1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/ptrace.h> 23 #include <linux/slab.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/compat.h> 27 #include <linux/tick.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/sysrq.h> 32 #include <linux/nmi.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/system.h> 36 #include <asm/page.h> 37 #include <asm/pgalloc.h> 38 #include <asm/pgtable.h> 39 #include <asm/processor.h> 40 #include <asm/pstate.h> 41 #include <asm/elf.h> 42 #include <asm/fpumacro.h> 43 #include <asm/head.h> 44 #include <asm/cpudata.h> 45 #include <asm/mmu_context.h> 46 #include <asm/unistd.h> 47 #include <asm/hypervisor.h> 48 #include <asm/syscalls.h> 49 #include <asm/irq_regs.h> 50 #include <asm/smp.h> 51 52 #include "kstack.h" 53 54 static void sparc64_yield(int cpu) 55 { 56 if (tlb_type != hypervisor) { 57 touch_nmi_watchdog(); 58 return; 59 } 60 61 clear_thread_flag(TIF_POLLING_NRFLAG); 62 smp_mb__after_clear_bit(); 63 64 while (!need_resched() && !cpu_is_offline(cpu)) { 65 unsigned long pstate; 66 67 /* Disable interrupts. */ 68 __asm__ __volatile__( 69 "rdpr %%pstate, %0\n\t" 70 "andn %0, %1, %0\n\t" 71 "wrpr %0, %%g0, %%pstate" 72 : "=&r" (pstate) 73 : "i" (PSTATE_IE)); 74 75 if (!need_resched() && !cpu_is_offline(cpu)) 76 sun4v_cpu_yield(); 77 78 /* Re-enable interrupts. */ 79 __asm__ __volatile__( 80 "rdpr %%pstate, %0\n\t" 81 "or %0, %1, %0\n\t" 82 "wrpr %0, %%g0, %%pstate" 83 : "=&r" (pstate) 84 : "i" (PSTATE_IE)); 85 } 86 87 set_thread_flag(TIF_POLLING_NRFLAG); 88 } 89 90 /* The idle loop on sparc64. */ 91 void cpu_idle(void) 92 { 93 int cpu = smp_processor_id(); 94 95 set_thread_flag(TIF_POLLING_NRFLAG); 96 97 while(1) { 98 tick_nohz_idle_enter(); 99 rcu_idle_enter(); 100 101 while (!need_resched() && !cpu_is_offline(cpu)) 102 sparc64_yield(cpu); 103 104 rcu_idle_exit(); 105 tick_nohz_idle_exit(); 106 107 #ifdef CONFIG_HOTPLUG_CPU 108 if (cpu_is_offline(cpu)) { 109 sched_preempt_enable_no_resched(); 110 cpu_play_dead(); 111 } 112 #endif 113 schedule_preempt_disabled(); 114 } 115 } 116 117 #ifdef CONFIG_COMPAT 118 static void show_regwindow32(struct pt_regs *regs) 119 { 120 struct reg_window32 __user *rw; 121 struct reg_window32 r_w; 122 mm_segment_t old_fs; 123 124 __asm__ __volatile__ ("flushw"); 125 rw = compat_ptr((unsigned)regs->u_regs[14]); 126 old_fs = get_fs(); 127 set_fs (USER_DS); 128 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 129 set_fs (old_fs); 130 return; 131 } 132 133 set_fs (old_fs); 134 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 135 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 138 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 139 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 142 } 143 #else 144 #define show_regwindow32(regs) do { } while (0) 145 #endif 146 147 static void show_regwindow(struct pt_regs *regs) 148 { 149 struct reg_window __user *rw; 150 struct reg_window *rwk; 151 struct reg_window r_w; 152 mm_segment_t old_fs; 153 154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 155 __asm__ __volatile__ ("flushw"); 156 rw = (struct reg_window __user *) 157 (regs->u_regs[14] + STACK_BIAS); 158 rwk = (struct reg_window *) 159 (regs->u_regs[14] + STACK_BIAS); 160 if (!(regs->tstate & TSTATE_PRIV)) { 161 old_fs = get_fs(); 162 set_fs (USER_DS); 163 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 164 set_fs (old_fs); 165 return; 166 } 167 rwk = &r_w; 168 set_fs (old_fs); 169 } 170 } else { 171 show_regwindow32(regs); 172 return; 173 } 174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 182 if (regs->tstate & TSTATE_PRIV) 183 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 184 } 185 186 void show_regs(struct pt_regs *regs) 187 { 188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 189 regs->tpc, regs->tnpc, regs->y, print_tainted()); 190 printk("TPC: <%pS>\n", (void *) regs->tpc); 191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 193 regs->u_regs[3]); 194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 196 regs->u_regs[7]); 197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 199 regs->u_regs[11]); 200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 202 regs->u_regs[15]); 203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 204 show_regwindow(regs); 205 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 206 } 207 208 struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; 209 static DEFINE_SPINLOCK(global_reg_snapshot_lock); 210 211 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 212 int this_cpu) 213 { 214 flushw_all(); 215 216 global_reg_snapshot[this_cpu].tstate = regs->tstate; 217 global_reg_snapshot[this_cpu].tpc = regs->tpc; 218 global_reg_snapshot[this_cpu].tnpc = regs->tnpc; 219 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; 220 221 if (regs->tstate & TSTATE_PRIV) { 222 struct reg_window *rw; 223 224 rw = (struct reg_window *) 225 (regs->u_regs[UREG_FP] + STACK_BIAS); 226 if (kstack_valid(tp, (unsigned long) rw)) { 227 global_reg_snapshot[this_cpu].i7 = rw->ins[7]; 228 rw = (struct reg_window *) 229 (rw->ins[6] + STACK_BIAS); 230 if (kstack_valid(tp, (unsigned long) rw)) 231 global_reg_snapshot[this_cpu].rpc = rw->ins[7]; 232 } 233 } else { 234 global_reg_snapshot[this_cpu].i7 = 0; 235 global_reg_snapshot[this_cpu].rpc = 0; 236 } 237 global_reg_snapshot[this_cpu].thread = tp; 238 } 239 240 /* In order to avoid hangs we do not try to synchronize with the 241 * global register dump client cpus. The last store they make is to 242 * the thread pointer, so do a short poll waiting for that to become 243 * non-NULL. 244 */ 245 static void __global_reg_poll(struct global_reg_snapshot *gp) 246 { 247 int limit = 0; 248 249 while (!gp->thread && ++limit < 100) { 250 barrier(); 251 udelay(1); 252 } 253 } 254 255 void arch_trigger_all_cpu_backtrace(void) 256 { 257 struct thread_info *tp = current_thread_info(); 258 struct pt_regs *regs = get_irq_regs(); 259 unsigned long flags; 260 int this_cpu, cpu; 261 262 if (!regs) 263 regs = tp->kregs; 264 265 spin_lock_irqsave(&global_reg_snapshot_lock, flags); 266 267 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 268 269 this_cpu = raw_smp_processor_id(); 270 271 __global_reg_self(tp, regs, this_cpu); 272 273 smp_fetch_global_regs(); 274 275 for_each_online_cpu(cpu) { 276 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; 277 278 __global_reg_poll(gp); 279 280 tp = gp->thread; 281 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 282 (cpu == this_cpu ? '*' : ' '), cpu, 283 gp->tstate, gp->tpc, gp->tnpc, 284 ((tp && tp->task) ? tp->task->comm : "NULL"), 285 ((tp && tp->task) ? tp->task->pid : -1)); 286 287 if (gp->tstate & TSTATE_PRIV) { 288 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 289 (void *) gp->tpc, 290 (void *) gp->o7, 291 (void *) gp->i7, 292 (void *) gp->rpc); 293 } else { 294 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 295 gp->tpc, gp->o7, gp->i7, gp->rpc); 296 } 297 } 298 299 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 300 301 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); 302 } 303 304 #ifdef CONFIG_MAGIC_SYSRQ 305 306 static void sysrq_handle_globreg(int key) 307 { 308 arch_trigger_all_cpu_backtrace(); 309 } 310 311 static struct sysrq_key_op sparc_globalreg_op = { 312 .handler = sysrq_handle_globreg, 313 .help_msg = "Globalregs", 314 .action_msg = "Show Global CPU Regs", 315 }; 316 317 static int __init sparc_globreg_init(void) 318 { 319 return register_sysrq_key('y', &sparc_globalreg_op); 320 } 321 322 core_initcall(sparc_globreg_init); 323 324 #endif 325 326 unsigned long thread_saved_pc(struct task_struct *tsk) 327 { 328 struct thread_info *ti = task_thread_info(tsk); 329 unsigned long ret = 0xdeadbeefUL; 330 331 if (ti && ti->ksp) { 332 unsigned long *sp; 333 sp = (unsigned long *)(ti->ksp + STACK_BIAS); 334 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && 335 sp[14]) { 336 unsigned long *fp; 337 fp = (unsigned long *)(sp[14] + STACK_BIAS); 338 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) 339 ret = fp[15]; 340 } 341 } 342 return ret; 343 } 344 345 /* Free current thread data structures etc.. */ 346 void exit_thread(void) 347 { 348 struct thread_info *t = current_thread_info(); 349 350 if (t->utraps) { 351 if (t->utraps[0] < 2) 352 kfree (t->utraps); 353 else 354 t->utraps[0]--; 355 } 356 } 357 358 void flush_thread(void) 359 { 360 struct thread_info *t = current_thread_info(); 361 struct mm_struct *mm; 362 363 mm = t->task->mm; 364 if (mm) 365 tsb_context_switch(mm); 366 367 set_thread_wsaved(0); 368 369 /* Clear FPU register state. */ 370 t->fpsaved[0] = 0; 371 } 372 373 /* It's a bit more tricky when 64-bit tasks are involved... */ 374 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 375 { 376 unsigned long fp, distance, rval; 377 378 if (!(test_thread_flag(TIF_32BIT))) { 379 csp += STACK_BIAS; 380 psp += STACK_BIAS; 381 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 382 fp += STACK_BIAS; 383 } else 384 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 385 386 /* Now align the stack as this is mandatory in the Sparc ABI 387 * due to how register windows work. This hides the 388 * restriction from thread libraries etc. 389 */ 390 csp &= ~15UL; 391 392 distance = fp - psp; 393 rval = (csp - distance); 394 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 395 rval = 0; 396 else if (test_thread_flag(TIF_32BIT)) { 397 if (put_user(((u32)csp), 398 &(((struct reg_window32 __user *)rval)->ins[6]))) 399 rval = 0; 400 } else { 401 if (put_user(((u64)csp - STACK_BIAS), 402 &(((struct reg_window __user *)rval)->ins[6]))) 403 rval = 0; 404 else 405 rval = rval - STACK_BIAS; 406 } 407 408 return rval; 409 } 410 411 /* Standard stuff. */ 412 static inline void shift_window_buffer(int first_win, int last_win, 413 struct thread_info *t) 414 { 415 int i; 416 417 for (i = first_win; i < last_win; i++) { 418 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 419 memcpy(&t->reg_window[i], &t->reg_window[i+1], 420 sizeof(struct reg_window)); 421 } 422 } 423 424 void synchronize_user_stack(void) 425 { 426 struct thread_info *t = current_thread_info(); 427 unsigned long window; 428 429 flush_user_windows(); 430 if ((window = get_thread_wsaved()) != 0) { 431 int winsize = sizeof(struct reg_window); 432 int bias = 0; 433 434 if (test_thread_flag(TIF_32BIT)) 435 winsize = sizeof(struct reg_window32); 436 else 437 bias = STACK_BIAS; 438 439 window -= 1; 440 do { 441 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 442 struct reg_window *rwin = &t->reg_window[window]; 443 444 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 445 shift_window_buffer(window, get_thread_wsaved() - 1, t); 446 set_thread_wsaved(get_thread_wsaved() - 1); 447 } 448 } while (window--); 449 } 450 } 451 452 static void stack_unaligned(unsigned long sp) 453 { 454 siginfo_t info; 455 456 info.si_signo = SIGBUS; 457 info.si_errno = 0; 458 info.si_code = BUS_ADRALN; 459 info.si_addr = (void __user *) sp; 460 info.si_trapno = 0; 461 force_sig_info(SIGBUS, &info, current); 462 } 463 464 void fault_in_user_windows(void) 465 { 466 struct thread_info *t = current_thread_info(); 467 unsigned long window; 468 int winsize = sizeof(struct reg_window); 469 int bias = 0; 470 471 if (test_thread_flag(TIF_32BIT)) 472 winsize = sizeof(struct reg_window32); 473 else 474 bias = STACK_BIAS; 475 476 flush_user_windows(); 477 window = get_thread_wsaved(); 478 479 if (likely(window != 0)) { 480 window -= 1; 481 do { 482 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 483 struct reg_window *rwin = &t->reg_window[window]; 484 485 if (unlikely(sp & 0x7UL)) 486 stack_unaligned(sp); 487 488 if (unlikely(copy_to_user((char __user *)sp, 489 rwin, winsize))) 490 goto barf; 491 } while (window--); 492 } 493 set_thread_wsaved(0); 494 return; 495 496 barf: 497 set_thread_wsaved(window + 1); 498 do_exit(SIGILL); 499 } 500 501 asmlinkage long sparc_do_fork(unsigned long clone_flags, 502 unsigned long stack_start, 503 struct pt_regs *regs, 504 unsigned long stack_size) 505 { 506 int __user *parent_tid_ptr, *child_tid_ptr; 507 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 508 long ret; 509 510 #ifdef CONFIG_COMPAT 511 if (test_thread_flag(TIF_32BIT)) { 512 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 513 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 514 } else 515 #endif 516 { 517 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 518 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 519 } 520 521 ret = do_fork(clone_flags, stack_start, 522 regs, stack_size, 523 parent_tid_ptr, child_tid_ptr); 524 525 /* If we get an error and potentially restart the system 526 * call, we're screwed because copy_thread() clobbered 527 * the parent's %o1. So detect that case and restore it 528 * here. 529 */ 530 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 531 regs->u_regs[UREG_I1] = orig_i1; 532 533 return ret; 534 } 535 536 /* Copy a Sparc thread. The fork() return value conventions 537 * under SunOS are nothing short of bletcherous: 538 * Parent --> %o0 == childs pid, %o1 == 0 539 * Child --> %o0 == parents pid, %o1 == 1 540 */ 541 int copy_thread(unsigned long clone_flags, unsigned long sp, 542 unsigned long unused, 543 struct task_struct *p, struct pt_regs *regs) 544 { 545 struct thread_info *t = task_thread_info(p); 546 struct sparc_stackf *parent_sf; 547 unsigned long child_stack_sz; 548 char *child_trap_frame; 549 int kernel_thread; 550 551 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; 552 parent_sf = ((struct sparc_stackf *) regs) - 1; 553 554 /* Calculate offset to stack_frame & pt_regs */ 555 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + 556 (kernel_thread ? STACKFRAME_SZ : 0)); 557 child_trap_frame = (task_stack_page(p) + 558 (THREAD_SIZE - child_stack_sz)); 559 memcpy(child_trap_frame, parent_sf, child_stack_sz); 560 561 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | 562 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | 563 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); 564 t->new_child = 1; 565 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 566 t->kregs = (struct pt_regs *) (child_trap_frame + 567 sizeof(struct sparc_stackf)); 568 t->fpsaved[0] = 0; 569 570 if (kernel_thread) { 571 struct sparc_stackf *child_sf = (struct sparc_stackf *) 572 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); 573 574 /* Zero terminate the stack backtrace. */ 575 child_sf->fp = NULL; 576 t->kregs->u_regs[UREG_FP] = 577 ((unsigned long) child_sf) - STACK_BIAS; 578 579 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); 580 t->kregs->u_regs[UREG_G6] = (unsigned long) t; 581 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; 582 } else { 583 if (t->flags & _TIF_32BIT) { 584 sp &= 0x00000000ffffffffUL; 585 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 586 } 587 t->kregs->u_regs[UREG_FP] = sp; 588 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); 589 if (sp != regs->u_regs[UREG_FP]) { 590 unsigned long csp; 591 592 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 593 if (!csp) 594 return -EFAULT; 595 t->kregs->u_regs[UREG_FP] = csp; 596 } 597 if (t->utraps) 598 t->utraps[0]++; 599 } 600 601 /* Set the return value for the child. */ 602 t->kregs->u_regs[UREG_I0] = current->pid; 603 t->kregs->u_regs[UREG_I1] = 1; 604 605 /* Set the second return value for the parent. */ 606 regs->u_regs[UREG_I1] = 0; 607 608 if (clone_flags & CLONE_SETTLS) 609 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 610 611 return 0; 612 } 613 614 /* 615 * This is the mechanism for creating a new kernel thread. 616 * 617 * NOTE! Only a kernel-only process(ie the swapper or direct descendants 618 * who haven't done an "execve()") should use this: it will work within 619 * a system call from a "real" process, but the process memory space will 620 * not be freed until both the parent and the child have exited. 621 */ 622 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 623 { 624 long retval; 625 626 /* If the parent runs before fn(arg) is called by the child, 627 * the input registers of this function can be clobbered. 628 * So we stash 'fn' and 'arg' into global registers which 629 * will not be modified by the parent. 630 */ 631 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ 632 "mov %5, %%g3\n\t" /* Save ARG into global */ 633 "mov %1, %%g1\n\t" /* Clone syscall nr. */ 634 "mov %2, %%o0\n\t" /* Clone flags. */ 635 "mov 0, %%o1\n\t" /* usp arg == 0 */ 636 "t 0x6d\n\t" /* Linux/Sparc clone(). */ 637 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ 638 " mov %%o0, %0\n\t" 639 "jmpl %%g2, %%o7\n\t" /* Call the function. */ 640 " mov %%g3, %%o0\n\t" /* Set arg in delay. */ 641 "mov %3, %%g1\n\t" 642 "t 0x6d\n\t" /* Linux/Sparc exit(). */ 643 /* Notreached by child. */ 644 "1:" : 645 "=r" (retval) : 646 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), 647 "i" (__NR_exit), "r" (fn), "r" (arg) : 648 "g1", "g2", "g3", "o0", "o1", "memory", "cc"); 649 return retval; 650 } 651 EXPORT_SYMBOL(kernel_thread); 652 653 typedef struct { 654 union { 655 unsigned int pr_regs[32]; 656 unsigned long pr_dregs[16]; 657 } pr_fr; 658 unsigned int __unused; 659 unsigned int pr_fsr; 660 unsigned char pr_qcnt; 661 unsigned char pr_q_entrysize; 662 unsigned char pr_en; 663 unsigned int pr_q[64]; 664 } elf_fpregset_t32; 665 666 /* 667 * fill in the fpu structure for a core dump. 668 */ 669 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 670 { 671 unsigned long *kfpregs = current_thread_info()->fpregs; 672 unsigned long fprs = current_thread_info()->fpsaved[0]; 673 674 if (test_thread_flag(TIF_32BIT)) { 675 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 676 677 if (fprs & FPRS_DL) 678 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 679 sizeof(unsigned int) * 32); 680 else 681 memset(&fpregs32->pr_fr.pr_regs[0], 0, 682 sizeof(unsigned int) * 32); 683 fpregs32->pr_qcnt = 0; 684 fpregs32->pr_q_entrysize = 8; 685 memset(&fpregs32->pr_q[0], 0, 686 (sizeof(unsigned int) * 64)); 687 if (fprs & FPRS_FEF) { 688 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 689 fpregs32->pr_en = 1; 690 } else { 691 fpregs32->pr_fsr = 0; 692 fpregs32->pr_en = 0; 693 } 694 } else { 695 if(fprs & FPRS_DL) 696 memcpy(&fpregs->pr_regs[0], kfpregs, 697 sizeof(unsigned int) * 32); 698 else 699 memset(&fpregs->pr_regs[0], 0, 700 sizeof(unsigned int) * 32); 701 if(fprs & FPRS_DU) 702 memcpy(&fpregs->pr_regs[16], kfpregs+16, 703 sizeof(unsigned int) * 32); 704 else 705 memset(&fpregs->pr_regs[16], 0, 706 sizeof(unsigned int) * 32); 707 if(fprs & FPRS_FEF) { 708 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 709 fpregs->pr_gsr = current_thread_info()->gsr[0]; 710 } else { 711 fpregs->pr_fsr = fpregs->pr_gsr = 0; 712 } 713 fpregs->pr_fprs = fprs; 714 } 715 return 1; 716 } 717 EXPORT_SYMBOL(dump_fpu); 718 719 /* 720 * sparc_execve() executes a new program after the asm stub has set 721 * things up for us. This should basically do what I want it to. 722 */ 723 asmlinkage int sparc_execve(struct pt_regs *regs) 724 { 725 int error, base = 0; 726 char *filename; 727 728 /* User register window flush is done by entry.S */ 729 730 /* Check for indirect call. */ 731 if (regs->u_regs[UREG_G1] == 0) 732 base = 1; 733 734 filename = getname((char __user *)regs->u_regs[base + UREG_I0]); 735 error = PTR_ERR(filename); 736 if (IS_ERR(filename)) 737 goto out; 738 error = do_execve(filename, 739 (const char __user *const __user *) 740 regs->u_regs[base + UREG_I1], 741 (const char __user *const __user *) 742 regs->u_regs[base + UREG_I2], regs); 743 putname(filename); 744 if (!error) { 745 fprs_write(0); 746 current_thread_info()->xfsr[0] = 0; 747 current_thread_info()->fpsaved[0] = 0; 748 regs->tstate &= ~TSTATE_PEF; 749 } 750 out: 751 return error; 752 } 753 754 unsigned long get_wchan(struct task_struct *task) 755 { 756 unsigned long pc, fp, bias = 0; 757 struct thread_info *tp; 758 struct reg_window *rw; 759 unsigned long ret = 0; 760 int count = 0; 761 762 if (!task || task == current || 763 task->state == TASK_RUNNING) 764 goto out; 765 766 tp = task_thread_info(task); 767 bias = STACK_BIAS; 768 fp = task_thread_info(task)->ksp + bias; 769 770 do { 771 if (!kstack_valid(tp, fp)) 772 break; 773 rw = (struct reg_window *) fp; 774 pc = rw->ins[7]; 775 if (!in_sched_functions(pc)) { 776 ret = pc; 777 goto out; 778 } 779 fp = rw->ins[6] + bias; 780 } while (++count < 16); 781 782 out: 783 return ret; 784 } 785