1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/process.c
3 *
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9 /*
10 * This file handles the architecture-dependent parts of process handling..
11 */
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/delay.h>
27 #include <linux/compat.h>
28 #include <linux/tick.h>
29 #include <linux/init.h>
30 #include <linux/cpu.h>
31 #include <linux/perf_event.h>
32 #include <linux/elfcore.h>
33 #include <linux/sysrq.h>
34 #include <linux/nmi.h>
35 #include <linux/context_tracking.h>
36 #include <linux/signal.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/pstate.h>
43 #include <asm/elf.h>
44 #include <asm/fpumacro.h>
45 #include <asm/head.h>
46 #include <asm/cpudata.h>
47 #include <asm/mmu_context.h>
48 #include <asm/unistd.h>
49 #include <asm/hypervisor.h>
50 #include <asm/syscalls.h>
51 #include <asm/irq_regs.h>
52 #include <asm/smp.h>
53 #include <asm/pcr.h>
54
55 #include "kstack.h"
56
57 /* Idle loop support on sparc64. */
arch_cpu_idle(void)58 void arch_cpu_idle(void)
59 {
60 if (tlb_type != hypervisor) {
61 touch_nmi_watchdog();
62 } else {
63 unsigned long pstate;
64
65 raw_local_irq_enable();
66
67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
68 * the cpu sleep hypervisor call.
69 */
70 __asm__ __volatile__(
71 "rdpr %%pstate, %0\n\t"
72 "andn %0, %1, %0\n\t"
73 "wrpr %0, %%g0, %%pstate"
74 : "=&r" (pstate)
75 : "i" (PSTATE_IE));
76
77 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
78 sun4v_cpu_yield();
79 /* If resumed by cpu_poke then we need to explicitly
80 * call scheduler_ipi().
81 */
82 scheduler_poke();
83 }
84
85 /* Re-enable interrupts. */
86 __asm__ __volatile__(
87 "rdpr %%pstate, %0\n\t"
88 "or %0, %1, %0\n\t"
89 "wrpr %0, %%g0, %%pstate"
90 : "=&r" (pstate)
91 : "i" (PSTATE_IE));
92
93 raw_local_irq_disable();
94 }
95 }
96
97 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)98 void __noreturn arch_cpu_idle_dead(void)
99 {
100 sched_preempt_enable_no_resched();
101 cpu_play_dead();
102 }
103 #endif
104
105 #ifdef CONFIG_COMPAT
show_regwindow32(struct pt_regs * regs)106 static void show_regwindow32(struct pt_regs *regs)
107 {
108 struct reg_window32 __user *rw;
109 struct reg_window32 r_w;
110
111 __asm__ __volatile__ ("flushw");
112 rw = compat_ptr((unsigned int)regs->u_regs[14]);
113 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
114 return;
115 }
116
117 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
118 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
119 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
120 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
121 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
122 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
123 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
124 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
125 }
126 #else
127 #define show_regwindow32(regs) do { } while (0)
128 #endif
129
show_regwindow(struct pt_regs * regs)130 static void show_regwindow(struct pt_regs *regs)
131 {
132 struct reg_window __user *rw;
133 struct reg_window *rwk;
134 struct reg_window r_w;
135
136 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
137 __asm__ __volatile__ ("flushw");
138 rw = (struct reg_window __user *)
139 (regs->u_regs[14] + STACK_BIAS);
140 rwk = (struct reg_window *)
141 (regs->u_regs[14] + STACK_BIAS);
142 if (!(regs->tstate & TSTATE_PRIV)) {
143 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
144 return;
145 }
146 rwk = &r_w;
147 }
148 } else {
149 show_regwindow32(regs);
150 return;
151 }
152 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
153 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
154 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
155 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
156 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
157 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
158 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
159 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
160 if (regs->tstate & TSTATE_PRIV)
161 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
162 }
163
show_regs(struct pt_regs * regs)164 void show_regs(struct pt_regs *regs)
165 {
166 show_regs_print_info(KERN_DEFAULT);
167
168 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
169 regs->tpc, regs->tnpc, regs->y, print_tainted());
170 printk("TPC: <%pS>\n", (void *) regs->tpc);
171 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
172 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
173 regs->u_regs[3]);
174 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
175 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
176 regs->u_regs[7]);
177 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
178 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
179 regs->u_regs[11]);
180 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
181 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
182 regs->u_regs[15]);
183 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
184 show_regwindow(regs);
185 show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
186 }
187
188 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
189 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
190
__global_reg_self(struct thread_info * tp,struct pt_regs * regs,int this_cpu)191 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
192 int this_cpu)
193 {
194 struct global_reg_snapshot *rp;
195
196 flushw_all();
197
198 rp = &global_cpu_snapshot[this_cpu].reg;
199
200 rp->tstate = regs->tstate;
201 rp->tpc = regs->tpc;
202 rp->tnpc = regs->tnpc;
203 rp->o7 = regs->u_regs[UREG_I7];
204
205 if (regs->tstate & TSTATE_PRIV) {
206 struct reg_window *rw;
207
208 rw = (struct reg_window *)
209 (regs->u_regs[UREG_FP] + STACK_BIAS);
210 if (kstack_valid(tp, (unsigned long) rw)) {
211 rp->i7 = rw->ins[7];
212 rw = (struct reg_window *)
213 (rw->ins[6] + STACK_BIAS);
214 if (kstack_valid(tp, (unsigned long) rw))
215 rp->rpc = rw->ins[7];
216 }
217 } else {
218 rp->i7 = 0;
219 rp->rpc = 0;
220 }
221 rp->thread = tp;
222 }
223
224 /* In order to avoid hangs we do not try to synchronize with the
225 * global register dump client cpus. The last store they make is to
226 * the thread pointer, so do a short poll waiting for that to become
227 * non-NULL.
228 */
__global_reg_poll(struct global_reg_snapshot * gp)229 static void __global_reg_poll(struct global_reg_snapshot *gp)
230 {
231 int limit = 0;
232
233 while (!gp->thread && ++limit < 100) {
234 barrier();
235 udelay(1);
236 }
237 }
238
arch_trigger_cpumask_backtrace(const cpumask_t * mask,int exclude_cpu)239 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
240 {
241 struct thread_info *tp = current_thread_info();
242 struct pt_regs *regs = get_irq_regs();
243 unsigned long flags;
244 int this_cpu, cpu;
245
246 if (!regs)
247 regs = tp->kregs;
248
249 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
250
251 this_cpu = raw_smp_processor_id();
252
253 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
254
255 if (cpumask_test_cpu(this_cpu, mask) && this_cpu != exclude_cpu)
256 __global_reg_self(tp, regs, this_cpu);
257
258 smp_fetch_global_regs();
259
260 for_each_cpu(cpu, mask) {
261 struct global_reg_snapshot *gp;
262
263 if (cpu == exclude_cpu)
264 continue;
265
266 gp = &global_cpu_snapshot[cpu].reg;
267
268 __global_reg_poll(gp);
269
270 tp = gp->thread;
271 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
272 (cpu == this_cpu ? '*' : ' '), cpu,
273 gp->tstate, gp->tpc, gp->tnpc,
274 ((tp && tp->task) ? tp->task->comm : "NULL"),
275 ((tp && tp->task) ? tp->task->pid : -1));
276
277 if (gp->tstate & TSTATE_PRIV) {
278 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
279 (void *) gp->tpc,
280 (void *) gp->o7,
281 (void *) gp->i7,
282 (void *) gp->rpc);
283 } else {
284 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
285 gp->tpc, gp->o7, gp->i7, gp->rpc);
286 }
287
288 touch_nmi_watchdog();
289 }
290
291 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
292
293 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
294 }
295
296 #ifdef CONFIG_MAGIC_SYSRQ
297
sysrq_handle_globreg(u8 key)298 static void sysrq_handle_globreg(u8 key)
299 {
300 trigger_all_cpu_backtrace();
301 }
302
303 static const struct sysrq_key_op sparc_globalreg_op = {
304 .handler = sysrq_handle_globreg,
305 .help_msg = "global-regs(y)",
306 .action_msg = "Show Global CPU Regs",
307 };
308
__global_pmu_self(int this_cpu)309 static void __global_pmu_self(int this_cpu)
310 {
311 struct global_pmu_snapshot *pp;
312 int i, num;
313
314 if (!pcr_ops)
315 return;
316
317 pp = &global_cpu_snapshot[this_cpu].pmu;
318
319 num = 1;
320 if (tlb_type == hypervisor &&
321 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
322 num = 4;
323
324 for (i = 0; i < num; i++) {
325 pp->pcr[i] = pcr_ops->read_pcr(i);
326 pp->pic[i] = pcr_ops->read_pic(i);
327 }
328 }
329
__global_pmu_poll(struct global_pmu_snapshot * pp)330 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
331 {
332 int limit = 0;
333
334 while (!pp->pcr[0] && ++limit < 100) {
335 barrier();
336 udelay(1);
337 }
338 }
339
pmu_snapshot_all_cpus(void)340 static void pmu_snapshot_all_cpus(void)
341 {
342 unsigned long flags;
343 int this_cpu, cpu;
344
345 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
346
347 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
348
349 this_cpu = raw_smp_processor_id();
350
351 __global_pmu_self(this_cpu);
352
353 smp_fetch_global_pmu();
354
355 for_each_online_cpu(cpu) {
356 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
357
358 __global_pmu_poll(pp);
359
360 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
361 (cpu == this_cpu ? '*' : ' '), cpu,
362 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
363 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
364
365 touch_nmi_watchdog();
366 }
367
368 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
369
370 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
371 }
372
sysrq_handle_globpmu(u8 key)373 static void sysrq_handle_globpmu(u8 key)
374 {
375 pmu_snapshot_all_cpus();
376 }
377
378 static const struct sysrq_key_op sparc_globalpmu_op = {
379 .handler = sysrq_handle_globpmu,
380 .help_msg = "global-pmu(x)",
381 .action_msg = "Show Global PMU Regs",
382 };
383
sparc_sysrq_init(void)384 static int __init sparc_sysrq_init(void)
385 {
386 int ret = register_sysrq_key('y', &sparc_globalreg_op);
387
388 if (!ret)
389 ret = register_sysrq_key('x', &sparc_globalpmu_op);
390 return ret;
391 }
392
393 core_initcall(sparc_sysrq_init);
394
395 #endif
396
397 /* Free current thread data structures etc.. */
exit_thread(struct task_struct * tsk)398 void exit_thread(struct task_struct *tsk)
399 {
400 struct thread_info *t = task_thread_info(tsk);
401
402 if (t->utraps) {
403 if (t->utraps[0] < 2)
404 kfree (t->utraps);
405 else
406 t->utraps[0]--;
407 }
408 }
409
flush_thread(void)410 void flush_thread(void)
411 {
412 struct thread_info *t = current_thread_info();
413 struct mm_struct *mm;
414
415 mm = t->task->mm;
416 if (mm)
417 tsb_context_switch(mm);
418
419 set_thread_wsaved(0);
420
421 /* Clear FPU register state. */
422 t->fpsaved[0] = 0;
423 }
424
425 /* It's a bit more tricky when 64-bit tasks are involved... */
clone_stackframe(unsigned long csp,unsigned long psp)426 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
427 {
428 bool stack_64bit = test_thread_64bit_stack(psp);
429 unsigned long fp, distance, rval;
430
431 if (stack_64bit) {
432 csp += STACK_BIAS;
433 psp += STACK_BIAS;
434 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
435 fp += STACK_BIAS;
436 if (test_thread_flag(TIF_32BIT))
437 fp &= 0xffffffff;
438 } else
439 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
440
441 /* Now align the stack as this is mandatory in the Sparc ABI
442 * due to how register windows work. This hides the
443 * restriction from thread libraries etc.
444 */
445 csp &= ~15UL;
446
447 distance = fp - psp;
448 rval = (csp - distance);
449 if (raw_copy_in_user((void __user *)rval, (void __user *)psp, distance))
450 rval = 0;
451 else if (!stack_64bit) {
452 if (put_user(((u32)csp),
453 &(((struct reg_window32 __user *)rval)->ins[6])))
454 rval = 0;
455 } else {
456 if (put_user(((u64)csp - STACK_BIAS),
457 &(((struct reg_window __user *)rval)->ins[6])))
458 rval = 0;
459 else
460 rval = rval - STACK_BIAS;
461 }
462
463 return rval;
464 }
465
466 /* Standard stuff. */
shift_window_buffer(int first_win,int last_win,struct thread_info * t)467 static inline void shift_window_buffer(int first_win, int last_win,
468 struct thread_info *t)
469 {
470 int i;
471
472 for (i = first_win; i < last_win; i++) {
473 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
474 memcpy(&t->reg_window[i], &t->reg_window[i+1],
475 sizeof(struct reg_window));
476 }
477 }
478
synchronize_user_stack(void)479 void synchronize_user_stack(void)
480 {
481 struct thread_info *t = current_thread_info();
482 unsigned long window;
483
484 flush_user_windows();
485 if ((window = get_thread_wsaved()) != 0) {
486 window -= 1;
487 do {
488 struct reg_window *rwin = &t->reg_window[window];
489 int winsize = sizeof(struct reg_window);
490 unsigned long sp;
491
492 sp = t->rwbuf_stkptrs[window];
493
494 if (test_thread_64bit_stack(sp))
495 sp += STACK_BIAS;
496 else
497 winsize = sizeof(struct reg_window32);
498
499 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
500 shift_window_buffer(window, get_thread_wsaved() - 1, t);
501 set_thread_wsaved(get_thread_wsaved() - 1);
502 }
503 } while (window--);
504 }
505 }
506
stack_unaligned(unsigned long sp)507 static void stack_unaligned(unsigned long sp)
508 {
509 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp);
510 }
511
512 static const char uwfault32[] = KERN_INFO \
513 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
514 static const char uwfault64[] = KERN_INFO \
515 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
516
fault_in_user_windows(struct pt_regs * regs)517 void fault_in_user_windows(struct pt_regs *regs)
518 {
519 struct thread_info *t = current_thread_info();
520 unsigned long window;
521
522 flush_user_windows();
523 window = get_thread_wsaved();
524
525 if (likely(window != 0)) {
526 window -= 1;
527 do {
528 struct reg_window *rwin = &t->reg_window[window];
529 int winsize = sizeof(struct reg_window);
530 unsigned long sp, orig_sp;
531
532 orig_sp = sp = t->rwbuf_stkptrs[window];
533
534 if (test_thread_64bit_stack(sp))
535 sp += STACK_BIAS;
536 else
537 winsize = sizeof(struct reg_window32);
538
539 if (unlikely(sp & 0x7UL))
540 stack_unaligned(sp);
541
542 if (unlikely(copy_to_user((char __user *)sp,
543 rwin, winsize))) {
544 if (show_unhandled_signals)
545 printk_ratelimited(is_compat_task() ?
546 uwfault32 : uwfault64,
547 current->comm, current->pid,
548 sp, orig_sp,
549 regs->tpc,
550 regs->u_regs[UREG_I7]);
551 goto barf;
552 }
553 } while (window--);
554 }
555 set_thread_wsaved(0);
556 return;
557
558 barf:
559 set_thread_wsaved(window + 1);
560 force_sig(SIGSEGV);
561 }
562
563 /* Copy a Sparc thread. The fork() return value conventions
564 * under SunOS are nothing short of bletcherous:
565 * Parent --> %o0 == childs pid, %o1 == 0
566 * Child --> %o0 == parents pid, %o1 == 1
567 */
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)568 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
569 {
570 unsigned long clone_flags = args->flags;
571 unsigned long sp = args->stack;
572 unsigned long tls = args->tls;
573 struct thread_info *t = task_thread_info(p);
574 struct pt_regs *regs = current_pt_regs();
575 struct sparc_stackf *parent_sf;
576 unsigned long child_stack_sz;
577 char *child_trap_frame;
578
579 /* Calculate offset to stack_frame & pt_regs */
580 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
581 child_trap_frame = (task_stack_page(p) +
582 (THREAD_SIZE - child_stack_sz));
583
584 t->new_child = 1;
585 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
586 t->kregs = (struct pt_regs *) (child_trap_frame +
587 sizeof(struct sparc_stackf));
588 t->fpsaved[0] = 0;
589
590 if (unlikely(args->fn)) {
591 memset(child_trap_frame, 0, child_stack_sz);
592 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
593 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
594 t->kregs->u_regs[UREG_G1] = (unsigned long) args->fn;
595 t->kregs->u_regs[UREG_G2] = (unsigned long) args->fn_arg;
596 return 0;
597 }
598
599 parent_sf = ((struct sparc_stackf *) regs) - 1;
600 memcpy(child_trap_frame, parent_sf, child_stack_sz);
601 if (t->flags & _TIF_32BIT) {
602 sp &= 0x00000000ffffffffUL;
603 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
604 }
605 t->kregs->u_regs[UREG_FP] = sp;
606 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
607 (regs->tstate + 1) & TSTATE_CWP;
608 if (sp != regs->u_regs[UREG_FP]) {
609 unsigned long csp;
610
611 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
612 if (!csp)
613 return -EFAULT;
614 t->kregs->u_regs[UREG_FP] = csp;
615 }
616 if (t->utraps)
617 t->utraps[0]++;
618
619 /* Set the return value for the child. */
620 t->kregs->u_regs[UREG_I0] = current->pid;
621 t->kregs->u_regs[UREG_I1] = 1;
622
623 /* Set the second return value for the parent. */
624 regs->u_regs[UREG_I1] = 0;
625
626 if (clone_flags & CLONE_SETTLS)
627 t->kregs->u_regs[UREG_G7] = tls;
628
629 return 0;
630 }
631
632 /* TIF_MCDPER in thread info flags for current task is updated lazily upon
633 * a context switch. Update this flag in current task's thread flags
634 * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
635 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)636 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
637 {
638 if (adi_capable()) {
639 register unsigned long tmp_mcdper;
640
641 __asm__ __volatile__(
642 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */
643 "mov %%g1, %0\n\t"
644 : "=r" (tmp_mcdper)
645 :
646 : "g1");
647 if (tmp_mcdper)
648 set_thread_flag(TIF_MCDPER);
649 else
650 clear_thread_flag(TIF_MCDPER);
651 }
652
653 *dst = *src;
654 return 0;
655 }
656
__get_wchan(struct task_struct * task)657 unsigned long __get_wchan(struct task_struct *task)
658 {
659 unsigned long pc, fp, bias = 0;
660 struct thread_info *tp;
661 struct reg_window *rw;
662 unsigned long ret = 0;
663 int count = 0;
664
665 tp = task_thread_info(task);
666 bias = STACK_BIAS;
667 fp = task_thread_info(task)->ksp + bias;
668
669 do {
670 if (!kstack_valid(tp, fp))
671 break;
672 rw = (struct reg_window *) fp;
673 pc = rw->ins[7];
674 if (!in_sched_functions(pc)) {
675 ret = pc;
676 goto out;
677 }
678 fp = rw->ins[6] + bias;
679 } while (++count < 16);
680
681 out:
682 return ret;
683 }
684