL_THUNKS 2569 select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE 2570 select CALL_THUNKS 2571 default y 2572 help 2573 Compile the kernel with call depth tracking to mitigate the Intel 2574 SKL Return-Stack-Buffer (RSB) underflow issue. The mitigation is off 2575 by default and needs to be enabled on the kernel command line via the 2576 retbleed=stuff option. For non-affected systems the overhead of this 2577 option is marginal as the call depth tracking is using run-time 2578 generated call thunks in a compiler generated padding area and call 2579 patching. This increases text size by ~5%. For non affected systems 2580 this space is unused. On affected SKL systems this results in a 2581 significant performance gain over the IBRS mitigation. 2582 2583config CALL_THUNKS_DEBUG 2584 bool "Enable call thunks and call depth tracking debugging" 2585 depends on MITIGATION_CALL_DEPTH_TRACKING 2586 select FUNCTION_ALIGNMENT_32B 2587 default n 2588 help 2589 Enable call/ret counters for imbalance detection and build in 2590 a noisy dmesg about callthunks generation and call patching for 2591 trouble shooting. The debug prints need to be enabled on the 2592 kernel command line with 'debug-callthunks'. 2593 Only enable this when you are debugging call thunks as this 2594 creates a noticeable runtime overhead. If unsure say N. 2595 2596config MITIGATION_IBPB_ENTRY 2597 bool "Enable IBPB on kernel entry" 2598 depends on CPU_SUP_AMD && X86_64 2599 default y 2600 help 2601 Compile the kernel with support for the retbleed=ibpb mitigation. 2602 2603config MITIGATION_IBRS_ENTRY 2604 bool "Enable IBRS on kernel entry" 2605 depends on CPU_SUP_INTEL && X86_64 2606 default y 2607 help 2608 Compile the kernel with support for the spectre_v2=ibrs mitigation. 2609 This mitigates both spectre_v2 and retbleed at great cost to 2610 performance. 2611 2612config MITIGATION_SRSO 2613 bool "Mitigate speculative RAS overflow on AMD" 2614 depends on CPU_SUP_AMD && X86_64 && MITIGATION_RETHUNK 2615 default y 2616 help 2617 Enable the SRSO mitigation needed on AMD Zen1-4 machines. 2618 2619config MITIGATION_SLS 2620 bool "Mitigate Straight-Line-Speculation" 2621 depends on CC_HAS_SLS && X86_64 2622 select OBJTOOL if HAVE_OBJTOOL 2623 default n 2624 help 2625 Compile the kernel with straight-line-speculation options to guard 2626 against straight line speculation. The kernel image might be slightly 2627 larger. 2628 2629config MITIGATION_GDS 2630 bool "Mitigate Gather Data Sampling" 2631 depends on CPU_SUP_INTEL 2632 default y 2633 help 2634 Enable mitigation for Gather Data Sampling (GDS). GDS is a hardware 2635 vulnerability which allows unprivileged speculative access to data 2636 which was previously stored in vector registers. The attacker uses gather 2637 instructions to infer the stale vector register data. 2638 2639config MITIGATION_RFDS 2640 bool "RFDS Mitigation" 2641 depends on CPU_SUP_INTEL 2642 default y 2643 help 2644 Enable mitigation for Register File Data Sampling (RFDS) by default. 2645 RFDS is a hardware vulnerability which affects Intel Atom CPUs. It 2646 allows unprivileged speculative access to stale data previously 2647 stored in floating point, vector and integer registers. 2648 See also <file:Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst> 2649 2650config MITIGATION_SPECTRE_BHI 2651 bool "Mitigate Spectre-BHB (Branch History Injection)" 2652 depends on CPU_SUP_INTEL 2653 default y 2654 help 2655 Enable BHI mitigations. BHI attacks are a form of Spectre V2 attacks 2656 where the branch history buffer is poisoned to speculatively steer 2657 indirect branches. 2658 See <file:Documentation/admin-guide/hw-vuln/spectre.rst> 2659 2660config MITIGATION_MDS 2661 bool "Mitigate Microarchitectural Data Sampling (MDS) hardware bug" 2662 depends on CPU_SUP_INTEL 2663 default y 2664 help 2665 Enable mitigation for Microarchitectural Data Sampling (MDS). MDS is 2666 a hardware vulnerability which allows unprivileged speculative access 2667 to data which is available in various CPU internal buffers. 2668 See also <file:Documentation/admin-guide/hw-vuln/mds.rst> 2669 2670config MITIGATION_TAA 2671 bool "Mitigate TSX Asynchronous Abort (TAA) hardware bug" 2672 depends on CPU_SUP_INTEL 2673 default y 2674 help 2675 Enable mitigation for TSX Asynchronous Abort (TAA). TAA is a hardware 2676 vulnerability that allows unprivileged speculative access to data 2677 which is available in various CPU internal buffers by using 2678 asynchronous aborts within an Intel TSX transactional region. 2679 See also <file:Documentation/admin-guide/hw-vuln/tsx_async_abort.rst> 2680 2681config MITIGATION_MMIO_STALE_DATA 2682 bool "Mitigate MMIO Stale Data hardware bug" 2683 depends on CPU_SUP_INTEL 2684 default y 2685 help 2686 Enable mitigation for MMIO Stale Data hardware bugs. Processor MMIO 2687 Stale Data Vulnerabilities are a class of memory-mapped I/O (MMIO) 2688 vulnerabilities that can expose data. The vulnerabilities require the 2689 attacker to have access to MMIO. 2690 See also 2691 <file:Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst> 2692 2693config MITIGATION_L1TF 2694 bool "Mitigate L1 Terminal Fault (L1TF) hardware bug" 2695 depends on CPU_SUP_INTEL 2696 default y 2697 help 2698 Mitigate L1 Terminal Fault (L1TF) hardware bug. L1 Terminal Fault is a 2699 hardware vulnerability which allows unprivileged speculative access to data 2700 available in the Level 1 Data Cache. 2701 See <file:Documentation/admin-guide/hw-vuln/l1tf.rst 2702 2703config MITIGATION_RETBLEED 2704 bool "Mitigate RETBleed hardware bug" 2705 depends on (CPU_SUP_INTEL && MITIGATION_SPECTRE_V2) || MITIGATION_UNRET_ENTRY || MITIGATION_IBPB_ENTRY 2706 default y 2707 help 2708 Enable mitigation for RETBleed (Arbitrary Speculative Code Execution 2709 with Return Instructions) vulnerability. RETBleed is a speculative 2710 execution attack which takes advantage of microarchitectural behavior 2711 in many modern microprocessors, similar to Spectre v2. An 2712 unprivileged attacker can use these flaws to bypass conventional 2713 memory security restrictions to gain read access to privileged memory 2714 that would otherwise be inaccessible. 2715 2716config MITIGATION_SPECTRE_V1 2717 bool "Mitigate SPECTRE V1 hardware bug" 2718 default y 2719 help 2720 Enable mitigation for Spectre V1 (Bounds Check Bypass). Spectre V1 is a 2721 class of side channel attacks that takes advantage of speculative 2722 execution that bypasses conditional branch instructions used for 2723 memory access bounds check. 2724 See also <file:Documentation/admin-guide/hw-vuln/spectre.rst> 2725 2726config MITIGATION_SPECTRE_V2 2727 bool "Mitigate SPECTRE V2 hardware bug" 2728 default y 2729 help 2730 Enable mitigation for Spectre V2 (Branch Target Injection). Spectre 2731 V2 is a class of side channel attacks that takes advantage of 2732 indirect branch predictors inside the processor. In Spectre variant 2 2733 attacks, the attacker can steer speculative indirect branches in the 2734 victim to gadget code by poisoning the branch target buffer of a CPU 2735 used for predicting indirect branch addresses. 2736 See also <file:Documentation/admin-guide/hw-vuln/spectre.rst> 2737 2738config MITIGATION_SRBDS 2739 bool "Mitigate Special Register Buffer Data Sampling (SRBDS) hardware bug" 2740 depends on CPU_SUP_INTEL 2741 default y 2742 help 2743 Enable mitigation for Special Register Buffer Data Sampling (SRBDS). 2744 SRBDS is a hardware vulnerability that allows Microarchitectural Data 2745 Sampling (MDS) techniques to infer values returned from special 2746 register accesses. An unprivileged user can extract values returned 2747 from RDRAND and RDSEED executed on another core or sibling thread 2748 using MDS techniques. 2749 See also 2750 <file:Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst> 2751 2752config MITIGATION_SSB 2753 bool "Mitigate Speculative Store Bypass (SSB) hardware bug" 2754 default y 2755 help 2756 Enable mitigation for Speculative Store Bypass (SSB). SSB is a 2757 hardware security vulnerability and its exploitation takes advantage 2758 of speculative execution in a similar way to the Meltdown and Spectre 2759 security vulnerabilities. 2760 2761endif 2762 2763config ARCH_HAS_ADD_PAGES 2764 def_bool y 2765 depends on ARCH_ENABLE_MEMORY_HOTPLUG 2766 2767menu "Power management and ACPI options" 2768 2769config ARCH_HIBERNATION_HEADER 2770 def_bool y 2771 depends on HIBERNATION 2772 2773source "kernel/power/Kconfig" 2774 2775source "drivers/acpi/Kconfig" 2776 2777config X86_APM_BOOT 2778 def_bool y 2779 depends on APM 2780 2781menuconfig APM 2782 tristate "APM (Advanced Power Management) BIOS support" 2783 depends on X86_32 && PM_SLEEP 2784 help 2785 APM is a BIOS specification for saving power using several different 2786 techniques. This is mostly useful for battery powered laptops with 2787 APM compliant BIOSes. If you say Y here, the system time will be 2788 reset after a RESUME operation, the /proc/apm device will provide 2789 battery status information, and user-space programs will receive 2790 notification of APM "events" (e.g. battery status change). 2791 2792 If you select "Y" here, you can disable actual use of the APM 2793 BIOS by passing the "apm=off" option to the kernel at boot time. 2794 2795 Note that the APM support is almost completely disabled for 2796 machines with more than one CPU. 2797 2798 In order to use APM, you will need supporting software. For location 2799 and more information, read <file:Documentation/power/apm-acpi.rst> 2800 and the Battery Powered Linux mini-HOWTO, available from 2801 <http://www.tldp.org/docs.html#howto>. 2802 2803 This driver does not spin down disk drives (see the hdparm(8) 2804 manpage ("man 8 hdparm") for that), and it doesn't turn off 2805 VESA-compliant "green" monitors. 2806 2807 This driver does not support the TI 4000M TravelMate and the ACER 2808 486/DX4/75 because they don't have compliant BIOSes. Many "green" 2809 desktop machines also don't have compliant BIOSes, and this driver 2810 may cause those machines to panic during the boot phase. 2811 2812 Generally, if you don't have a battery in your machine, there isn't 2813 much point in using this driver and you should say N. If you get 2814 random kernel OOPSes or reboots that don't seem to be related to 2815 anything, try disabling/enabling this option (or disabling/enabling 2816 APM in your BIOS). 2817 2818 Some other things you should try when experiencing seemingly random, 2819 "weird" problems: 2820 2821 1) make sure that you have enough swap space and that it is 2822 enabled. 2823 2) pass the "idle=poll" option to the kernel 2824 3) switch on floating point emulation in the kernel and pass 2825 the "no387" option to the kernel 2826 4) pass the "floppy=nodma" option to the kernel 2827 5) pass the "mem=4M" option to the kernel (thereby disabling 2828 all but the first 4 MB of RAM) 2829 6) make sure that the CPU is not over clocked. 2830 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/> 2831 8) disable the cache from your BIOS settings 2832 9) install a fan for the video card or exchange video RAM 2833 10) install a better fan for the CPU 2834 11) exchange RAM chips 2835 12) exchange the motherboard. 2836 2837 To compile this driver as a module, choose M here: the 2838 module will be called apm. 2839 2840if APM 2841 2842config APM_IGNORE_USER_SUSPEND 2843 bool "Ignore USER SUSPEND" 2844 help 2845 This option will ignore USER SUSPEND requests. On machines with a 2846 compliant APM BIOS, you want to say N. However, on the NEC Versa M 2847 series notebooks, it is necessary to say Y because of a BIOS bug. 2848 2849config APM_DO_ENABLE 2850 bool "Enable PM at boot time" 2851 help 2852 Enable APM features at boot time. From page 36 of the APM BIOS 2853 specification: "When disabled, the APM BIOS does not automatically 2854 power manage devices, enter the Standby State, enter the Suspend 2855 State, or take power saving steps in response to CPU Idle calls." 2856 This driver will make CPU Idle calls when Linux is idle (unless this 2857 feature is turned off -- see "Do CPU IDLE calls", below). This 2858 should always save battery power, but more complicated APM features 2859 will be dependent on your BIOS implementation. You may need to turn 2860 this option off if your computer hangs at boot time when using APM 2861 support, or if it beeps continuously instead of suspending. Turn 2862 this off if you have a NEC UltraLite Versa 33/C or a Toshiba 2863 T400CDT. This is off by default since most machines do fine without 2864 this feature. 2865 2866config APM_CPU_IDLE 2867 depends on CPU_IDLE 2868 bool "Make CPU Idle calls when idle" 2869 help 2870 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop. 2871 On some machines, this can activate improved power savings, such as 2872 a slowed CPU clock rate, when the machine is idle. These idle calls 2873 are made after the idle loop has run for some length of time (e.g., 2874 333 mS). On some machines, this will cause a hang at boot time or 2875 whenever the CPU becomes idle. (On machines with more than one CPU, 2876 this option does nothing.) 2877 2878config APM_DISPLAY_BLANK 2879 bool "Enable console blanking using APM" 2880 help 2881 Enable console blanking using the APM. Some laptops can use this to 2882 turn off the LCD backlight when the screen blanker of the Linux 2883 virtual console blanks the screen. Note that this is only used by 2884 the virtual console screen blanker, and won't turn off the backlight 2885 when using the X Window system. This also doesn't have anything to 2886 do with your VESA-compliant power-saving monitor. Further, this 2887 option doesn't work for all laptops -- it might not turn off your 2888 backlight at all, or it might print a lot of errors to the console, 2889 especially if you are using gpm. 2890 2891config APM_ALLOW_INTS 2892 bool "Allow interrupts during APM BIOS calls" 2893 help 2894 Normally we disable external interrupts while we are making calls to 2895 the APM BIOS as a measure to lessen the effects of a badly behaving 2896 BIOS implementation. The BIOS should reenable interrupts if it 2897 needs to. Unfortunately, some BIOSes do not -- especially those in 2898 many of the newer IBM Thinkpads. If you experience hangs when you 2899 suspend, try setting this to Y. Otherwise, say N. 2900 2901endif # APM 2902 2903source "drivers/cpufreq/Kconfig" 2904 2905source "drivers/cpuidle/Kconfig" 2906 2907source "drivers/idle/Kconfig" 2908 2909endmenu 2910 2911menu "Bus options (PCI etc.)" 2912 2913choice 2914 prompt "PCI access mode" 2915 depends on X86_32 && PCI 2916 default PCI_GOANY 2917 help 2918 On PCI systems, the BIOS can be used to detect the PCI devices and 2919 determine their configuration. However, some old PCI motherboards 2920 have BIOS bugs and may crash if this is done. Also, some embedded 2921 PCI-based systems don't have any BIOS at all. Linux can also try to 2922 detect the PCI hardware directly without using the BIOS. 2923 2924 With this option, you can specify how Linux should detect the 2925 PCI devices. If you choose "BIOS", the BIOS will be used, 2926 if you choose "Direct", the BIOS won't be used, and if you 2927 choose "MMConfig", then PCI Express MMCONFIG will be used. 2928 If you choose "Any", the kernel will try MMCONFIG, then the 2929 direct access method and falls back to the BIOS if that doesn't 2930 work. If unsure, go with the default, which is "Any". 2931 2932config PCI_GOBIOS 2933 bool "BIOS" 2934 2935config PCI_GOMMCONFIG 2936 bool "MMConfig" 2937 2938config PCI_GODIRECT 2939 bool "Direct" 2940 2941config PCI_GOOLPC 2942 bool "OLPC XO-1" 2943 depends on OLPC 2944 2945config PCI_GOANY 2946 bool "Any" 2947 2948endchoice 2949 2950config PCI_BIOS 2951 def_bool y 2952 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY) 2953 2954# x86-64 doesn't support PCI BIOS access from long mode so always go direct. 2955config PCI_DIRECT 2956 def_bool y 2957 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG)) 2958 2959config PCI_MMCONFIG 2960 bool "Support mmconfig PCI config space access" if X86_64 2961 default y 2962 depends on PCI && (ACPI || JAILHOUSE_GUEST) 2963 depends on X86_64 || (PCI_GOANY || PCI_GOMMCONFIG) 2964 2965config PCI_OLPC 2966 def_bool y 2967 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY) 2968 2969config PCI_XEN 2970 def_bool y 2971 depends on PCI && XEN 2972 2973config MMCONF_FAM10H 2974 def_bool y 2975 depends on X86_64 && PCI_MMCONFIG && ACPI 2976 2977config PCI_CNB20LE_QUIRK 2978 bool "Read CNB20LE Host Bridge Windows" if EXPERT 2979 depends on PCI 2980 help 2981 Read the PCI windows out of the CNB20LE host bridge. This allows 2982 PCI hotplug to work on systems with the CNB20LE chipset which do 2983 not have ACPI. 2984 2985 There's no public spec for this chipset, and this functionality 2986 is known to be incomplete. 2987 2988 You should say N unless you know you need this. 2989 2990config ISA_BUS 2991 bool "ISA bus support on modern systems" if EXPERT 2992 help 2993 Expose ISA bus device drivers and options available for selection and 2994 configuration. Enable this option if your target machine has an ISA 2995 bus. ISA is an older system, displaced by PCI and newer bus 2996 architectures -- if your target machine is modern, it probably does 2997 not have an ISA bus. 2998 2999 If unsure, say N. 3000 3001# x86_64 have no ISA slots, but can have ISA-style DMA. 3002config ISA_DMA_API 3003 bool "ISA-style DMA support" if (X86_64 && EXPERT) 3004 default y 3005 help 3006 Enables ISA-style DMA support for devices requiring such controllers. 3007 If unsure, say Y. 3008 3009if X86_32 3010 3011config ISA 3012 bool "ISA support" 3013 help 3014 Find out whether you have ISA slots on your motherboard. ISA is the 3015 name of a bus system, i.e. the way the CPU talks to the other stuff 3016 inside your box. Other bus systems are PCI, EISA, MicroChannel 3017 (MCA) or VESA. ISA is an older system, now being displaced by PCI; 3018 newer boards don't support it. If you have ISA, say Y, otherwise N. 3019 3020config SCx200 3021 tristate "NatSemi SCx200 support" 3022 help 3023 This provides basic support for National Semiconductor's 3024 (now AMD's) Geode processors. The driver probes for the 3025 PCI-IDs of several on-chip devices, so its a good dependency 3026 for other scx200_* drivers. 3027 3028 If compiled as a module, the driver is named scx200. 3029 3030config SCx200HR_TIMER 3031 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support" 3032 depends on SCx200 3033 default y 3034 help 3035 This driver provides a clocksource built upon the on-chip 3036 27MHz high-resolution timer. Its also a workaround for 3037 NSC Geode SC-1100's buggy TSC, which loses time when the 3038 processor goes idle (as is done by the scheduler). The 3039 other workaround is idle=poll boot option. 3040 3041config OLPC 3042 bool "One Laptop Per Child support" 3043 depends on !X86_PAE 3044 select GPIOLIB 3045 select OF 3046 select OF_PROMTREE 3047 select IRQ_DOMAIN 3048 select OLPC_EC 3049 help 3050 Add support for detecting the unique features of the OLPC 3051 XO hardware. 3052 3053config OLPC_XO1_PM 3054 bool "OLPC XO-1 Power Management" 3055 depends on OLPC && MFD_CS5535=y && PM_SLEEP 3056 help 3057 Add support for poweroff and suspend of the OLPC XO-1 laptop. 3058 3059config OLPC_XO1_RTC 3060 bool "OLPC XO-1 Real Time Clock" 3061 depends on OLPC_XO1_PM && RTC_DRV_CMOS 3062 help 3063 Add support for the XO-1 real time clock, which can be used as a 3064 programmable wakeup source. 3065 3066config OLPC_XO1_SCI 3067 bool "OLPC XO-1 SCI extras" 3068 depends on OLPC && OLPC_XO1_PM && GPIO_CS5535=y 3069 depends on INPUT=y 3070 select POWER_SUPPLY 3071 help 3072 Add support for SCI-based features of the OLPC XO-1 laptop: 3073 - EC-driven system wakeups 3074 - Power button 3075 - Ebook switch 3076 - Lid switch 3077 - AC adapter status updates 3078 - Battery status updates 3079 3080config OLPC_XO15_SCI 3081 bool "OLPC XO-1.5 SCI extras" 3082 depends on OLPC && ACPI 3083 select POWER_SUPPLY 3084 help 3085 Add support for SCI-based features of the OLPC XO-1.5 laptop: 3086 - EC-driven system wakeups 3087 - AC adapter status updates 3088 - Battery status updates 3089 3090config GEODE_COMMON 3091 bool 3092 3093config ALIX 3094 bool "PCEngines ALIX System Support (LED setup)" 3095 select GPIOLIB 3096 select GEODE_COMMON 3097 help 3098 This option enables system support for the PCEngines ALIX. 3099 At present this just sets up LEDs for GPIO control on 3100 ALIX2/3/6 boards. However, other system specific setup should 3101 get added here. 3102 3103 Note: You must still enable the drivers for GPIO and LED support 3104 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs 3105 3106 Note: You have to set alix.force=1 for boards with Award BIOS. 3107 3108config NET5501 3109 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)" 3110 select GPIOLIB 3111 select GEODE_COMMON 3112 help 3113 This option enables system support for the Soekris Engineering net5501. 3114 3115config GEOS 3116 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)" 3117 select GPIOLIB 3118 select GEODE_COMMON 3119 depends on DMI 3120 help 3121 This option enables system support for the Traverse Technologies GEOS. 3122 3123config TS5500 3124 bool "Technologic Systems TS-5500 platform support" 3125 depends on MELAN 3126 select CHECK_SIGNATURE 3127 select NEW_LEDS 3128 select LEDS_CLASS 3129 help 3130 This option enables system support for the Technologic Systems TS-5500. 3131 3132endif # X86_32 3133 3134config AMD_NB 3135 def_bool y 3136 depends on AMD_NODE 3137 3138config AMD_NODE 3139 def_bool y 3140 depends on CPU_SUP_AMD && PCI 3141 3142endmenu 3143 3144menu "Binary Emulations" 3145 3146config IA32_EMULATION 3147 bool "IA32 Emulation" 3148 depends on X86_64 3149 select ARCH_WANT_OLD_COMPAT_IPC 3150 select BINFMT_ELF 3151 select COMPAT_OLD_SIGACTION 3152 help 3153 Include code to run legacy 32-bit programs under a 3154 64-bit kernel. You should likely turn this on, unless you're 3155 100% sure that you don't have any 32-bit programs left. 3156 3157config IA32_EMULATION_DEFAULT_DISABLED 3158 bool "IA32 emulation disabled by default" 3159 default n 3160 depends on IA32_EMULATION 3161 help 3162 Make IA32 emulation disabled by default. This prevents loading 32-bit 3163 processes and access to 32-bit syscalls. If unsure, leave it to its 3164 default value. 3165 3166config X86_X32_ABI 3167 bool "x32 ABI for 64-bit mode" 3168 depends on X86_64 3169 # llvm-objcopy does not convert x86_64 .note.gnu.property or 3170 # compressed debug sections to x86_x32 properly: 3171 # https://github.com/ClangBuiltLinux/linux/issues/514 3172 # https://github.com/ClangBuiltLinux/linux/issues/1141 3173 depends on $(success,$(OBJCOPY) --version | head -n1 | grep -qv llvm) 3174 help 3175 Include code to run binaries for the x32 native 32-bit ABI 3176 for 64-bit processors. An x32 process gets access to the 3177 full 64-bit register file and wide data path while leaving 3178 pointers at 32 bits for smaller memory footprint. 3179 3180config COMPAT_32 3181 def_bool y 3182 depends on IA32_EMULATION || X86_32 3183 select HAVE_UID16 3184 select OLD_SIGSUSPEND3 3185 3186config COMPAT 3187 def_bool y 3188 depends on IA32_EMULATION || X86_X32_ABI 3189 3190config COMPAT_FOR_U64_ALIGNMENT 3191 def_bool y 3192 depends on COMPAT 3193 3194endmenu 3195 3196config HAVE_ATOMIC_IOMAP 3197 def_bool y 3198 depends on X86_32 3199 3200source "arch/x86/kvm/Kconfig" 3201 3202source "arch/x86/Kconfig.assembler" 3203