1 // SPDX-License-Identifier: GPL-2.0
2 /* visemul.c: Emulation of VIS instructions.
3 *
4 * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
5 */
6 #include <linux/kernel.h>
7 #include <linux/errno.h>
8 #include <linux/thread_info.h>
9 #include <linux/perf_event.h>
10
11 #include <asm/ptrace.h>
12 #include <asm/pstate.h>
13 #include <asm/fpumacro.h>
14 #include <linux/uaccess.h>
15 #include <asm/cacheflush.h>
16
17 /* OPF field of various VIS instructions. */
18
19 /* 000111011 - four 16-bit packs */
20 #define FPACK16_OPF 0x03b
21
22 /* 000111010 - two 32-bit packs */
23 #define FPACK32_OPF 0x03a
24
25 /* 000111101 - four 16-bit packs */
26 #define FPACKFIX_OPF 0x03d
27
28 /* 001001101 - four 16-bit expands */
29 #define FEXPAND_OPF 0x04d
30
31 /* 001001011 - two 32-bit merges */
32 #define FPMERGE_OPF 0x04b
33
34 /* 000110001 - 8-by-16-bit partitioned product */
35 #define FMUL8x16_OPF 0x031
36
37 /* 000110011 - 8-by-16-bit upper alpha partitioned product */
38 #define FMUL8x16AU_OPF 0x033
39
40 /* 000110101 - 8-by-16-bit lower alpha partitioned product */
41 #define FMUL8x16AL_OPF 0x035
42
43 /* 000110110 - upper 8-by-16-bit partitioned product */
44 #define FMUL8SUx16_OPF 0x036
45
46 /* 000110111 - lower 8-by-16-bit partitioned product */
47 #define FMUL8ULx16_OPF 0x037
48
49 /* 000111000 - upper 8-by-16-bit partitioned product */
50 #define FMULD8SUx16_OPF 0x038
51
52 /* 000111001 - lower unsigned 8-by-16-bit partitioned product */
53 #define FMULD8ULx16_OPF 0x039
54
55 /* 000101000 - four 16-bit compare; set rd if src1 > src2 */
56 #define FCMPGT16_OPF 0x028
57
58 /* 000101100 - two 32-bit compare; set rd if src1 > src2 */
59 #define FCMPGT32_OPF 0x02c
60
61 /* 000100000 - four 16-bit compare; set rd if src1 <= src2 */
62 #define FCMPLE16_OPF 0x020
63
64 /* 000100100 - two 32-bit compare; set rd if src1 <= src2 */
65 #define FCMPLE32_OPF 0x024
66
67 /* 000100010 - four 16-bit compare; set rd if src1 != src2 */
68 #define FCMPNE16_OPF 0x022
69
70 /* 000100110 - two 32-bit compare; set rd if src1 != src2 */
71 #define FCMPNE32_OPF 0x026
72
73 /* 000101010 - four 16-bit compare; set rd if src1 == src2 */
74 #define FCMPEQ16_OPF 0x02a
75
76 /* 000101110 - two 32-bit compare; set rd if src1 == src2 */
77 #define FCMPEQ32_OPF 0x02e
78
79 /* 000000000 - Eight 8-bit edge boundary processing */
80 #define EDGE8_OPF 0x000
81
82 /* 000000001 - Eight 8-bit edge boundary processing, no CC */
83 #define EDGE8N_OPF 0x001
84
85 /* 000000010 - Eight 8-bit edge boundary processing, little-endian */
86 #define EDGE8L_OPF 0x002
87
88 /* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */
89 #define EDGE8LN_OPF 0x003
90
91 /* 000000100 - Four 16-bit edge boundary processing */
92 #define EDGE16_OPF 0x004
93
94 /* 000000101 - Four 16-bit edge boundary processing, no CC */
95 #define EDGE16N_OPF 0x005
96
97 /* 000000110 - Four 16-bit edge boundary processing, little-endian */
98 #define EDGE16L_OPF 0x006
99
100 /* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */
101 #define EDGE16LN_OPF 0x007
102
103 /* 000001000 - Two 32-bit edge boundary processing */
104 #define EDGE32_OPF 0x008
105
106 /* 000001001 - Two 32-bit edge boundary processing, no CC */
107 #define EDGE32N_OPF 0x009
108
109 /* 000001010 - Two 32-bit edge boundary processing, little-endian */
110 #define EDGE32L_OPF 0x00a
111
112 /* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */
113 #define EDGE32LN_OPF 0x00b
114
115 /* 000111110 - distance between 8 8-bit components */
116 #define PDIST_OPF 0x03e
117
118 /* 000010000 - convert 8-bit 3-D address to blocked byte address */
119 #define ARRAY8_OPF 0x010
120
121 /* 000010010 - convert 16-bit 3-D address to blocked byte address */
122 #define ARRAY16_OPF 0x012
123
124 /* 000010100 - convert 32-bit 3-D address to blocked byte address */
125 #define ARRAY32_OPF 0x014
126
127 /* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */
128 #define BMASK_OPF 0x019
129
130 /* 001001100 - Permute bytes as specified by GSR.MASK */
131 #define BSHUFFLE_OPF 0x04c
132
133 #define VIS_OPF_SHIFT 5
134 #define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT)
135
136 #define RS1(INSN) (((INSN) >> 14) & 0x1f)
137 #define RS2(INSN) (((INSN) >> 0) & 0x1f)
138 #define RD(INSN) (((INSN) >> 25) & 0x1f)
139
maybe_flush_windows(unsigned int rs1,unsigned int rs2,unsigned int rd,int from_kernel)140 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
141 unsigned int rd, int from_kernel)
142 {
143 if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
144 if (from_kernel != 0)
145 __asm__ __volatile__("flushw");
146 else
147 flushw_user();
148 }
149 }
150
fetch_reg(unsigned int reg,struct pt_regs * regs)151 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
152 {
153 unsigned long value, fp;
154
155 if (reg < 16)
156 return (!reg ? 0 : regs->u_regs[reg]);
157
158 fp = regs->u_regs[UREG_FP];
159
160 if (regs->tstate & TSTATE_PRIV) {
161 struct reg_window *win;
162 win = (struct reg_window *)(fp + STACK_BIAS);
163 value = win->locals[reg - 16];
164 } else if (!test_thread_64bit_stack(fp)) {
165 struct reg_window32 __user *win32;
166 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
167 get_user(value, &win32->locals[reg - 16]);
168 } else {
169 struct reg_window __user *win;
170 win = (struct reg_window __user *)(fp + STACK_BIAS);
171 get_user(value, &win->locals[reg - 16]);
172 }
173 return value;
174 }
175
__fetch_reg_addr_user(unsigned int reg,struct pt_regs * regs)176 static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
177 struct pt_regs *regs)
178 {
179 unsigned long fp = regs->u_regs[UREG_FP];
180
181 BUG_ON(reg < 16);
182 BUG_ON(regs->tstate & TSTATE_PRIV);
183
184 if (!test_thread_64bit_stack(fp)) {
185 struct reg_window32 __user *win32;
186 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
187 return (unsigned long __user *)&win32->locals[reg - 16];
188 } else {
189 struct reg_window __user *win;
190 win = (struct reg_window __user *)(fp + STACK_BIAS);
191 return &win->locals[reg - 16];
192 }
193 }
194
__fetch_reg_addr_kern(unsigned int reg,struct pt_regs * regs)195 static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
196 struct pt_regs *regs)
197 {
198 BUG_ON(reg >= 16);
199 BUG_ON(regs->tstate & TSTATE_PRIV);
200
201 return ®s->u_regs[reg];
202 }
203
store_reg(struct pt_regs * regs,unsigned long val,unsigned long rd)204 static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
205 {
206 if (rd < 16) {
207 unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);
208
209 *rd_kern = val;
210 } else {
211 unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);
212
213 if (!test_thread_64bit_stack(regs->u_regs[UREG_FP]))
214 __put_user((u32)val, (u32 __user *)rd_user);
215 else
216 __put_user(val, rd_user);
217 }
218 }
219
fpd_regval(struct fpustate * f,unsigned int insn_regnum)220 static inline unsigned long fpd_regval(struct fpustate *f,
221 unsigned int insn_regnum)
222 {
223 insn_regnum = (((insn_regnum & 1) << 5) |
224 (insn_regnum & 0x1e));
225
226 return *(unsigned long *) &f->regs[insn_regnum];
227 }
228
fpd_regaddr(struct fpustate * f,unsigned int insn_regnum)229 static inline unsigned long *fpd_regaddr(struct fpustate *f,
230 unsigned int insn_regnum)
231 {
232 insn_regnum = (((insn_regnum & 1) << 5) |
233 (insn_regnum & 0x1e));
234
235 return (unsigned long *) &f->regs[insn_regnum];
236 }
237
fps_regval(struct fpustate * f,unsigned int insn_regnum)238 static inline unsigned int fps_regval(struct fpustate *f,
239 unsigned int insn_regnum)
240 {
241 return f->regs[insn_regnum];
242 }
243
fps_regaddr(struct fpustate * f,unsigned int insn_regnum)244 static inline unsigned int *fps_regaddr(struct fpustate *f,
245 unsigned int insn_regnum)
246 {
247 return &f->regs[insn_regnum];
248 }
249
250 struct edge_tab {
251 u16 left, right;
252 };
253 static struct edge_tab edge8_tab[8] = {
254 { 0xff, 0x80 },
255 { 0x7f, 0xc0 },
256 { 0x3f, 0xe0 },
257 { 0x1f, 0xf0 },
258 { 0x0f, 0xf8 },
259 { 0x07, 0xfc },
260 { 0x03, 0xfe },
261 { 0x01, 0xff },
262 };
263 static struct edge_tab edge8_tab_l[8] = {
264 { 0xff, 0x01 },
265 { 0xfe, 0x03 },
266 { 0xfc, 0x07 },
267 { 0xf8, 0x0f },
268 { 0xf0, 0x1f },
269 { 0xe0, 0x3f },
270 { 0xc0, 0x7f },
271 { 0x80, 0xff },
272 };
273 static struct edge_tab edge16_tab[4] = {
274 { 0xf, 0x8 },
275 { 0x7, 0xc },
276 { 0x3, 0xe },
277 { 0x1, 0xf },
278 };
279 static struct edge_tab edge16_tab_l[4] = {
280 { 0xf, 0x1 },
281 { 0xe, 0x3 },
282 { 0xc, 0x7 },
283 { 0x8, 0xf },
284 };
285 static struct edge_tab edge32_tab[2] = {
286 { 0x3, 0x2 },
287 { 0x1, 0x3 },
288 };
289 static struct edge_tab edge32_tab_l[2] = {
290 { 0x3, 0x1 },
291 { 0x2, 0x3 },
292 };
293
edge(struct pt_regs * regs,unsigned int insn,unsigned int opf)294 static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
295 {
296 unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
297 u16 left, right;
298
299 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
300 orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
301 orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);
302
303 if (test_thread_flag(TIF_32BIT)) {
304 rs1 = rs1 & 0xffffffff;
305 rs2 = rs2 & 0xffffffff;
306 }
307 switch (opf) {
308 default:
309 case EDGE8_OPF:
310 case EDGE8N_OPF:
311 left = edge8_tab[rs1 & 0x7].left;
312 right = edge8_tab[rs2 & 0x7].right;
313 break;
314 case EDGE8L_OPF:
315 case EDGE8LN_OPF:
316 left = edge8_tab_l[rs1 & 0x7].left;
317 right = edge8_tab_l[rs2 & 0x7].right;
318 break;
319
320 case EDGE16_OPF:
321 case EDGE16N_OPF:
322 left = edge16_tab[(rs1 >> 1) & 0x3].left;
323 right = edge16_tab[(rs2 >> 1) & 0x3].right;
324 break;
325
326 case EDGE16L_OPF:
327 case EDGE16LN_OPF:
328 left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
329 right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
330 break;
331
332 case EDGE32_OPF:
333 case EDGE32N_OPF:
334 left = edge32_tab[(rs1 >> 2) & 0x1].left;
335 right = edge32_tab[(rs2 >> 2) & 0x1].right;
336 break;
337
338 case EDGE32L_OPF:
339 case EDGE32LN_OPF:
340 left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
341 right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
342 break;
343 }
344
345 if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
346 rd_val = right & left;
347 else
348 rd_val = left;
349
350 store_reg(regs, rd_val, RD(insn));
351
352 switch (opf) {
353 case EDGE8_OPF:
354 case EDGE8L_OPF:
355 case EDGE16_OPF:
356 case EDGE16L_OPF:
357 case EDGE32_OPF:
358 case EDGE32L_OPF: {
359 unsigned long ccr, tstate;
360
361 __asm__ __volatile__("subcc %1, %2, %%g0\n\t"
362 "rd %%ccr, %0"
363 : "=r" (ccr)
364 : "r" (orig_rs1), "r" (orig_rs2)
365 : "cc");
366 tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
367 regs->tstate = tstate | (ccr << 32UL);
368 }
369 }
370 }
371
array(struct pt_regs * regs,unsigned int insn,unsigned int opf)372 static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
373 {
374 unsigned long rs1, rs2, rd_val;
375 unsigned int bits, bits_mask;
376
377 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
378 rs1 = fetch_reg(RS1(insn), regs);
379 rs2 = fetch_reg(RS2(insn), regs);
380
381 bits = (rs2 > 5 ? 5 : rs2);
382 bits_mask = (1UL << bits) - 1UL;
383
384 rd_val = ((((rs1 >> 11) & 0x3) << 0) |
385 (((rs1 >> 33) & 0x3) << 2) |
386 (((rs1 >> 55) & 0x1) << 4) |
387 (((rs1 >> 13) & 0xf) << 5) |
388 (((rs1 >> 35) & 0xf) << 9) |
389 (((rs1 >> 56) & 0xf) << 13) |
390 (((rs1 >> 17) & bits_mask) << 17) |
391 (((rs1 >> 39) & bits_mask) << (17 + bits)) |
392 (((rs1 >> 60) & 0xf) << (17 + (2*bits))));
393
394 switch (opf) {
395 case ARRAY16_OPF:
396 rd_val <<= 1;
397 break;
398
399 case ARRAY32_OPF:
400 rd_val <<= 2;
401 }
402
403 store_reg(regs, rd_val, RD(insn));
404 }
405
bmask(struct pt_regs * regs,unsigned int insn)406 static void bmask(struct pt_regs *regs, unsigned int insn)
407 {
408 unsigned long rs1, rs2, rd_val, gsr;
409
410 maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
411 rs1 = fetch_reg(RS1(insn), regs);
412 rs2 = fetch_reg(RS2(insn), regs);
413 rd_val = rs1 + rs2;
414
415 store_reg(regs, rd_val, RD(insn));
416
417 gsr = current_thread_info()->gsr[0] & 0xffffffff;
418 gsr |= rd_val << 32UL;
419 current_thread_info()->gsr[0] = gsr;
420 }
421
bshuffle(struct pt_regs * regs,unsigned int insn)422 static void bshuffle(struct pt_regs *regs, unsigned int insn)
423 {
424 struct fpustate *f = FPUSTATE;
425 unsigned long rs1, rs2, rd_val;
426 unsigned long bmask, i;
427
428 bmask = current_thread_info()->gsr[0] >> 32UL;
429
430 rs1 = fpd_regval(f, RS1(insn));
431 rs2 = fpd_regval(f, RS2(insn));
432
433 rd_val = 0UL;
434 for (i = 0; i < 8; i++) {
435 unsigned long which = (bmask >> (i * 4)) & 0xf;
436 unsigned long byte;
437
438 if (which < 8)
439 byte = (rs1 >> (which * 8)) & 0xff;
440 else
441 byte = (rs2 >> ((which-8)*8)) & 0xff;
442 rd_val |= (byte << (i * 8));
443 }
444
445 *fpd_regaddr(f, RD(insn)) = rd_val;
446 }
447
pdist(struct pt_regs * regs,unsigned int insn)448 static void pdist(struct pt_regs *regs, unsigned int insn)
449 {
450 struct fpustate *f = FPUSTATE;
451 unsigned long rs1, rs2, *rd, rd_val;
452 unsigned long i;
453
454 rs1 = fpd_regval(f, RS1(insn));
455 rs2 = fpd_regval(f, RS2(insn));
456 rd = fpd_regaddr(f, RD(insn));
457
458 rd_val = *rd;
459
460 for (i = 0; i < 8; i++) {
461 s16 s1, s2;
462
463 s1 = (rs1 >> (56 - (i * 8))) & 0xff;
464 s2 = (rs2 >> (56 - (i * 8))) & 0xff;
465
466 /* Absolute value of difference. */
467 s1 -= s2;
468 if (s1 < 0)
469 s1 = ~s1 + 1;
470
471 rd_val += s1;
472 }
473
474 *rd = rd_val;
475 }
476
pformat(struct pt_regs * regs,unsigned int insn,unsigned int opf)477 static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
478 {
479 struct fpustate *f = FPUSTATE;
480 unsigned long rs1, rs2, gsr, scale, rd_val;
481
482 gsr = current_thread_info()->gsr[0];
483 scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
484 switch (opf) {
485 case FPACK16_OPF: {
486 unsigned long byte;
487
488 rs2 = fpd_regval(f, RS2(insn));
489 rd_val = 0;
490 for (byte = 0; byte < 4; byte++) {
491 unsigned int val;
492 s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
493 int scaled = src << scale;
494 int from_fixed = scaled >> 7;
495
496 val = ((from_fixed < 0) ?
497 0 :
498 (from_fixed > 255) ?
499 255 : from_fixed);
500
501 rd_val |= (val << (8 * byte));
502 }
503 *fps_regaddr(f, RD(insn)) = rd_val;
504 break;
505 }
506
507 case FPACK32_OPF: {
508 unsigned long word;
509
510 rs1 = fpd_regval(f, RS1(insn));
511 rs2 = fpd_regval(f, RS2(insn));
512 rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
513 for (word = 0; word < 2; word++) {
514 unsigned long val;
515 s32 src = (rs2 >> (word * 32UL));
516 s64 scaled = src << scale;
517 s64 from_fixed = scaled >> 23;
518
519 val = ((from_fixed < 0) ?
520 0 :
521 (from_fixed > 255) ?
522 255 : from_fixed);
523
524 rd_val |= (val << (32 * word));
525 }
526 *fpd_regaddr(f, RD(insn)) = rd_val;
527 break;
528 }
529
530 case FPACKFIX_OPF: {
531 unsigned long word;
532
533 rs2 = fpd_regval(f, RS2(insn));
534
535 rd_val = 0;
536 for (word = 0; word < 2; word++) {
537 long val;
538 s32 src = (rs2 >> (word * 32UL));
539 s64 scaled = src << scale;
540 s64 from_fixed = scaled >> 16;
541
542 val = ((from_fixed < -32768) ?
543 -32768 :
544 (from_fixed > 32767) ?
545 32767 : from_fixed);
546
547 rd_val |= ((val & 0xffff) << (word * 16));
548 }
549 *fps_regaddr(f, RD(insn)) = rd_val;
550 break;
551 }
552
553 case FEXPAND_OPF: {
554 unsigned long byte;
555
556 rs2 = fps_regval(f, RS2(insn));
557
558 rd_val = 0;
559 for (byte = 0; byte < 4; byte++) {
560 unsigned long val;
561 u8 src = (rs2 >> (byte * 8)) & 0xff;
562
563 val = src << 4;
564
565 rd_val |= (val << (byte * 16));
566 }
567 *fpd_regaddr(f, RD(insn)) = rd_val;
568 break;
569 }
570
571 case FPMERGE_OPF: {
572 rs1 = fps_regval(f, RS1(insn));
573 rs2 = fps_regval(f, RS2(insn));
574
575 rd_val = (((rs2 & 0x000000ff) << 0) |
576 ((rs1 & 0x000000ff) << 8) |
577 ((rs2 & 0x0000ff00) << 8) |
578 ((rs1 & 0x0000ff00) << 16) |
579 ((rs2 & 0x00ff0000) << 16) |
580 ((rs1 & 0x00ff0000) << 24) |
581 ((rs2 & 0xff000000) << 24) |
582 ((rs1 & 0xff000000) << 32));
583 *fpd_regaddr(f, RD(insn)) = rd_val;
584 break;
585 }
586 }
587 }
588
pmul(struct pt_regs * regs,unsigned int insn,unsigned int opf)589 static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
590 {
591 struct fpustate *f = FPUSTATE;
592 unsigned long rs1, rs2, rd_val;
593
594 switch (opf) {
595 case FMUL8x16_OPF: {
596 unsigned long byte;
597
598 rs1 = fps_regval(f, RS1(insn));
599 rs2 = fpd_regval(f, RS2(insn));
600
601 rd_val = 0;
602 for (byte = 0; byte < 4; byte++) {
603 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
604 s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
605 u32 prod = src1 * src2;
606 u16 scaled = ((prod & 0x00ffff00) >> 8);
607
608 /* Round up. */
609 if (prod & 0x80)
610 scaled++;
611 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
612 }
613
614 *fpd_regaddr(f, RD(insn)) = rd_val;
615 break;
616 }
617
618 case FMUL8x16AU_OPF:
619 case FMUL8x16AL_OPF: {
620 unsigned long byte;
621 s16 src2;
622
623 rs1 = fps_regval(f, RS1(insn));
624 rs2 = fps_regval(f, RS2(insn));
625
626 rd_val = 0;
627 src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0);
628 for (byte = 0; byte < 4; byte++) {
629 u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
630 u32 prod = src1 * src2;
631 u16 scaled = ((prod & 0x00ffff00) >> 8);
632
633 /* Round up. */
634 if (prod & 0x80)
635 scaled++;
636 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
637 }
638
639 *fpd_regaddr(f, RD(insn)) = rd_val;
640 break;
641 }
642
643 case FMUL8SUx16_OPF:
644 case FMUL8ULx16_OPF: {
645 unsigned long byte, ushift;
646
647 rs1 = fpd_regval(f, RS1(insn));
648 rs2 = fpd_regval(f, RS2(insn));
649
650 rd_val = 0;
651 ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
652 for (byte = 0; byte < 4; byte++) {
653 u16 src1;
654 s16 src2;
655 u32 prod;
656 u16 scaled;
657
658 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
659 src2 = ((rs2 >> (16 * byte)) & 0xffff);
660 prod = src1 * src2;
661 scaled = ((prod & 0x00ffff00) >> 8);
662
663 /* Round up. */
664 if (prod & 0x80)
665 scaled++;
666 rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
667 }
668
669 *fpd_regaddr(f, RD(insn)) = rd_val;
670 break;
671 }
672
673 case FMULD8SUx16_OPF:
674 case FMULD8ULx16_OPF: {
675 unsigned long byte, ushift;
676
677 rs1 = fps_regval(f, RS1(insn));
678 rs2 = fps_regval(f, RS2(insn));
679
680 rd_val = 0;
681 ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
682 for (byte = 0; byte < 2; byte++) {
683 u16 src1;
684 s16 src2;
685 u32 prod;
686 u16 scaled;
687
688 src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
689 src2 = ((rs2 >> (16 * byte)) & 0xffff);
690 prod = src1 * src2;
691 scaled = ((prod & 0x00ffff00) >> 8);
692
693 /* Round up. */
694 if (prod & 0x80)
695 scaled++;
696 rd_val |= ((scaled & 0xffffUL) <<
697 ((byte * 32UL) + 7UL));
698 }
699 *fpd_regaddr(f, RD(insn)) = rd_val;
700 break;
701 }
702 }
703 }
704
pcmp(struct pt_regs * regs,unsigned int insn,unsigned int opf)705 static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
706 {
707 struct fpustate *f = FPUSTATE;
708 unsigned long rs1, rs2, rd_val, i;
709
710 rs1 = fpd_regval(f, RS1(insn));
711 rs2 = fpd_regval(f, RS2(insn));
712
713 rd_val = 0;
714
715 switch (opf) {
716 case FCMPGT16_OPF:
717 for (i = 0; i < 4; i++) {
718 s16 a = (rs1 >> (i * 16)) & 0xffff;
719 s16 b = (rs2 >> (i * 16)) & 0xffff;
720
721 if (a > b)
722 rd_val |= 8 >> i;
723 }
724 break;
725
726 case FCMPGT32_OPF:
727 for (i = 0; i < 2; i++) {
728 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
729 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
730
731 if (a > b)
732 rd_val |= 2 >> i;
733 }
734 break;
735
736 case FCMPLE16_OPF:
737 for (i = 0; i < 4; i++) {
738 s16 a = (rs1 >> (i * 16)) & 0xffff;
739 s16 b = (rs2 >> (i * 16)) & 0xffff;
740
741 if (a <= b)
742 rd_val |= 8 >> i;
743 }
744 break;
745
746 case FCMPLE32_OPF:
747 for (i = 0; i < 2; i++) {
748 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
749 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
750
751 if (a <= b)
752 rd_val |= 2 >> i;
753 }
754 break;
755
756 case FCMPNE16_OPF:
757 for (i = 0; i < 4; i++) {
758 s16 a = (rs1 >> (i * 16)) & 0xffff;
759 s16 b = (rs2 >> (i * 16)) & 0xffff;
760
761 if (a != b)
762 rd_val |= 8 >> i;
763 }
764 break;
765
766 case FCMPNE32_OPF:
767 for (i = 0; i < 2; i++) {
768 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
769 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
770
771 if (a != b)
772 rd_val |= 2 >> i;
773 }
774 break;
775
776 case FCMPEQ16_OPF:
777 for (i = 0; i < 4; i++) {
778 s16 a = (rs1 >> (i * 16)) & 0xffff;
779 s16 b = (rs2 >> (i * 16)) & 0xffff;
780
781 if (a == b)
782 rd_val |= 8 >> i;
783 }
784 break;
785
786 case FCMPEQ32_OPF:
787 for (i = 0; i < 2; i++) {
788 s32 a = (rs1 >> (i * 32)) & 0xffffffff;
789 s32 b = (rs2 >> (i * 32)) & 0xffffffff;
790
791 if (a == b)
792 rd_val |= 2 >> i;
793 }
794 break;
795 }
796
797 maybe_flush_windows(0, 0, RD(insn), 0);
798 store_reg(regs, rd_val, RD(insn));
799 }
800
801 /* Emulate the VIS instructions which are not implemented in
802 * hardware on Niagara.
803 */
vis_emul(struct pt_regs * regs,unsigned int insn)804 int vis_emul(struct pt_regs *regs, unsigned int insn)
805 {
806 unsigned long pc = regs->tpc;
807 unsigned int opf;
808
809 BUG_ON(regs->tstate & TSTATE_PRIV);
810
811 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
812
813 if (test_thread_flag(TIF_32BIT))
814 pc = (u32)pc;
815
816 if (get_user(insn, (u32 __user *) pc))
817 return -EFAULT;
818
819 save_and_clear_fpu();
820
821 opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
822 switch (opf) {
823 default:
824 return -EINVAL;
825
826 /* Pixel Formatting Instructions. */
827 case FPACK16_OPF:
828 case FPACK32_OPF:
829 case FPACKFIX_OPF:
830 case FEXPAND_OPF:
831 case FPMERGE_OPF:
832 pformat(regs, insn, opf);
833 break;
834
835 /* Partitioned Multiply Instructions */
836 case FMUL8x16_OPF:
837 case FMUL8x16AU_OPF:
838 case FMUL8x16AL_OPF:
839 case FMUL8SUx16_OPF:
840 case FMUL8ULx16_OPF:
841 case FMULD8SUx16_OPF:
842 case FMULD8ULx16_OPF:
843 pmul(regs, insn, opf);
844 break;
845
846 /* Pixel Compare Instructions */
847 case FCMPGT16_OPF:
848 case FCMPGT32_OPF:
849 case FCMPLE16_OPF:
850 case FCMPLE32_OPF:
851 case FCMPNE16_OPF:
852 case FCMPNE32_OPF:
853 case FCMPEQ16_OPF:
854 case FCMPEQ32_OPF:
855 pcmp(regs, insn, opf);
856 break;
857
858 /* Edge Handling Instructions */
859 case EDGE8_OPF:
860 case EDGE8N_OPF:
861 case EDGE8L_OPF:
862 case EDGE8LN_OPF:
863 case EDGE16_OPF:
864 case EDGE16N_OPF:
865 case EDGE16L_OPF:
866 case EDGE16LN_OPF:
867 case EDGE32_OPF:
868 case EDGE32N_OPF:
869 case EDGE32L_OPF:
870 case EDGE32LN_OPF:
871 edge(regs, insn, opf);
872 break;
873
874 /* Pixel Component Distance */
875 case PDIST_OPF:
876 pdist(regs, insn);
877 break;
878
879 /* Three-Dimensional Array Addressing Instructions */
880 case ARRAY8_OPF:
881 case ARRAY16_OPF:
882 case ARRAY32_OPF:
883 array(regs, insn, opf);
884 break;
885
886 /* Byte Mask and Shuffle Instructions */
887 case BMASK_OPF:
888 bmask(regs, insn);
889 break;
890
891 case BSHUFFLE_OPF:
892 bshuffle(regs, insn);
893 break;
894 }
895
896 regs->tpc = regs->tnpc;
897 regs->tnpc += 4;
898 return 0;
899 }
900