xref: /linux/arch/sparc/kernel/process_64.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/system.h>
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/pstate.h>
40 #include <asm/elf.h>
41 #include <asm/fpumacro.h>
42 #include <asm/head.h>
43 #include <asm/cpudata.h>
44 #include <asm/mmu_context.h>
45 #include <asm/unistd.h>
46 #include <asm/hypervisor.h>
47 #include <asm/syscalls.h>
48 #include <asm/irq_regs.h>
49 #include <asm/smp.h>
50 
51 #include "kstack.h"
52 
53 static void sparc64_yield(int cpu)
54 {
55 	if (tlb_type != hypervisor)
56 		return;
57 
58 	clear_thread_flag(TIF_POLLING_NRFLAG);
59 	smp_mb__after_clear_bit();
60 
61 	while (!need_resched() && !cpu_is_offline(cpu)) {
62 		unsigned long pstate;
63 
64 		/* Disable interrupts. */
65 		__asm__ __volatile__(
66 			"rdpr %%pstate, %0\n\t"
67 			"andn %0, %1, %0\n\t"
68 			"wrpr %0, %%g0, %%pstate"
69 			: "=&r" (pstate)
70 			: "i" (PSTATE_IE));
71 
72 		if (!need_resched() && !cpu_is_offline(cpu))
73 			sun4v_cpu_yield();
74 
75 		/* Re-enable interrupts. */
76 		__asm__ __volatile__(
77 			"rdpr %%pstate, %0\n\t"
78 			"or %0, %1, %0\n\t"
79 			"wrpr %0, %%g0, %%pstate"
80 			: "=&r" (pstate)
81 			: "i" (PSTATE_IE));
82 	}
83 
84 	set_thread_flag(TIF_POLLING_NRFLAG);
85 }
86 
87 /* The idle loop on sparc64. */
88 void cpu_idle(void)
89 {
90 	int cpu = smp_processor_id();
91 
92 	set_thread_flag(TIF_POLLING_NRFLAG);
93 
94 	while(1) {
95 		tick_nohz_stop_sched_tick(1);
96 
97 		while (!need_resched() && !cpu_is_offline(cpu))
98 			sparc64_yield(cpu);
99 
100 		tick_nohz_restart_sched_tick();
101 
102 		preempt_enable_no_resched();
103 
104 #ifdef CONFIG_HOTPLUG_CPU
105 		if (cpu_is_offline(cpu))
106 			cpu_play_dead();
107 #endif
108 
109 		schedule();
110 		preempt_disable();
111 	}
112 }
113 
114 #ifdef CONFIG_COMPAT
115 static void show_regwindow32(struct pt_regs *regs)
116 {
117 	struct reg_window32 __user *rw;
118 	struct reg_window32 r_w;
119 	mm_segment_t old_fs;
120 
121 	__asm__ __volatile__ ("flushw");
122 	rw = compat_ptr((unsigned)regs->u_regs[14]);
123 	old_fs = get_fs();
124 	set_fs (USER_DS);
125 	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
126 		set_fs (old_fs);
127 		return;
128 	}
129 
130 	set_fs (old_fs);
131 	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
132 	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
133 	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
134 	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
135 	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
136 	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
137 	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
138 	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
139 }
140 #else
141 #define show_regwindow32(regs)	do { } while (0)
142 #endif
143 
144 static void show_regwindow(struct pt_regs *regs)
145 {
146 	struct reg_window __user *rw;
147 	struct reg_window *rwk;
148 	struct reg_window r_w;
149 	mm_segment_t old_fs;
150 
151 	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
152 		__asm__ __volatile__ ("flushw");
153 		rw = (struct reg_window __user *)
154 			(regs->u_regs[14] + STACK_BIAS);
155 		rwk = (struct reg_window *)
156 			(regs->u_regs[14] + STACK_BIAS);
157 		if (!(regs->tstate & TSTATE_PRIV)) {
158 			old_fs = get_fs();
159 			set_fs (USER_DS);
160 			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
161 				set_fs (old_fs);
162 				return;
163 			}
164 			rwk = &r_w;
165 			set_fs (old_fs);
166 		}
167 	} else {
168 		show_regwindow32(regs);
169 		return;
170 	}
171 	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
172 	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
173 	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
174 	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
175 	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
176 	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
177 	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
178 	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
179 	if (regs->tstate & TSTATE_PRIV)
180 		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
181 }
182 
183 void show_regs(struct pt_regs *regs)
184 {
185 	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
186 	       regs->tpc, regs->tnpc, regs->y, print_tainted());
187 	printk("TPC: <%pS>\n", (void *) regs->tpc);
188 	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
189 	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
190 	       regs->u_regs[3]);
191 	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
192 	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
193 	       regs->u_regs[7]);
194 	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
195 	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
196 	       regs->u_regs[11]);
197 	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
198 	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
199 	       regs->u_regs[15]);
200 	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
201 	show_regwindow(regs);
202 }
203 
204 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
205 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
206 
207 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
208 			      int this_cpu)
209 {
210 	flushw_all();
211 
212 	global_reg_snapshot[this_cpu].tstate = regs->tstate;
213 	global_reg_snapshot[this_cpu].tpc = regs->tpc;
214 	global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
215 	global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
216 
217 	if (regs->tstate & TSTATE_PRIV) {
218 		struct reg_window *rw;
219 
220 		rw = (struct reg_window *)
221 			(regs->u_regs[UREG_FP] + STACK_BIAS);
222 		if (kstack_valid(tp, (unsigned long) rw)) {
223 			global_reg_snapshot[this_cpu].i7 = rw->ins[7];
224 			rw = (struct reg_window *)
225 				(rw->ins[6] + STACK_BIAS);
226 			if (kstack_valid(tp, (unsigned long) rw))
227 				global_reg_snapshot[this_cpu].rpc = rw->ins[7];
228 		}
229 	} else {
230 		global_reg_snapshot[this_cpu].i7 = 0;
231 		global_reg_snapshot[this_cpu].rpc = 0;
232 	}
233 	global_reg_snapshot[this_cpu].thread = tp;
234 }
235 
236 /* In order to avoid hangs we do not try to synchronize with the
237  * global register dump client cpus.  The last store they make is to
238  * the thread pointer, so do a short poll waiting for that to become
239  * non-NULL.
240  */
241 static void __global_reg_poll(struct global_reg_snapshot *gp)
242 {
243 	int limit = 0;
244 
245 	while (!gp->thread && ++limit < 100) {
246 		barrier();
247 		udelay(1);
248 	}
249 }
250 
251 void __trigger_all_cpu_backtrace(void)
252 {
253 	struct thread_info *tp = current_thread_info();
254 	struct pt_regs *regs = get_irq_regs();
255 	unsigned long flags;
256 	int this_cpu, cpu;
257 
258 	if (!regs)
259 		regs = tp->kregs;
260 
261 	spin_lock_irqsave(&global_reg_snapshot_lock, flags);
262 
263 	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
264 
265 	this_cpu = raw_smp_processor_id();
266 
267 	__global_reg_self(tp, regs, this_cpu);
268 
269 	smp_fetch_global_regs();
270 
271 	for_each_online_cpu(cpu) {
272 		struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
273 
274 		__global_reg_poll(gp);
275 
276 		tp = gp->thread;
277 		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
278 		       (cpu == this_cpu ? '*' : ' '), cpu,
279 		       gp->tstate, gp->tpc, gp->tnpc,
280 		       ((tp && tp->task) ? tp->task->comm : "NULL"),
281 		       ((tp && tp->task) ? tp->task->pid : -1));
282 
283 		if (gp->tstate & TSTATE_PRIV) {
284 			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
285 			       (void *) gp->tpc,
286 			       (void *) gp->o7,
287 			       (void *) gp->i7,
288 			       (void *) gp->rpc);
289 		} else {
290 			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
291 			       gp->tpc, gp->o7, gp->i7, gp->rpc);
292 		}
293 	}
294 
295 	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
296 
297 	spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
298 }
299 
300 #ifdef CONFIG_MAGIC_SYSRQ
301 
302 static void sysrq_handle_globreg(int key, struct tty_struct *tty)
303 {
304 	__trigger_all_cpu_backtrace();
305 }
306 
307 static struct sysrq_key_op sparc_globalreg_op = {
308 	.handler	= sysrq_handle_globreg,
309 	.help_msg	= "Globalregs",
310 	.action_msg	= "Show Global CPU Regs",
311 };
312 
313 static int __init sparc_globreg_init(void)
314 {
315 	return register_sysrq_key('y', &sparc_globalreg_op);
316 }
317 
318 core_initcall(sparc_globreg_init);
319 
320 #endif
321 
322 unsigned long thread_saved_pc(struct task_struct *tsk)
323 {
324 	struct thread_info *ti = task_thread_info(tsk);
325 	unsigned long ret = 0xdeadbeefUL;
326 
327 	if (ti && ti->ksp) {
328 		unsigned long *sp;
329 		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
330 		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
331 		    sp[14]) {
332 			unsigned long *fp;
333 			fp = (unsigned long *)(sp[14] + STACK_BIAS);
334 			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
335 				ret = fp[15];
336 		}
337 	}
338 	return ret;
339 }
340 
341 /* Free current thread data structures etc.. */
342 void exit_thread(void)
343 {
344 	struct thread_info *t = current_thread_info();
345 
346 	if (t->utraps) {
347 		if (t->utraps[0] < 2)
348 			kfree (t->utraps);
349 		else
350 			t->utraps[0]--;
351 	}
352 
353 	if (test_and_clear_thread_flag(TIF_PERFCTR)) {
354 		t->user_cntd0 = t->user_cntd1 = NULL;
355 		t->pcr_reg = 0;
356 		write_pcr(0);
357 	}
358 }
359 
360 void flush_thread(void)
361 {
362 	struct thread_info *t = current_thread_info();
363 	struct mm_struct *mm;
364 
365 	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
366 		clear_ti_thread_flag(t, TIF_ABI_PENDING);
367 		if (test_ti_thread_flag(t, TIF_32BIT))
368 			clear_ti_thread_flag(t, TIF_32BIT);
369 		else
370 			set_ti_thread_flag(t, TIF_32BIT);
371 	}
372 
373 	mm = t->task->mm;
374 	if (mm)
375 		tsb_context_switch(mm);
376 
377 	set_thread_wsaved(0);
378 
379 	/* Turn off performance counters if on. */
380 	if (test_and_clear_thread_flag(TIF_PERFCTR)) {
381 		t->user_cntd0 = t->user_cntd1 = NULL;
382 		t->pcr_reg = 0;
383 		write_pcr(0);
384 	}
385 
386 	/* Clear FPU register state. */
387 	t->fpsaved[0] = 0;
388 
389 	if (get_thread_current_ds() != ASI_AIUS)
390 		set_fs(USER_DS);
391 }
392 
393 /* It's a bit more tricky when 64-bit tasks are involved... */
394 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
395 {
396 	unsigned long fp, distance, rval;
397 
398 	if (!(test_thread_flag(TIF_32BIT))) {
399 		csp += STACK_BIAS;
400 		psp += STACK_BIAS;
401 		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
402 		fp += STACK_BIAS;
403 	} else
404 		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
405 
406 	/* Now 8-byte align the stack as this is mandatory in the
407 	 * Sparc ABI due to how register windows work.  This hides
408 	 * the restriction from thread libraries etc.  -DaveM
409 	 */
410 	csp &= ~7UL;
411 
412 	distance = fp - psp;
413 	rval = (csp - distance);
414 	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
415 		rval = 0;
416 	else if (test_thread_flag(TIF_32BIT)) {
417 		if (put_user(((u32)csp),
418 			     &(((struct reg_window32 __user *)rval)->ins[6])))
419 			rval = 0;
420 	} else {
421 		if (put_user(((u64)csp - STACK_BIAS),
422 			     &(((struct reg_window __user *)rval)->ins[6])))
423 			rval = 0;
424 		else
425 			rval = rval - STACK_BIAS;
426 	}
427 
428 	return rval;
429 }
430 
431 /* Standard stuff. */
432 static inline void shift_window_buffer(int first_win, int last_win,
433 				       struct thread_info *t)
434 {
435 	int i;
436 
437 	for (i = first_win; i < last_win; i++) {
438 		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
439 		memcpy(&t->reg_window[i], &t->reg_window[i+1],
440 		       sizeof(struct reg_window));
441 	}
442 }
443 
444 void synchronize_user_stack(void)
445 {
446 	struct thread_info *t = current_thread_info();
447 	unsigned long window;
448 
449 	flush_user_windows();
450 	if ((window = get_thread_wsaved()) != 0) {
451 		int winsize = sizeof(struct reg_window);
452 		int bias = 0;
453 
454 		if (test_thread_flag(TIF_32BIT))
455 			winsize = sizeof(struct reg_window32);
456 		else
457 			bias = STACK_BIAS;
458 
459 		window -= 1;
460 		do {
461 			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
462 			struct reg_window *rwin = &t->reg_window[window];
463 
464 			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
465 				shift_window_buffer(window, get_thread_wsaved() - 1, t);
466 				set_thread_wsaved(get_thread_wsaved() - 1);
467 			}
468 		} while (window--);
469 	}
470 }
471 
472 static void stack_unaligned(unsigned long sp)
473 {
474 	siginfo_t info;
475 
476 	info.si_signo = SIGBUS;
477 	info.si_errno = 0;
478 	info.si_code = BUS_ADRALN;
479 	info.si_addr = (void __user *) sp;
480 	info.si_trapno = 0;
481 	force_sig_info(SIGBUS, &info, current);
482 }
483 
484 void fault_in_user_windows(void)
485 {
486 	struct thread_info *t = current_thread_info();
487 	unsigned long window;
488 	int winsize = sizeof(struct reg_window);
489 	int bias = 0;
490 
491 	if (test_thread_flag(TIF_32BIT))
492 		winsize = sizeof(struct reg_window32);
493 	else
494 		bias = STACK_BIAS;
495 
496 	flush_user_windows();
497 	window = get_thread_wsaved();
498 
499 	if (likely(window != 0)) {
500 		window -= 1;
501 		do {
502 			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
503 			struct reg_window *rwin = &t->reg_window[window];
504 
505 			if (unlikely(sp & 0x7UL))
506 				stack_unaligned(sp);
507 
508 			if (unlikely(copy_to_user((char __user *)sp,
509 						  rwin, winsize)))
510 				goto barf;
511 		} while (window--);
512 	}
513 	set_thread_wsaved(0);
514 	return;
515 
516 barf:
517 	set_thread_wsaved(window + 1);
518 	do_exit(SIGILL);
519 }
520 
521 asmlinkage long sparc_do_fork(unsigned long clone_flags,
522 			      unsigned long stack_start,
523 			      struct pt_regs *regs,
524 			      unsigned long stack_size)
525 {
526 	int __user *parent_tid_ptr, *child_tid_ptr;
527 	unsigned long orig_i1 = regs->u_regs[UREG_I1];
528 	long ret;
529 
530 #ifdef CONFIG_COMPAT
531 	if (test_thread_flag(TIF_32BIT)) {
532 		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
533 		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
534 	} else
535 #endif
536 	{
537 		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
538 		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
539 	}
540 
541 	ret = do_fork(clone_flags, stack_start,
542 		      regs, stack_size,
543 		      parent_tid_ptr, child_tid_ptr);
544 
545 	/* If we get an error and potentially restart the system
546 	 * call, we're screwed because copy_thread() clobbered
547 	 * the parent's %o1.  So detect that case and restore it
548 	 * here.
549 	 */
550 	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
551 		regs->u_regs[UREG_I1] = orig_i1;
552 
553 	return ret;
554 }
555 
556 /* Copy a Sparc thread.  The fork() return value conventions
557  * under SunOS are nothing short of bletcherous:
558  * Parent -->  %o0 == childs  pid, %o1 == 0
559  * Child  -->  %o0 == parents pid, %o1 == 1
560  */
561 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
562 		unsigned long unused,
563 		struct task_struct *p, struct pt_regs *regs)
564 {
565 	struct thread_info *t = task_thread_info(p);
566 	struct sparc_stackf *parent_sf;
567 	unsigned long child_stack_sz;
568 	char *child_trap_frame;
569 	int kernel_thread;
570 
571 	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
572 	parent_sf = ((struct sparc_stackf *) regs) - 1;
573 
574 	/* Calculate offset to stack_frame & pt_regs */
575 	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
576 			  (kernel_thread ? STACKFRAME_SZ : 0));
577 	child_trap_frame = (task_stack_page(p) +
578 			    (THREAD_SIZE - child_stack_sz));
579 	memcpy(child_trap_frame, parent_sf, child_stack_sz);
580 
581 	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
582 				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
583 		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
584 	t->new_child = 1;
585 	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
586 	t->kregs = (struct pt_regs *) (child_trap_frame +
587 				       sizeof(struct sparc_stackf));
588 	t->fpsaved[0] = 0;
589 
590 	if (kernel_thread) {
591 		struct sparc_stackf *child_sf = (struct sparc_stackf *)
592 			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
593 
594 		/* Zero terminate the stack backtrace.  */
595 		child_sf->fp = NULL;
596 		t->kregs->u_regs[UREG_FP] =
597 		  ((unsigned long) child_sf) - STACK_BIAS;
598 
599 		/* Special case, if we are spawning a kernel thread from
600 		 * a userspace task (usermode helper, NFS or similar), we
601 		 * must disable performance counters in the child because
602 		 * the address space and protection realm are changing.
603 		 */
604 		if (t->flags & _TIF_PERFCTR) {
605 			t->user_cntd0 = t->user_cntd1 = NULL;
606 			t->pcr_reg = 0;
607 			t->flags &= ~_TIF_PERFCTR;
608 		}
609 		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
610 		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
611 		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
612 	} else {
613 		if (t->flags & _TIF_32BIT) {
614 			sp &= 0x00000000ffffffffUL;
615 			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
616 		}
617 		t->kregs->u_regs[UREG_FP] = sp;
618 		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
619 		if (sp != regs->u_regs[UREG_FP]) {
620 			unsigned long csp;
621 
622 			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
623 			if (!csp)
624 				return -EFAULT;
625 			t->kregs->u_regs[UREG_FP] = csp;
626 		}
627 		if (t->utraps)
628 			t->utraps[0]++;
629 	}
630 
631 	/* Set the return value for the child. */
632 	t->kregs->u_regs[UREG_I0] = current->pid;
633 	t->kregs->u_regs[UREG_I1] = 1;
634 
635 	/* Set the second return value for the parent. */
636 	regs->u_regs[UREG_I1] = 0;
637 
638 	if (clone_flags & CLONE_SETTLS)
639 		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
640 
641 	return 0;
642 }
643 
644 /*
645  * This is the mechanism for creating a new kernel thread.
646  *
647  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
648  * who haven't done an "execve()") should use this: it will work within
649  * a system call from a "real" process, but the process memory space will
650  * not be freed until both the parent and the child have exited.
651  */
652 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
653 {
654 	long retval;
655 
656 	/* If the parent runs before fn(arg) is called by the child,
657 	 * the input registers of this function can be clobbered.
658 	 * So we stash 'fn' and 'arg' into global registers which
659 	 * will not be modified by the parent.
660 	 */
661 	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
662 			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
663 			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
664 			     "mov %2, %%o0\n\t"	   /* Clone flags. */
665 			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
666 			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
667 			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
668 			     " mov %%o0, %0\n\t"
669 			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
670 			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
671 			     "mov %3, %%g1\n\t"
672 			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
673 			     /* Notreached by child. */
674 			     "1:" :
675 			     "=r" (retval) :
676 			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
677 			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
678 			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
679 	return retval;
680 }
681 
682 typedef struct {
683 	union {
684 		unsigned int	pr_regs[32];
685 		unsigned long	pr_dregs[16];
686 	} pr_fr;
687 	unsigned int __unused;
688 	unsigned int	pr_fsr;
689 	unsigned char	pr_qcnt;
690 	unsigned char	pr_q_entrysize;
691 	unsigned char	pr_en;
692 	unsigned int	pr_q[64];
693 } elf_fpregset_t32;
694 
695 /*
696  * fill in the fpu structure for a core dump.
697  */
698 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
699 {
700 	unsigned long *kfpregs = current_thread_info()->fpregs;
701 	unsigned long fprs = current_thread_info()->fpsaved[0];
702 
703 	if (test_thread_flag(TIF_32BIT)) {
704 		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
705 
706 		if (fprs & FPRS_DL)
707 			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
708 			       sizeof(unsigned int) * 32);
709 		else
710 			memset(&fpregs32->pr_fr.pr_regs[0], 0,
711 			       sizeof(unsigned int) * 32);
712 		fpregs32->pr_qcnt = 0;
713 		fpregs32->pr_q_entrysize = 8;
714 		memset(&fpregs32->pr_q[0], 0,
715 		       (sizeof(unsigned int) * 64));
716 		if (fprs & FPRS_FEF) {
717 			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
718 			fpregs32->pr_en = 1;
719 		} else {
720 			fpregs32->pr_fsr = 0;
721 			fpregs32->pr_en = 0;
722 		}
723 	} else {
724 		if(fprs & FPRS_DL)
725 			memcpy(&fpregs->pr_regs[0], kfpregs,
726 			       sizeof(unsigned int) * 32);
727 		else
728 			memset(&fpregs->pr_regs[0], 0,
729 			       sizeof(unsigned int) * 32);
730 		if(fprs & FPRS_DU)
731 			memcpy(&fpregs->pr_regs[16], kfpregs+16,
732 			       sizeof(unsigned int) * 32);
733 		else
734 			memset(&fpregs->pr_regs[16], 0,
735 			       sizeof(unsigned int) * 32);
736 		if(fprs & FPRS_FEF) {
737 			fpregs->pr_fsr = current_thread_info()->xfsr[0];
738 			fpregs->pr_gsr = current_thread_info()->gsr[0];
739 		} else {
740 			fpregs->pr_fsr = fpregs->pr_gsr = 0;
741 		}
742 		fpregs->pr_fprs = fprs;
743 	}
744 	return 1;
745 }
746 
747 /*
748  * sparc_execve() executes a new program after the asm stub has set
749  * things up for us.  This should basically do what I want it to.
750  */
751 asmlinkage int sparc_execve(struct pt_regs *regs)
752 {
753 	int error, base = 0;
754 	char *filename;
755 
756 	/* User register window flush is done by entry.S */
757 
758 	/* Check for indirect call. */
759 	if (regs->u_regs[UREG_G1] == 0)
760 		base = 1;
761 
762 	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
763 	error = PTR_ERR(filename);
764 	if (IS_ERR(filename))
765 		goto out;
766 	error = do_execve(filename,
767 			  (char __user * __user *)
768 			  regs->u_regs[base + UREG_I1],
769 			  (char __user * __user *)
770 			  regs->u_regs[base + UREG_I2], regs);
771 	putname(filename);
772 	if (!error) {
773 		fprs_write(0);
774 		current_thread_info()->xfsr[0] = 0;
775 		current_thread_info()->fpsaved[0] = 0;
776 		regs->tstate &= ~TSTATE_PEF;
777 	}
778 out:
779 	return error;
780 }
781 
782 unsigned long get_wchan(struct task_struct *task)
783 {
784 	unsigned long pc, fp, bias = 0;
785 	struct thread_info *tp;
786 	struct reg_window *rw;
787         unsigned long ret = 0;
788 	int count = 0;
789 
790 	if (!task || task == current ||
791             task->state == TASK_RUNNING)
792 		goto out;
793 
794 	tp = task_thread_info(task);
795 	bias = STACK_BIAS;
796 	fp = task_thread_info(task)->ksp + bias;
797 
798 	do {
799 		if (!kstack_valid(tp, fp))
800 			break;
801 		rw = (struct reg_window *) fp;
802 		pc = rw->ins[7];
803 		if (!in_sched_functions(pc)) {
804 			ret = pc;
805 			goto out;
806 		}
807 		fp = rw->ins[6] + bias;
808 	} while (++count < 16);
809 
810 out:
811 	return ret;
812 }
813