1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/ptrace.h> 23 #include <linux/slab.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/compat.h> 27 #include <linux/tick.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/sysrq.h> 32 #include <linux/nmi.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/page.h> 36 #include <asm/pgalloc.h> 37 #include <asm/pgtable.h> 38 #include <asm/processor.h> 39 #include <asm/pstate.h> 40 #include <asm/elf.h> 41 #include <asm/fpumacro.h> 42 #include <asm/head.h> 43 #include <asm/cpudata.h> 44 #include <asm/mmu_context.h> 45 #include <asm/unistd.h> 46 #include <asm/hypervisor.h> 47 #include <asm/syscalls.h> 48 #include <asm/irq_regs.h> 49 #include <asm/smp.h> 50 51 #include "kstack.h" 52 53 static void sparc64_yield(int cpu) 54 { 55 if (tlb_type != hypervisor) { 56 touch_nmi_watchdog(); 57 return; 58 } 59 60 clear_thread_flag(TIF_POLLING_NRFLAG); 61 smp_mb__after_clear_bit(); 62 63 while (!need_resched() && !cpu_is_offline(cpu)) { 64 unsigned long pstate; 65 66 /* Disable interrupts. */ 67 __asm__ __volatile__( 68 "rdpr %%pstate, %0\n\t" 69 "andn %0, %1, %0\n\t" 70 "wrpr %0, %%g0, %%pstate" 71 : "=&r" (pstate) 72 : "i" (PSTATE_IE)); 73 74 if (!need_resched() && !cpu_is_offline(cpu)) 75 sun4v_cpu_yield(); 76 77 /* Re-enable interrupts. */ 78 __asm__ __volatile__( 79 "rdpr %%pstate, %0\n\t" 80 "or %0, %1, %0\n\t" 81 "wrpr %0, %%g0, %%pstate" 82 : "=&r" (pstate) 83 : "i" (PSTATE_IE)); 84 } 85 86 set_thread_flag(TIF_POLLING_NRFLAG); 87 } 88 89 /* The idle loop on sparc64. */ 90 void cpu_idle(void) 91 { 92 int cpu = smp_processor_id(); 93 94 set_thread_flag(TIF_POLLING_NRFLAG); 95 96 while(1) { 97 tick_nohz_idle_enter(); 98 rcu_idle_enter(); 99 100 while (!need_resched() && !cpu_is_offline(cpu)) 101 sparc64_yield(cpu); 102 103 rcu_idle_exit(); 104 tick_nohz_idle_exit(); 105 106 #ifdef CONFIG_HOTPLUG_CPU 107 if (cpu_is_offline(cpu)) { 108 sched_preempt_enable_no_resched(); 109 cpu_play_dead(); 110 } 111 #endif 112 schedule_preempt_disabled(); 113 } 114 } 115 116 #ifdef CONFIG_COMPAT 117 static void show_regwindow32(struct pt_regs *regs) 118 { 119 struct reg_window32 __user *rw; 120 struct reg_window32 r_w; 121 mm_segment_t old_fs; 122 123 __asm__ __volatile__ ("flushw"); 124 rw = compat_ptr((unsigned)regs->u_regs[14]); 125 old_fs = get_fs(); 126 set_fs (USER_DS); 127 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 128 set_fs (old_fs); 129 return; 130 } 131 132 set_fs (old_fs); 133 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 134 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 135 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 136 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 137 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 138 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 139 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 140 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 141 } 142 #else 143 #define show_regwindow32(regs) do { } while (0) 144 #endif 145 146 static void show_regwindow(struct pt_regs *regs) 147 { 148 struct reg_window __user *rw; 149 struct reg_window *rwk; 150 struct reg_window r_w; 151 mm_segment_t old_fs; 152 153 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 154 __asm__ __volatile__ ("flushw"); 155 rw = (struct reg_window __user *) 156 (regs->u_regs[14] + STACK_BIAS); 157 rwk = (struct reg_window *) 158 (regs->u_regs[14] + STACK_BIAS); 159 if (!(regs->tstate & TSTATE_PRIV)) { 160 old_fs = get_fs(); 161 set_fs (USER_DS); 162 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 163 set_fs (old_fs); 164 return; 165 } 166 rwk = &r_w; 167 set_fs (old_fs); 168 } 169 } else { 170 show_regwindow32(regs); 171 return; 172 } 173 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 174 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 175 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 176 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 177 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 178 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 179 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 180 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 181 if (regs->tstate & TSTATE_PRIV) 182 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 183 } 184 185 void show_regs(struct pt_regs *regs) 186 { 187 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 188 regs->tpc, regs->tnpc, regs->y, print_tainted()); 189 printk("TPC: <%pS>\n", (void *) regs->tpc); 190 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 191 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 192 regs->u_regs[3]); 193 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 194 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 195 regs->u_regs[7]); 196 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 197 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 198 regs->u_regs[11]); 199 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 200 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 201 regs->u_regs[15]); 202 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 203 show_regwindow(regs); 204 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 205 } 206 207 struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; 208 static DEFINE_SPINLOCK(global_reg_snapshot_lock); 209 210 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 211 int this_cpu) 212 { 213 flushw_all(); 214 215 global_reg_snapshot[this_cpu].tstate = regs->tstate; 216 global_reg_snapshot[this_cpu].tpc = regs->tpc; 217 global_reg_snapshot[this_cpu].tnpc = regs->tnpc; 218 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; 219 220 if (regs->tstate & TSTATE_PRIV) { 221 struct reg_window *rw; 222 223 rw = (struct reg_window *) 224 (regs->u_regs[UREG_FP] + STACK_BIAS); 225 if (kstack_valid(tp, (unsigned long) rw)) { 226 global_reg_snapshot[this_cpu].i7 = rw->ins[7]; 227 rw = (struct reg_window *) 228 (rw->ins[6] + STACK_BIAS); 229 if (kstack_valid(tp, (unsigned long) rw)) 230 global_reg_snapshot[this_cpu].rpc = rw->ins[7]; 231 } 232 } else { 233 global_reg_snapshot[this_cpu].i7 = 0; 234 global_reg_snapshot[this_cpu].rpc = 0; 235 } 236 global_reg_snapshot[this_cpu].thread = tp; 237 } 238 239 /* In order to avoid hangs we do not try to synchronize with the 240 * global register dump client cpus. The last store they make is to 241 * the thread pointer, so do a short poll waiting for that to become 242 * non-NULL. 243 */ 244 static void __global_reg_poll(struct global_reg_snapshot *gp) 245 { 246 int limit = 0; 247 248 while (!gp->thread && ++limit < 100) { 249 barrier(); 250 udelay(1); 251 } 252 } 253 254 void arch_trigger_all_cpu_backtrace(void) 255 { 256 struct thread_info *tp = current_thread_info(); 257 struct pt_regs *regs = get_irq_regs(); 258 unsigned long flags; 259 int this_cpu, cpu; 260 261 if (!regs) 262 regs = tp->kregs; 263 264 spin_lock_irqsave(&global_reg_snapshot_lock, flags); 265 266 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 267 268 this_cpu = raw_smp_processor_id(); 269 270 __global_reg_self(tp, regs, this_cpu); 271 272 smp_fetch_global_regs(); 273 274 for_each_online_cpu(cpu) { 275 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; 276 277 __global_reg_poll(gp); 278 279 tp = gp->thread; 280 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 281 (cpu == this_cpu ? '*' : ' '), cpu, 282 gp->tstate, gp->tpc, gp->tnpc, 283 ((tp && tp->task) ? tp->task->comm : "NULL"), 284 ((tp && tp->task) ? tp->task->pid : -1)); 285 286 if (gp->tstate & TSTATE_PRIV) { 287 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 288 (void *) gp->tpc, 289 (void *) gp->o7, 290 (void *) gp->i7, 291 (void *) gp->rpc); 292 } else { 293 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 294 gp->tpc, gp->o7, gp->i7, gp->rpc); 295 } 296 } 297 298 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 299 300 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); 301 } 302 303 #ifdef CONFIG_MAGIC_SYSRQ 304 305 static void sysrq_handle_globreg(int key) 306 { 307 arch_trigger_all_cpu_backtrace(); 308 } 309 310 static struct sysrq_key_op sparc_globalreg_op = { 311 .handler = sysrq_handle_globreg, 312 .help_msg = "Globalregs", 313 .action_msg = "Show Global CPU Regs", 314 }; 315 316 static int __init sparc_globreg_init(void) 317 { 318 return register_sysrq_key('y', &sparc_globalreg_op); 319 } 320 321 core_initcall(sparc_globreg_init); 322 323 #endif 324 325 unsigned long thread_saved_pc(struct task_struct *tsk) 326 { 327 struct thread_info *ti = task_thread_info(tsk); 328 unsigned long ret = 0xdeadbeefUL; 329 330 if (ti && ti->ksp) { 331 unsigned long *sp; 332 sp = (unsigned long *)(ti->ksp + STACK_BIAS); 333 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && 334 sp[14]) { 335 unsigned long *fp; 336 fp = (unsigned long *)(sp[14] + STACK_BIAS); 337 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) 338 ret = fp[15]; 339 } 340 } 341 return ret; 342 } 343 344 /* Free current thread data structures etc.. */ 345 void exit_thread(void) 346 { 347 struct thread_info *t = current_thread_info(); 348 349 if (t->utraps) { 350 if (t->utraps[0] < 2) 351 kfree (t->utraps); 352 else 353 t->utraps[0]--; 354 } 355 } 356 357 void flush_thread(void) 358 { 359 struct thread_info *t = current_thread_info(); 360 struct mm_struct *mm; 361 362 mm = t->task->mm; 363 if (mm) 364 tsb_context_switch(mm); 365 366 set_thread_wsaved(0); 367 368 /* Clear FPU register state. */ 369 t->fpsaved[0] = 0; 370 } 371 372 /* It's a bit more tricky when 64-bit tasks are involved... */ 373 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 374 { 375 unsigned long fp, distance, rval; 376 377 if (!(test_thread_flag(TIF_32BIT))) { 378 csp += STACK_BIAS; 379 psp += STACK_BIAS; 380 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 381 fp += STACK_BIAS; 382 } else 383 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 384 385 /* Now align the stack as this is mandatory in the Sparc ABI 386 * due to how register windows work. This hides the 387 * restriction from thread libraries etc. 388 */ 389 csp &= ~15UL; 390 391 distance = fp - psp; 392 rval = (csp - distance); 393 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 394 rval = 0; 395 else if (test_thread_flag(TIF_32BIT)) { 396 if (put_user(((u32)csp), 397 &(((struct reg_window32 __user *)rval)->ins[6]))) 398 rval = 0; 399 } else { 400 if (put_user(((u64)csp - STACK_BIAS), 401 &(((struct reg_window __user *)rval)->ins[6]))) 402 rval = 0; 403 else 404 rval = rval - STACK_BIAS; 405 } 406 407 return rval; 408 } 409 410 /* Standard stuff. */ 411 static inline void shift_window_buffer(int first_win, int last_win, 412 struct thread_info *t) 413 { 414 int i; 415 416 for (i = first_win; i < last_win; i++) { 417 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 418 memcpy(&t->reg_window[i], &t->reg_window[i+1], 419 sizeof(struct reg_window)); 420 } 421 } 422 423 void synchronize_user_stack(void) 424 { 425 struct thread_info *t = current_thread_info(); 426 unsigned long window; 427 428 flush_user_windows(); 429 if ((window = get_thread_wsaved()) != 0) { 430 int winsize = sizeof(struct reg_window); 431 int bias = 0; 432 433 if (test_thread_flag(TIF_32BIT)) 434 winsize = sizeof(struct reg_window32); 435 else 436 bias = STACK_BIAS; 437 438 window -= 1; 439 do { 440 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 441 struct reg_window *rwin = &t->reg_window[window]; 442 443 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 444 shift_window_buffer(window, get_thread_wsaved() - 1, t); 445 set_thread_wsaved(get_thread_wsaved() - 1); 446 } 447 } while (window--); 448 } 449 } 450 451 static void stack_unaligned(unsigned long sp) 452 { 453 siginfo_t info; 454 455 info.si_signo = SIGBUS; 456 info.si_errno = 0; 457 info.si_code = BUS_ADRALN; 458 info.si_addr = (void __user *) sp; 459 info.si_trapno = 0; 460 force_sig_info(SIGBUS, &info, current); 461 } 462 463 void fault_in_user_windows(void) 464 { 465 struct thread_info *t = current_thread_info(); 466 unsigned long window; 467 int winsize = sizeof(struct reg_window); 468 int bias = 0; 469 470 if (test_thread_flag(TIF_32BIT)) 471 winsize = sizeof(struct reg_window32); 472 else 473 bias = STACK_BIAS; 474 475 flush_user_windows(); 476 window = get_thread_wsaved(); 477 478 if (likely(window != 0)) { 479 window -= 1; 480 do { 481 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 482 struct reg_window *rwin = &t->reg_window[window]; 483 484 if (unlikely(sp & 0x7UL)) 485 stack_unaligned(sp); 486 487 if (unlikely(copy_to_user((char __user *)sp, 488 rwin, winsize))) 489 goto barf; 490 } while (window--); 491 } 492 set_thread_wsaved(0); 493 return; 494 495 barf: 496 set_thread_wsaved(window + 1); 497 do_exit(SIGILL); 498 } 499 500 asmlinkage long sparc_do_fork(unsigned long clone_flags, 501 unsigned long stack_start, 502 struct pt_regs *regs, 503 unsigned long stack_size) 504 { 505 int __user *parent_tid_ptr, *child_tid_ptr; 506 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 507 long ret; 508 509 #ifdef CONFIG_COMPAT 510 if (test_thread_flag(TIF_32BIT)) { 511 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 512 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 513 } else 514 #endif 515 { 516 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 517 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 518 } 519 520 ret = do_fork(clone_flags, stack_start, 521 regs, stack_size, 522 parent_tid_ptr, child_tid_ptr); 523 524 /* If we get an error and potentially restart the system 525 * call, we're screwed because copy_thread() clobbered 526 * the parent's %o1. So detect that case and restore it 527 * here. 528 */ 529 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 530 regs->u_regs[UREG_I1] = orig_i1; 531 532 return ret; 533 } 534 535 /* Copy a Sparc thread. The fork() return value conventions 536 * under SunOS are nothing short of bletcherous: 537 * Parent --> %o0 == childs pid, %o1 == 0 538 * Child --> %o0 == parents pid, %o1 == 1 539 */ 540 int copy_thread(unsigned long clone_flags, unsigned long sp, 541 unsigned long unused, 542 struct task_struct *p, struct pt_regs *regs) 543 { 544 struct thread_info *t = task_thread_info(p); 545 struct sparc_stackf *parent_sf; 546 unsigned long child_stack_sz; 547 char *child_trap_frame; 548 int kernel_thread; 549 550 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; 551 parent_sf = ((struct sparc_stackf *) regs) - 1; 552 553 /* Calculate offset to stack_frame & pt_regs */ 554 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + 555 (kernel_thread ? STACKFRAME_SZ : 0)); 556 child_trap_frame = (task_stack_page(p) + 557 (THREAD_SIZE - child_stack_sz)); 558 memcpy(child_trap_frame, parent_sf, child_stack_sz); 559 560 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | 561 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | 562 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); 563 t->new_child = 1; 564 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 565 t->kregs = (struct pt_regs *) (child_trap_frame + 566 sizeof(struct sparc_stackf)); 567 t->fpsaved[0] = 0; 568 569 if (kernel_thread) { 570 struct sparc_stackf *child_sf = (struct sparc_stackf *) 571 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); 572 573 /* Zero terminate the stack backtrace. */ 574 child_sf->fp = NULL; 575 t->kregs->u_regs[UREG_FP] = 576 ((unsigned long) child_sf) - STACK_BIAS; 577 578 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); 579 t->kregs->u_regs[UREG_G6] = (unsigned long) t; 580 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; 581 } else { 582 if (t->flags & _TIF_32BIT) { 583 sp &= 0x00000000ffffffffUL; 584 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 585 } 586 t->kregs->u_regs[UREG_FP] = sp; 587 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); 588 if (sp != regs->u_regs[UREG_FP]) { 589 unsigned long csp; 590 591 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 592 if (!csp) 593 return -EFAULT; 594 t->kregs->u_regs[UREG_FP] = csp; 595 } 596 if (t->utraps) 597 t->utraps[0]++; 598 } 599 600 /* Set the return value for the child. */ 601 t->kregs->u_regs[UREG_I0] = current->pid; 602 t->kregs->u_regs[UREG_I1] = 1; 603 604 /* Set the second return value for the parent. */ 605 regs->u_regs[UREG_I1] = 0; 606 607 if (clone_flags & CLONE_SETTLS) 608 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 609 610 return 0; 611 } 612 613 /* 614 * This is the mechanism for creating a new kernel thread. 615 * 616 * NOTE! Only a kernel-only process(ie the swapper or direct descendants 617 * who haven't done an "execve()") should use this: it will work within 618 * a system call from a "real" process, but the process memory space will 619 * not be freed until both the parent and the child have exited. 620 */ 621 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 622 { 623 long retval; 624 625 /* If the parent runs before fn(arg) is called by the child, 626 * the input registers of this function can be clobbered. 627 * So we stash 'fn' and 'arg' into global registers which 628 * will not be modified by the parent. 629 */ 630 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ 631 "mov %5, %%g3\n\t" /* Save ARG into global */ 632 "mov %1, %%g1\n\t" /* Clone syscall nr. */ 633 "mov %2, %%o0\n\t" /* Clone flags. */ 634 "mov 0, %%o1\n\t" /* usp arg == 0 */ 635 "t 0x6d\n\t" /* Linux/Sparc clone(). */ 636 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ 637 " mov %%o0, %0\n\t" 638 "jmpl %%g2, %%o7\n\t" /* Call the function. */ 639 " mov %%g3, %%o0\n\t" /* Set arg in delay. */ 640 "mov %3, %%g1\n\t" 641 "t 0x6d\n\t" /* Linux/Sparc exit(). */ 642 /* Notreached by child. */ 643 "1:" : 644 "=r" (retval) : 645 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), 646 "i" (__NR_exit), "r" (fn), "r" (arg) : 647 "g1", "g2", "g3", "o0", "o1", "memory", "cc"); 648 return retval; 649 } 650 EXPORT_SYMBOL(kernel_thread); 651 652 typedef struct { 653 union { 654 unsigned int pr_regs[32]; 655 unsigned long pr_dregs[16]; 656 } pr_fr; 657 unsigned int __unused; 658 unsigned int pr_fsr; 659 unsigned char pr_qcnt; 660 unsigned char pr_q_entrysize; 661 unsigned char pr_en; 662 unsigned int pr_q[64]; 663 } elf_fpregset_t32; 664 665 /* 666 * fill in the fpu structure for a core dump. 667 */ 668 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 669 { 670 unsigned long *kfpregs = current_thread_info()->fpregs; 671 unsigned long fprs = current_thread_info()->fpsaved[0]; 672 673 if (test_thread_flag(TIF_32BIT)) { 674 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 675 676 if (fprs & FPRS_DL) 677 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 678 sizeof(unsigned int) * 32); 679 else 680 memset(&fpregs32->pr_fr.pr_regs[0], 0, 681 sizeof(unsigned int) * 32); 682 fpregs32->pr_qcnt = 0; 683 fpregs32->pr_q_entrysize = 8; 684 memset(&fpregs32->pr_q[0], 0, 685 (sizeof(unsigned int) * 64)); 686 if (fprs & FPRS_FEF) { 687 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 688 fpregs32->pr_en = 1; 689 } else { 690 fpregs32->pr_fsr = 0; 691 fpregs32->pr_en = 0; 692 } 693 } else { 694 if(fprs & FPRS_DL) 695 memcpy(&fpregs->pr_regs[0], kfpregs, 696 sizeof(unsigned int) * 32); 697 else 698 memset(&fpregs->pr_regs[0], 0, 699 sizeof(unsigned int) * 32); 700 if(fprs & FPRS_DU) 701 memcpy(&fpregs->pr_regs[16], kfpregs+16, 702 sizeof(unsigned int) * 32); 703 else 704 memset(&fpregs->pr_regs[16], 0, 705 sizeof(unsigned int) * 32); 706 if(fprs & FPRS_FEF) { 707 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 708 fpregs->pr_gsr = current_thread_info()->gsr[0]; 709 } else { 710 fpregs->pr_fsr = fpregs->pr_gsr = 0; 711 } 712 fpregs->pr_fprs = fprs; 713 } 714 return 1; 715 } 716 EXPORT_SYMBOL(dump_fpu); 717 718 /* 719 * sparc_execve() executes a new program after the asm stub has set 720 * things up for us. This should basically do what I want it to. 721 */ 722 asmlinkage int sparc_execve(struct pt_regs *regs) 723 { 724 int error, base = 0; 725 char *filename; 726 727 /* User register window flush is done by entry.S */ 728 729 /* Check for indirect call. */ 730 if (regs->u_regs[UREG_G1] == 0) 731 base = 1; 732 733 filename = getname((char __user *)regs->u_regs[base + UREG_I0]); 734 error = PTR_ERR(filename); 735 if (IS_ERR(filename)) 736 goto out; 737 error = do_execve(filename, 738 (const char __user *const __user *) 739 regs->u_regs[base + UREG_I1], 740 (const char __user *const __user *) 741 regs->u_regs[base + UREG_I2], regs); 742 putname(filename); 743 if (!error) { 744 fprs_write(0); 745 current_thread_info()->xfsr[0] = 0; 746 current_thread_info()->fpsaved[0] = 0; 747 regs->tstate &= ~TSTATE_PEF; 748 } 749 out: 750 return error; 751 } 752 753 unsigned long get_wchan(struct task_struct *task) 754 { 755 unsigned long pc, fp, bias = 0; 756 struct thread_info *tp; 757 struct reg_window *rw; 758 unsigned long ret = 0; 759 int count = 0; 760 761 if (!task || task == current || 762 task->state == TASK_RUNNING) 763 goto out; 764 765 tp = task_thread_info(task); 766 bias = STACK_BIAS; 767 fp = task_thread_info(task)->ksp + bias; 768 769 do { 770 if (!kstack_valid(tp, fp)) 771 break; 772 rw = (struct reg_window *) fp; 773 pc = rw->ins[7]; 774 if (!in_sched_functions(pc)) { 775 ret = pc; 776 goto out; 777 } 778 fp = rw->ins[6] + bias; 779 } while (++count < 16); 780 781 out: 782 return ret; 783 } 784