1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/ptrace.h> 23 #include <linux/slab.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/compat.h> 27 #include <linux/tick.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/perf_event.h> 31 #include <linux/elfcore.h> 32 #include <linux/sysrq.h> 33 #include <linux/nmi.h> 34 #include <linux/context_tracking.h> 35 36 #include <asm/uaccess.h> 37 #include <asm/page.h> 38 #include <asm/pgalloc.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 #include <asm/pstate.h> 42 #include <asm/elf.h> 43 #include <asm/fpumacro.h> 44 #include <asm/head.h> 45 #include <asm/cpudata.h> 46 #include <asm/mmu_context.h> 47 #include <asm/unistd.h> 48 #include <asm/hypervisor.h> 49 #include <asm/syscalls.h> 50 #include <asm/irq_regs.h> 51 #include <asm/smp.h> 52 #include <asm/pcr.h> 53 54 #include "kstack.h" 55 56 /* Idle loop support on sparc64. */ 57 void arch_cpu_idle(void) 58 { 59 if (tlb_type != hypervisor) { 60 touch_nmi_watchdog(); 61 local_irq_enable(); 62 } else { 63 unsigned long pstate; 64 65 local_irq_enable(); 66 67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over 68 * the cpu sleep hypervisor call. 69 */ 70 __asm__ __volatile__( 71 "rdpr %%pstate, %0\n\t" 72 "andn %0, %1, %0\n\t" 73 "wrpr %0, %%g0, %%pstate" 74 : "=&r" (pstate) 75 : "i" (PSTATE_IE)); 76 77 if (!need_resched() && !cpu_is_offline(smp_processor_id())) 78 sun4v_cpu_yield(); 79 80 /* Re-enable interrupts. */ 81 __asm__ __volatile__( 82 "rdpr %%pstate, %0\n\t" 83 "or %0, %1, %0\n\t" 84 "wrpr %0, %%g0, %%pstate" 85 : "=&r" (pstate) 86 : "i" (PSTATE_IE)); 87 } 88 } 89 90 #ifdef CONFIG_HOTPLUG_CPU 91 void arch_cpu_idle_dead(void) 92 { 93 sched_preempt_enable_no_resched(); 94 cpu_play_dead(); 95 } 96 #endif 97 98 #ifdef CONFIG_COMPAT 99 static void show_regwindow32(struct pt_regs *regs) 100 { 101 struct reg_window32 __user *rw; 102 struct reg_window32 r_w; 103 mm_segment_t old_fs; 104 105 __asm__ __volatile__ ("flushw"); 106 rw = compat_ptr((unsigned)regs->u_regs[14]); 107 old_fs = get_fs(); 108 set_fs (USER_DS); 109 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 110 set_fs (old_fs); 111 return; 112 } 113 114 set_fs (old_fs); 115 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 116 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 117 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 118 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 119 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 120 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 121 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 122 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 123 } 124 #else 125 #define show_regwindow32(regs) do { } while (0) 126 #endif 127 128 static void show_regwindow(struct pt_regs *regs) 129 { 130 struct reg_window __user *rw; 131 struct reg_window *rwk; 132 struct reg_window r_w; 133 mm_segment_t old_fs; 134 135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 136 __asm__ __volatile__ ("flushw"); 137 rw = (struct reg_window __user *) 138 (regs->u_regs[14] + STACK_BIAS); 139 rwk = (struct reg_window *) 140 (regs->u_regs[14] + STACK_BIAS); 141 if (!(regs->tstate & TSTATE_PRIV)) { 142 old_fs = get_fs(); 143 set_fs (USER_DS); 144 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 145 set_fs (old_fs); 146 return; 147 } 148 rwk = &r_w; 149 set_fs (old_fs); 150 } 151 } else { 152 show_regwindow32(regs); 153 return; 154 } 155 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 156 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 157 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 158 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 159 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 160 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 161 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 162 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 163 if (regs->tstate & TSTATE_PRIV) 164 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 165 } 166 167 void show_regs(struct pt_regs *regs) 168 { 169 show_regs_print_info(KERN_DEFAULT); 170 171 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 172 regs->tpc, regs->tnpc, regs->y, print_tainted()); 173 printk("TPC: <%pS>\n", (void *) regs->tpc); 174 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 175 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 176 regs->u_regs[3]); 177 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 178 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 179 regs->u_regs[7]); 180 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 181 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 182 regs->u_regs[11]); 183 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 184 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 185 regs->u_regs[15]); 186 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 187 show_regwindow(regs); 188 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 189 } 190 191 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS]; 192 static DEFINE_SPINLOCK(global_cpu_snapshot_lock); 193 194 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 195 int this_cpu) 196 { 197 struct global_reg_snapshot *rp; 198 199 flushw_all(); 200 201 rp = &global_cpu_snapshot[this_cpu].reg; 202 203 rp->tstate = regs->tstate; 204 rp->tpc = regs->tpc; 205 rp->tnpc = regs->tnpc; 206 rp->o7 = regs->u_regs[UREG_I7]; 207 208 if (regs->tstate & TSTATE_PRIV) { 209 struct reg_window *rw; 210 211 rw = (struct reg_window *) 212 (regs->u_regs[UREG_FP] + STACK_BIAS); 213 if (kstack_valid(tp, (unsigned long) rw)) { 214 rp->i7 = rw->ins[7]; 215 rw = (struct reg_window *) 216 (rw->ins[6] + STACK_BIAS); 217 if (kstack_valid(tp, (unsigned long) rw)) 218 rp->rpc = rw->ins[7]; 219 } 220 } else { 221 rp->i7 = 0; 222 rp->rpc = 0; 223 } 224 rp->thread = tp; 225 } 226 227 /* In order to avoid hangs we do not try to synchronize with the 228 * global register dump client cpus. The last store they make is to 229 * the thread pointer, so do a short poll waiting for that to become 230 * non-NULL. 231 */ 232 static void __global_reg_poll(struct global_reg_snapshot *gp) 233 { 234 int limit = 0; 235 236 while (!gp->thread && ++limit < 100) { 237 barrier(); 238 udelay(1); 239 } 240 } 241 242 void arch_trigger_all_cpu_backtrace(bool include_self) 243 { 244 struct thread_info *tp = current_thread_info(); 245 struct pt_regs *regs = get_irq_regs(); 246 unsigned long flags; 247 int this_cpu, cpu; 248 249 if (!regs) 250 regs = tp->kregs; 251 252 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 253 254 this_cpu = raw_smp_processor_id(); 255 256 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 257 258 if (include_self) 259 __global_reg_self(tp, regs, this_cpu); 260 261 smp_fetch_global_regs(); 262 263 for_each_online_cpu(cpu) { 264 struct global_reg_snapshot *gp; 265 266 if (!include_self && cpu == this_cpu) 267 continue; 268 269 gp = &global_cpu_snapshot[cpu].reg; 270 271 __global_reg_poll(gp); 272 273 tp = gp->thread; 274 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 275 (cpu == this_cpu ? '*' : ' '), cpu, 276 gp->tstate, gp->tpc, gp->tnpc, 277 ((tp && tp->task) ? tp->task->comm : "NULL"), 278 ((tp && tp->task) ? tp->task->pid : -1)); 279 280 if (gp->tstate & TSTATE_PRIV) { 281 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 282 (void *) gp->tpc, 283 (void *) gp->o7, 284 (void *) gp->i7, 285 (void *) gp->rpc); 286 } else { 287 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 288 gp->tpc, gp->o7, gp->i7, gp->rpc); 289 } 290 291 touch_nmi_watchdog(); 292 } 293 294 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 295 296 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 297 } 298 299 #ifdef CONFIG_MAGIC_SYSRQ 300 301 static void sysrq_handle_globreg(int key) 302 { 303 arch_trigger_all_cpu_backtrace(true); 304 } 305 306 static struct sysrq_key_op sparc_globalreg_op = { 307 .handler = sysrq_handle_globreg, 308 .help_msg = "global-regs(y)", 309 .action_msg = "Show Global CPU Regs", 310 }; 311 312 static void __global_pmu_self(int this_cpu) 313 { 314 struct global_pmu_snapshot *pp; 315 int i, num; 316 317 if (!pcr_ops) 318 return; 319 320 pp = &global_cpu_snapshot[this_cpu].pmu; 321 322 num = 1; 323 if (tlb_type == hypervisor && 324 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 325 num = 4; 326 327 for (i = 0; i < num; i++) { 328 pp->pcr[i] = pcr_ops->read_pcr(i); 329 pp->pic[i] = pcr_ops->read_pic(i); 330 } 331 } 332 333 static void __global_pmu_poll(struct global_pmu_snapshot *pp) 334 { 335 int limit = 0; 336 337 while (!pp->pcr[0] && ++limit < 100) { 338 barrier(); 339 udelay(1); 340 } 341 } 342 343 static void pmu_snapshot_all_cpus(void) 344 { 345 unsigned long flags; 346 int this_cpu, cpu; 347 348 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 349 350 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 351 352 this_cpu = raw_smp_processor_id(); 353 354 __global_pmu_self(this_cpu); 355 356 smp_fetch_global_pmu(); 357 358 for_each_online_cpu(cpu) { 359 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu; 360 361 __global_pmu_poll(pp); 362 363 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n", 364 (cpu == this_cpu ? '*' : ' '), cpu, 365 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3], 366 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]); 367 368 touch_nmi_watchdog(); 369 } 370 371 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 372 373 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 374 } 375 376 static void sysrq_handle_globpmu(int key) 377 { 378 pmu_snapshot_all_cpus(); 379 } 380 381 static struct sysrq_key_op sparc_globalpmu_op = { 382 .handler = sysrq_handle_globpmu, 383 .help_msg = "global-pmu(x)", 384 .action_msg = "Show Global PMU Regs", 385 }; 386 387 static int __init sparc_sysrq_init(void) 388 { 389 int ret = register_sysrq_key('y', &sparc_globalreg_op); 390 391 if (!ret) 392 ret = register_sysrq_key('x', &sparc_globalpmu_op); 393 return ret; 394 } 395 396 core_initcall(sparc_sysrq_init); 397 398 #endif 399 400 unsigned long thread_saved_pc(struct task_struct *tsk) 401 { 402 struct thread_info *ti = task_thread_info(tsk); 403 unsigned long ret = 0xdeadbeefUL; 404 405 if (ti && ti->ksp) { 406 unsigned long *sp; 407 sp = (unsigned long *)(ti->ksp + STACK_BIAS); 408 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && 409 sp[14]) { 410 unsigned long *fp; 411 fp = (unsigned long *)(sp[14] + STACK_BIAS); 412 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) 413 ret = fp[15]; 414 } 415 } 416 return ret; 417 } 418 419 /* Free current thread data structures etc.. */ 420 void exit_thread(void) 421 { 422 struct thread_info *t = current_thread_info(); 423 424 if (t->utraps) { 425 if (t->utraps[0] < 2) 426 kfree (t->utraps); 427 else 428 t->utraps[0]--; 429 } 430 } 431 432 void flush_thread(void) 433 { 434 struct thread_info *t = current_thread_info(); 435 struct mm_struct *mm; 436 437 mm = t->task->mm; 438 if (mm) 439 tsb_context_switch(mm); 440 441 set_thread_wsaved(0); 442 443 /* Clear FPU register state. */ 444 t->fpsaved[0] = 0; 445 } 446 447 /* It's a bit more tricky when 64-bit tasks are involved... */ 448 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 449 { 450 bool stack_64bit = test_thread_64bit_stack(psp); 451 unsigned long fp, distance, rval; 452 453 if (stack_64bit) { 454 csp += STACK_BIAS; 455 psp += STACK_BIAS; 456 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 457 fp += STACK_BIAS; 458 if (test_thread_flag(TIF_32BIT)) 459 fp &= 0xffffffff; 460 } else 461 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 462 463 /* Now align the stack as this is mandatory in the Sparc ABI 464 * due to how register windows work. This hides the 465 * restriction from thread libraries etc. 466 */ 467 csp &= ~15UL; 468 469 distance = fp - psp; 470 rval = (csp - distance); 471 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 472 rval = 0; 473 else if (!stack_64bit) { 474 if (put_user(((u32)csp), 475 &(((struct reg_window32 __user *)rval)->ins[6]))) 476 rval = 0; 477 } else { 478 if (put_user(((u64)csp - STACK_BIAS), 479 &(((struct reg_window __user *)rval)->ins[6]))) 480 rval = 0; 481 else 482 rval = rval - STACK_BIAS; 483 } 484 485 return rval; 486 } 487 488 /* Standard stuff. */ 489 static inline void shift_window_buffer(int first_win, int last_win, 490 struct thread_info *t) 491 { 492 int i; 493 494 for (i = first_win; i < last_win; i++) { 495 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 496 memcpy(&t->reg_window[i], &t->reg_window[i+1], 497 sizeof(struct reg_window)); 498 } 499 } 500 501 void synchronize_user_stack(void) 502 { 503 struct thread_info *t = current_thread_info(); 504 unsigned long window; 505 506 flush_user_windows(); 507 if ((window = get_thread_wsaved()) != 0) { 508 window -= 1; 509 do { 510 struct reg_window *rwin = &t->reg_window[window]; 511 int winsize = sizeof(struct reg_window); 512 unsigned long sp; 513 514 sp = t->rwbuf_stkptrs[window]; 515 516 if (test_thread_64bit_stack(sp)) 517 sp += STACK_BIAS; 518 else 519 winsize = sizeof(struct reg_window32); 520 521 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 522 shift_window_buffer(window, get_thread_wsaved() - 1, t); 523 set_thread_wsaved(get_thread_wsaved() - 1); 524 } 525 } while (window--); 526 } 527 } 528 529 static void stack_unaligned(unsigned long sp) 530 { 531 siginfo_t info; 532 533 info.si_signo = SIGBUS; 534 info.si_errno = 0; 535 info.si_code = BUS_ADRALN; 536 info.si_addr = (void __user *) sp; 537 info.si_trapno = 0; 538 force_sig_info(SIGBUS, &info, current); 539 } 540 541 void fault_in_user_windows(void) 542 { 543 struct thread_info *t = current_thread_info(); 544 unsigned long window; 545 546 flush_user_windows(); 547 window = get_thread_wsaved(); 548 549 if (likely(window != 0)) { 550 window -= 1; 551 do { 552 struct reg_window *rwin = &t->reg_window[window]; 553 int winsize = sizeof(struct reg_window); 554 unsigned long sp; 555 556 sp = t->rwbuf_stkptrs[window]; 557 558 if (test_thread_64bit_stack(sp)) 559 sp += STACK_BIAS; 560 else 561 winsize = sizeof(struct reg_window32); 562 563 if (unlikely(sp & 0x7UL)) 564 stack_unaligned(sp); 565 566 if (unlikely(copy_to_user((char __user *)sp, 567 rwin, winsize))) 568 goto barf; 569 } while (window--); 570 } 571 set_thread_wsaved(0); 572 return; 573 574 barf: 575 set_thread_wsaved(window + 1); 576 user_exit(); 577 do_exit(SIGILL); 578 } 579 580 asmlinkage long sparc_do_fork(unsigned long clone_flags, 581 unsigned long stack_start, 582 struct pt_regs *regs, 583 unsigned long stack_size) 584 { 585 int __user *parent_tid_ptr, *child_tid_ptr; 586 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 587 long ret; 588 589 #ifdef CONFIG_COMPAT 590 if (test_thread_flag(TIF_32BIT)) { 591 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 592 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 593 } else 594 #endif 595 { 596 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 597 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 598 } 599 600 ret = do_fork(clone_flags, stack_start, stack_size, 601 parent_tid_ptr, child_tid_ptr); 602 603 /* If we get an error and potentially restart the system 604 * call, we're screwed because copy_thread() clobbered 605 * the parent's %o1. So detect that case and restore it 606 * here. 607 */ 608 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 609 regs->u_regs[UREG_I1] = orig_i1; 610 611 return ret; 612 } 613 614 /* Copy a Sparc thread. The fork() return value conventions 615 * under SunOS are nothing short of bletcherous: 616 * Parent --> %o0 == childs pid, %o1 == 0 617 * Child --> %o0 == parents pid, %o1 == 1 618 */ 619 int copy_thread(unsigned long clone_flags, unsigned long sp, 620 unsigned long arg, struct task_struct *p) 621 { 622 struct thread_info *t = task_thread_info(p); 623 struct pt_regs *regs = current_pt_regs(); 624 struct sparc_stackf *parent_sf; 625 unsigned long child_stack_sz; 626 char *child_trap_frame; 627 628 /* Calculate offset to stack_frame & pt_regs */ 629 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ); 630 child_trap_frame = (task_stack_page(p) + 631 (THREAD_SIZE - child_stack_sz)); 632 633 t->new_child = 1; 634 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 635 t->kregs = (struct pt_regs *) (child_trap_frame + 636 sizeof(struct sparc_stackf)); 637 t->fpsaved[0] = 0; 638 639 if (unlikely(p->flags & PF_KTHREAD)) { 640 memset(child_trap_frame, 0, child_stack_sz); 641 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 642 (current_pt_regs()->tstate + 1) & TSTATE_CWP; 643 t->current_ds = ASI_P; 644 t->kregs->u_regs[UREG_G1] = sp; /* function */ 645 t->kregs->u_regs[UREG_G2] = arg; 646 return 0; 647 } 648 649 parent_sf = ((struct sparc_stackf *) regs) - 1; 650 memcpy(child_trap_frame, parent_sf, child_stack_sz); 651 if (t->flags & _TIF_32BIT) { 652 sp &= 0x00000000ffffffffUL; 653 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 654 } 655 t->kregs->u_regs[UREG_FP] = sp; 656 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 657 (regs->tstate + 1) & TSTATE_CWP; 658 t->current_ds = ASI_AIUS; 659 if (sp != regs->u_regs[UREG_FP]) { 660 unsigned long csp; 661 662 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 663 if (!csp) 664 return -EFAULT; 665 t->kregs->u_regs[UREG_FP] = csp; 666 } 667 if (t->utraps) 668 t->utraps[0]++; 669 670 /* Set the return value for the child. */ 671 t->kregs->u_regs[UREG_I0] = current->pid; 672 t->kregs->u_regs[UREG_I1] = 1; 673 674 /* Set the second return value for the parent. */ 675 regs->u_regs[UREG_I1] = 0; 676 677 if (clone_flags & CLONE_SETTLS) 678 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 679 680 return 0; 681 } 682 683 typedef struct { 684 union { 685 unsigned int pr_regs[32]; 686 unsigned long pr_dregs[16]; 687 } pr_fr; 688 unsigned int __unused; 689 unsigned int pr_fsr; 690 unsigned char pr_qcnt; 691 unsigned char pr_q_entrysize; 692 unsigned char pr_en; 693 unsigned int pr_q[64]; 694 } elf_fpregset_t32; 695 696 /* 697 * fill in the fpu structure for a core dump. 698 */ 699 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 700 { 701 unsigned long *kfpregs = current_thread_info()->fpregs; 702 unsigned long fprs = current_thread_info()->fpsaved[0]; 703 704 if (test_thread_flag(TIF_32BIT)) { 705 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 706 707 if (fprs & FPRS_DL) 708 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 709 sizeof(unsigned int) * 32); 710 else 711 memset(&fpregs32->pr_fr.pr_regs[0], 0, 712 sizeof(unsigned int) * 32); 713 fpregs32->pr_qcnt = 0; 714 fpregs32->pr_q_entrysize = 8; 715 memset(&fpregs32->pr_q[0], 0, 716 (sizeof(unsigned int) * 64)); 717 if (fprs & FPRS_FEF) { 718 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 719 fpregs32->pr_en = 1; 720 } else { 721 fpregs32->pr_fsr = 0; 722 fpregs32->pr_en = 0; 723 } 724 } else { 725 if(fprs & FPRS_DL) 726 memcpy(&fpregs->pr_regs[0], kfpregs, 727 sizeof(unsigned int) * 32); 728 else 729 memset(&fpregs->pr_regs[0], 0, 730 sizeof(unsigned int) * 32); 731 if(fprs & FPRS_DU) 732 memcpy(&fpregs->pr_regs[16], kfpregs+16, 733 sizeof(unsigned int) * 32); 734 else 735 memset(&fpregs->pr_regs[16], 0, 736 sizeof(unsigned int) * 32); 737 if(fprs & FPRS_FEF) { 738 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 739 fpregs->pr_gsr = current_thread_info()->gsr[0]; 740 } else { 741 fpregs->pr_fsr = fpregs->pr_gsr = 0; 742 } 743 fpregs->pr_fprs = fprs; 744 } 745 return 1; 746 } 747 EXPORT_SYMBOL(dump_fpu); 748 749 unsigned long get_wchan(struct task_struct *task) 750 { 751 unsigned long pc, fp, bias = 0; 752 struct thread_info *tp; 753 struct reg_window *rw; 754 unsigned long ret = 0; 755 int count = 0; 756 757 if (!task || task == current || 758 task->state == TASK_RUNNING) 759 goto out; 760 761 tp = task_thread_info(task); 762 bias = STACK_BIAS; 763 fp = task_thread_info(task)->ksp + bias; 764 765 do { 766 if (!kstack_valid(tp, fp)) 767 break; 768 rw = (struct reg_window *) fp; 769 pc = rw->ins[7]; 770 if (!in_sched_functions(pc)) { 771 ret = pc; 772 goto out; 773 } 774 fp = rw->ins[6] + bias; 775 } while (++count < 16); 776 777 out: 778 return ret; 779 } 780