xref: /linux/arch/sparc/kernel/process_64.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 #include <linux/nmi.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 
52 #include "kstack.h"
53 
54 static void sparc64_yield(int cpu)
55 {
56 	if (tlb_type != hypervisor) {
57 		touch_nmi_watchdog();
58 		return;
59 	}
60 
61 	clear_thread_flag(TIF_POLLING_NRFLAG);
62 	smp_mb__after_clear_bit();
63 
64 	while (!need_resched() && !cpu_is_offline(cpu)) {
65 		unsigned long pstate;
66 
67 		/* Disable interrupts. */
68 		__asm__ __volatile__(
69 			"rdpr %%pstate, %0\n\t"
70 			"andn %0, %1, %0\n\t"
71 			"wrpr %0, %%g0, %%pstate"
72 			: "=&r" (pstate)
73 			: "i" (PSTATE_IE));
74 
75 		if (!need_resched() && !cpu_is_offline(cpu))
76 			sun4v_cpu_yield();
77 
78 		/* Re-enable interrupts. */
79 		__asm__ __volatile__(
80 			"rdpr %%pstate, %0\n\t"
81 			"or %0, %1, %0\n\t"
82 			"wrpr %0, %%g0, %%pstate"
83 			: "=&r" (pstate)
84 			: "i" (PSTATE_IE));
85 	}
86 
87 	set_thread_flag(TIF_POLLING_NRFLAG);
88 }
89 
90 /* The idle loop on sparc64. */
91 void cpu_idle(void)
92 {
93 	int cpu = smp_processor_id();
94 
95 	set_thread_flag(TIF_POLLING_NRFLAG);
96 
97 	while(1) {
98 		tick_nohz_stop_sched_tick(1);
99 
100 		while (!need_resched() && !cpu_is_offline(cpu))
101 			sparc64_yield(cpu);
102 
103 		tick_nohz_restart_sched_tick();
104 
105 		preempt_enable_no_resched();
106 
107 #ifdef CONFIG_HOTPLUG_CPU
108 		if (cpu_is_offline(cpu))
109 			cpu_play_dead();
110 #endif
111 
112 		schedule();
113 		preempt_disable();
114 	}
115 }
116 
117 #ifdef CONFIG_COMPAT
118 static void show_regwindow32(struct pt_regs *regs)
119 {
120 	struct reg_window32 __user *rw;
121 	struct reg_window32 r_w;
122 	mm_segment_t old_fs;
123 
124 	__asm__ __volatile__ ("flushw");
125 	rw = compat_ptr((unsigned)regs->u_regs[14]);
126 	old_fs = get_fs();
127 	set_fs (USER_DS);
128 	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129 		set_fs (old_fs);
130 		return;
131 	}
132 
133 	set_fs (old_fs);
134 	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135 	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136 	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137 	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138 	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139 	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140 	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141 	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142 }
143 #else
144 #define show_regwindow32(regs)	do { } while (0)
145 #endif
146 
147 static void show_regwindow(struct pt_regs *regs)
148 {
149 	struct reg_window __user *rw;
150 	struct reg_window *rwk;
151 	struct reg_window r_w;
152 	mm_segment_t old_fs;
153 
154 	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155 		__asm__ __volatile__ ("flushw");
156 		rw = (struct reg_window __user *)
157 			(regs->u_regs[14] + STACK_BIAS);
158 		rwk = (struct reg_window *)
159 			(regs->u_regs[14] + STACK_BIAS);
160 		if (!(regs->tstate & TSTATE_PRIV)) {
161 			old_fs = get_fs();
162 			set_fs (USER_DS);
163 			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164 				set_fs (old_fs);
165 				return;
166 			}
167 			rwk = &r_w;
168 			set_fs (old_fs);
169 		}
170 	} else {
171 		show_regwindow32(regs);
172 		return;
173 	}
174 	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175 	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176 	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177 	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178 	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179 	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180 	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181 	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182 	if (regs->tstate & TSTATE_PRIV)
183 		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184 }
185 
186 void show_regs(struct pt_regs *regs)
187 {
188 	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
189 	       regs->tpc, regs->tnpc, regs->y, print_tainted());
190 	printk("TPC: <%pS>\n", (void *) regs->tpc);
191 	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192 	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193 	       regs->u_regs[3]);
194 	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195 	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196 	       regs->u_regs[7]);
197 	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198 	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199 	       regs->u_regs[11]);
200 	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201 	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202 	       regs->u_regs[15]);
203 	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204 	show_regwindow(regs);
205 }
206 
207 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
209 
210 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211 			      int this_cpu)
212 {
213 	flushw_all();
214 
215 	global_reg_snapshot[this_cpu].tstate = regs->tstate;
216 	global_reg_snapshot[this_cpu].tpc = regs->tpc;
217 	global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218 	global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
219 
220 	if (regs->tstate & TSTATE_PRIV) {
221 		struct reg_window *rw;
222 
223 		rw = (struct reg_window *)
224 			(regs->u_regs[UREG_FP] + STACK_BIAS);
225 		if (kstack_valid(tp, (unsigned long) rw)) {
226 			global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227 			rw = (struct reg_window *)
228 				(rw->ins[6] + STACK_BIAS);
229 			if (kstack_valid(tp, (unsigned long) rw))
230 				global_reg_snapshot[this_cpu].rpc = rw->ins[7];
231 		}
232 	} else {
233 		global_reg_snapshot[this_cpu].i7 = 0;
234 		global_reg_snapshot[this_cpu].rpc = 0;
235 	}
236 	global_reg_snapshot[this_cpu].thread = tp;
237 }
238 
239 /* In order to avoid hangs we do not try to synchronize with the
240  * global register dump client cpus.  The last store they make is to
241  * the thread pointer, so do a short poll waiting for that to become
242  * non-NULL.
243  */
244 static void __global_reg_poll(struct global_reg_snapshot *gp)
245 {
246 	int limit = 0;
247 
248 	while (!gp->thread && ++limit < 100) {
249 		barrier();
250 		udelay(1);
251 	}
252 }
253 
254 void arch_trigger_all_cpu_backtrace(void)
255 {
256 	struct thread_info *tp = current_thread_info();
257 	struct pt_regs *regs = get_irq_regs();
258 	unsigned long flags;
259 	int this_cpu, cpu;
260 
261 	if (!regs)
262 		regs = tp->kregs;
263 
264 	spin_lock_irqsave(&global_reg_snapshot_lock, flags);
265 
266 	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
267 
268 	this_cpu = raw_smp_processor_id();
269 
270 	__global_reg_self(tp, regs, this_cpu);
271 
272 	smp_fetch_global_regs();
273 
274 	for_each_online_cpu(cpu) {
275 		struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
276 
277 		__global_reg_poll(gp);
278 
279 		tp = gp->thread;
280 		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281 		       (cpu == this_cpu ? '*' : ' '), cpu,
282 		       gp->tstate, gp->tpc, gp->tnpc,
283 		       ((tp && tp->task) ? tp->task->comm : "NULL"),
284 		       ((tp && tp->task) ? tp->task->pid : -1));
285 
286 		if (gp->tstate & TSTATE_PRIV) {
287 			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288 			       (void *) gp->tpc,
289 			       (void *) gp->o7,
290 			       (void *) gp->i7,
291 			       (void *) gp->rpc);
292 		} else {
293 			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294 			       gp->tpc, gp->o7, gp->i7, gp->rpc);
295 		}
296 	}
297 
298 	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
299 
300 	spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
301 }
302 
303 #ifdef CONFIG_MAGIC_SYSRQ
304 
305 static void sysrq_handle_globreg(int key, struct tty_struct *tty)
306 {
307 	arch_trigger_all_cpu_backtrace();
308 }
309 
310 static struct sysrq_key_op sparc_globalreg_op = {
311 	.handler	= sysrq_handle_globreg,
312 	.help_msg	= "Globalregs",
313 	.action_msg	= "Show Global CPU Regs",
314 };
315 
316 static int __init sparc_globreg_init(void)
317 {
318 	return register_sysrq_key('y', &sparc_globalreg_op);
319 }
320 
321 core_initcall(sparc_globreg_init);
322 
323 #endif
324 
325 unsigned long thread_saved_pc(struct task_struct *tsk)
326 {
327 	struct thread_info *ti = task_thread_info(tsk);
328 	unsigned long ret = 0xdeadbeefUL;
329 
330 	if (ti && ti->ksp) {
331 		unsigned long *sp;
332 		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333 		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334 		    sp[14]) {
335 			unsigned long *fp;
336 			fp = (unsigned long *)(sp[14] + STACK_BIAS);
337 			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338 				ret = fp[15];
339 		}
340 	}
341 	return ret;
342 }
343 
344 /* Free current thread data structures etc.. */
345 void exit_thread(void)
346 {
347 	struct thread_info *t = current_thread_info();
348 
349 	if (t->utraps) {
350 		if (t->utraps[0] < 2)
351 			kfree (t->utraps);
352 		else
353 			t->utraps[0]--;
354 	}
355 
356 	if (test_and_clear_thread_flag(TIF_PERFCTR)) {
357 		t->user_cntd0 = t->user_cntd1 = NULL;
358 		t->pcr_reg = 0;
359 		write_pcr(0);
360 	}
361 }
362 
363 void flush_thread(void)
364 {
365 	struct thread_info *t = current_thread_info();
366 	struct mm_struct *mm;
367 
368 	mm = t->task->mm;
369 	if (mm)
370 		tsb_context_switch(mm);
371 
372 	set_thread_wsaved(0);
373 
374 	/* Turn off performance counters if on. */
375 	if (test_and_clear_thread_flag(TIF_PERFCTR)) {
376 		t->user_cntd0 = t->user_cntd1 = NULL;
377 		t->pcr_reg = 0;
378 		write_pcr(0);
379 	}
380 
381 	/* Clear FPU register state. */
382 	t->fpsaved[0] = 0;
383 
384 	if (get_thread_current_ds() != ASI_AIUS)
385 		set_fs(USER_DS);
386 }
387 
388 /* It's a bit more tricky when 64-bit tasks are involved... */
389 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
390 {
391 	unsigned long fp, distance, rval;
392 
393 	if (!(test_thread_flag(TIF_32BIT))) {
394 		csp += STACK_BIAS;
395 		psp += STACK_BIAS;
396 		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
397 		fp += STACK_BIAS;
398 	} else
399 		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
400 
401 	/* Now align the stack as this is mandatory in the Sparc ABI
402 	 * due to how register windows work.  This hides the
403 	 * restriction from thread libraries etc.
404 	 */
405 	csp &= ~15UL;
406 
407 	distance = fp - psp;
408 	rval = (csp - distance);
409 	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
410 		rval = 0;
411 	else if (test_thread_flag(TIF_32BIT)) {
412 		if (put_user(((u32)csp),
413 			     &(((struct reg_window32 __user *)rval)->ins[6])))
414 			rval = 0;
415 	} else {
416 		if (put_user(((u64)csp - STACK_BIAS),
417 			     &(((struct reg_window __user *)rval)->ins[6])))
418 			rval = 0;
419 		else
420 			rval = rval - STACK_BIAS;
421 	}
422 
423 	return rval;
424 }
425 
426 /* Standard stuff. */
427 static inline void shift_window_buffer(int first_win, int last_win,
428 				       struct thread_info *t)
429 {
430 	int i;
431 
432 	for (i = first_win; i < last_win; i++) {
433 		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
434 		memcpy(&t->reg_window[i], &t->reg_window[i+1],
435 		       sizeof(struct reg_window));
436 	}
437 }
438 
439 void synchronize_user_stack(void)
440 {
441 	struct thread_info *t = current_thread_info();
442 	unsigned long window;
443 
444 	flush_user_windows();
445 	if ((window = get_thread_wsaved()) != 0) {
446 		int winsize = sizeof(struct reg_window);
447 		int bias = 0;
448 
449 		if (test_thread_flag(TIF_32BIT))
450 			winsize = sizeof(struct reg_window32);
451 		else
452 			bias = STACK_BIAS;
453 
454 		window -= 1;
455 		do {
456 			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
457 			struct reg_window *rwin = &t->reg_window[window];
458 
459 			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
460 				shift_window_buffer(window, get_thread_wsaved() - 1, t);
461 				set_thread_wsaved(get_thread_wsaved() - 1);
462 			}
463 		} while (window--);
464 	}
465 }
466 
467 static void stack_unaligned(unsigned long sp)
468 {
469 	siginfo_t info;
470 
471 	info.si_signo = SIGBUS;
472 	info.si_errno = 0;
473 	info.si_code = BUS_ADRALN;
474 	info.si_addr = (void __user *) sp;
475 	info.si_trapno = 0;
476 	force_sig_info(SIGBUS, &info, current);
477 }
478 
479 void fault_in_user_windows(void)
480 {
481 	struct thread_info *t = current_thread_info();
482 	unsigned long window;
483 	int winsize = sizeof(struct reg_window);
484 	int bias = 0;
485 
486 	if (test_thread_flag(TIF_32BIT))
487 		winsize = sizeof(struct reg_window32);
488 	else
489 		bias = STACK_BIAS;
490 
491 	flush_user_windows();
492 	window = get_thread_wsaved();
493 
494 	if (likely(window != 0)) {
495 		window -= 1;
496 		do {
497 			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
498 			struct reg_window *rwin = &t->reg_window[window];
499 
500 			if (unlikely(sp & 0x7UL))
501 				stack_unaligned(sp);
502 
503 			if (unlikely(copy_to_user((char __user *)sp,
504 						  rwin, winsize)))
505 				goto barf;
506 		} while (window--);
507 	}
508 	set_thread_wsaved(0);
509 	return;
510 
511 barf:
512 	set_thread_wsaved(window + 1);
513 	do_exit(SIGILL);
514 }
515 
516 asmlinkage long sparc_do_fork(unsigned long clone_flags,
517 			      unsigned long stack_start,
518 			      struct pt_regs *regs,
519 			      unsigned long stack_size)
520 {
521 	int __user *parent_tid_ptr, *child_tid_ptr;
522 	unsigned long orig_i1 = regs->u_regs[UREG_I1];
523 	long ret;
524 
525 #ifdef CONFIG_COMPAT
526 	if (test_thread_flag(TIF_32BIT)) {
527 		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
528 		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
529 	} else
530 #endif
531 	{
532 		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
533 		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
534 	}
535 
536 	ret = do_fork(clone_flags, stack_start,
537 		      regs, stack_size,
538 		      parent_tid_ptr, child_tid_ptr);
539 
540 	/* If we get an error and potentially restart the system
541 	 * call, we're screwed because copy_thread() clobbered
542 	 * the parent's %o1.  So detect that case and restore it
543 	 * here.
544 	 */
545 	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
546 		regs->u_regs[UREG_I1] = orig_i1;
547 
548 	return ret;
549 }
550 
551 /* Copy a Sparc thread.  The fork() return value conventions
552  * under SunOS are nothing short of bletcherous:
553  * Parent -->  %o0 == childs  pid, %o1 == 0
554  * Child  -->  %o0 == parents pid, %o1 == 1
555  */
556 int copy_thread(unsigned long clone_flags, unsigned long sp,
557 		unsigned long unused,
558 		struct task_struct *p, struct pt_regs *regs)
559 {
560 	struct thread_info *t = task_thread_info(p);
561 	struct sparc_stackf *parent_sf;
562 	unsigned long child_stack_sz;
563 	char *child_trap_frame;
564 	int kernel_thread;
565 
566 	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
567 	parent_sf = ((struct sparc_stackf *) regs) - 1;
568 
569 	/* Calculate offset to stack_frame & pt_regs */
570 	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
571 			  (kernel_thread ? STACKFRAME_SZ : 0));
572 	child_trap_frame = (task_stack_page(p) +
573 			    (THREAD_SIZE - child_stack_sz));
574 	memcpy(child_trap_frame, parent_sf, child_stack_sz);
575 
576 	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
577 				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
578 		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
579 	t->new_child = 1;
580 	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
581 	t->kregs = (struct pt_regs *) (child_trap_frame +
582 				       sizeof(struct sparc_stackf));
583 	t->fpsaved[0] = 0;
584 
585 	if (kernel_thread) {
586 		struct sparc_stackf *child_sf = (struct sparc_stackf *)
587 			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
588 
589 		/* Zero terminate the stack backtrace.  */
590 		child_sf->fp = NULL;
591 		t->kregs->u_regs[UREG_FP] =
592 		  ((unsigned long) child_sf) - STACK_BIAS;
593 
594 		/* Special case, if we are spawning a kernel thread from
595 		 * a userspace task (usermode helper, NFS or similar), we
596 		 * must disable performance counters in the child because
597 		 * the address space and protection realm are changing.
598 		 */
599 		if (t->flags & _TIF_PERFCTR) {
600 			t->user_cntd0 = t->user_cntd1 = NULL;
601 			t->pcr_reg = 0;
602 			t->flags &= ~_TIF_PERFCTR;
603 		}
604 		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
605 		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
606 		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
607 	} else {
608 		if (t->flags & _TIF_32BIT) {
609 			sp &= 0x00000000ffffffffUL;
610 			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
611 		}
612 		t->kregs->u_regs[UREG_FP] = sp;
613 		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
614 		if (sp != regs->u_regs[UREG_FP]) {
615 			unsigned long csp;
616 
617 			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
618 			if (!csp)
619 				return -EFAULT;
620 			t->kregs->u_regs[UREG_FP] = csp;
621 		}
622 		if (t->utraps)
623 			t->utraps[0]++;
624 	}
625 
626 	/* Set the return value for the child. */
627 	t->kregs->u_regs[UREG_I0] = current->pid;
628 	t->kregs->u_regs[UREG_I1] = 1;
629 
630 	/* Set the second return value for the parent. */
631 	regs->u_regs[UREG_I1] = 0;
632 
633 	if (clone_flags & CLONE_SETTLS)
634 		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
635 
636 	return 0;
637 }
638 
639 /*
640  * This is the mechanism for creating a new kernel thread.
641  *
642  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
643  * who haven't done an "execve()") should use this: it will work within
644  * a system call from a "real" process, but the process memory space will
645  * not be freed until both the parent and the child have exited.
646  */
647 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
648 {
649 	long retval;
650 
651 	/* If the parent runs before fn(arg) is called by the child,
652 	 * the input registers of this function can be clobbered.
653 	 * So we stash 'fn' and 'arg' into global registers which
654 	 * will not be modified by the parent.
655 	 */
656 	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
657 			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
658 			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
659 			     "mov %2, %%o0\n\t"	   /* Clone flags. */
660 			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
661 			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
662 			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
663 			     " mov %%o0, %0\n\t"
664 			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
665 			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
666 			     "mov %3, %%g1\n\t"
667 			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
668 			     /* Notreached by child. */
669 			     "1:" :
670 			     "=r" (retval) :
671 			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
672 			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
673 			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
674 	return retval;
675 }
676 EXPORT_SYMBOL(kernel_thread);
677 
678 typedef struct {
679 	union {
680 		unsigned int	pr_regs[32];
681 		unsigned long	pr_dregs[16];
682 	} pr_fr;
683 	unsigned int __unused;
684 	unsigned int	pr_fsr;
685 	unsigned char	pr_qcnt;
686 	unsigned char	pr_q_entrysize;
687 	unsigned char	pr_en;
688 	unsigned int	pr_q[64];
689 } elf_fpregset_t32;
690 
691 /*
692  * fill in the fpu structure for a core dump.
693  */
694 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
695 {
696 	unsigned long *kfpregs = current_thread_info()->fpregs;
697 	unsigned long fprs = current_thread_info()->fpsaved[0];
698 
699 	if (test_thread_flag(TIF_32BIT)) {
700 		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
701 
702 		if (fprs & FPRS_DL)
703 			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
704 			       sizeof(unsigned int) * 32);
705 		else
706 			memset(&fpregs32->pr_fr.pr_regs[0], 0,
707 			       sizeof(unsigned int) * 32);
708 		fpregs32->pr_qcnt = 0;
709 		fpregs32->pr_q_entrysize = 8;
710 		memset(&fpregs32->pr_q[0], 0,
711 		       (sizeof(unsigned int) * 64));
712 		if (fprs & FPRS_FEF) {
713 			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
714 			fpregs32->pr_en = 1;
715 		} else {
716 			fpregs32->pr_fsr = 0;
717 			fpregs32->pr_en = 0;
718 		}
719 	} else {
720 		if(fprs & FPRS_DL)
721 			memcpy(&fpregs->pr_regs[0], kfpregs,
722 			       sizeof(unsigned int) * 32);
723 		else
724 			memset(&fpregs->pr_regs[0], 0,
725 			       sizeof(unsigned int) * 32);
726 		if(fprs & FPRS_DU)
727 			memcpy(&fpregs->pr_regs[16], kfpregs+16,
728 			       sizeof(unsigned int) * 32);
729 		else
730 			memset(&fpregs->pr_regs[16], 0,
731 			       sizeof(unsigned int) * 32);
732 		if(fprs & FPRS_FEF) {
733 			fpregs->pr_fsr = current_thread_info()->xfsr[0];
734 			fpregs->pr_gsr = current_thread_info()->gsr[0];
735 		} else {
736 			fpregs->pr_fsr = fpregs->pr_gsr = 0;
737 		}
738 		fpregs->pr_fprs = fprs;
739 	}
740 	return 1;
741 }
742 EXPORT_SYMBOL(dump_fpu);
743 
744 /*
745  * sparc_execve() executes a new program after the asm stub has set
746  * things up for us.  This should basically do what I want it to.
747  */
748 asmlinkage int sparc_execve(struct pt_regs *regs)
749 {
750 	int error, base = 0;
751 	char *filename;
752 
753 	/* User register window flush is done by entry.S */
754 
755 	/* Check for indirect call. */
756 	if (regs->u_regs[UREG_G1] == 0)
757 		base = 1;
758 
759 	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
760 	error = PTR_ERR(filename);
761 	if (IS_ERR(filename))
762 		goto out;
763 	error = do_execve(filename,
764 			  (char __user * __user *)
765 			  regs->u_regs[base + UREG_I1],
766 			  (char __user * __user *)
767 			  regs->u_regs[base + UREG_I2], regs);
768 	putname(filename);
769 	if (!error) {
770 		fprs_write(0);
771 		current_thread_info()->xfsr[0] = 0;
772 		current_thread_info()->fpsaved[0] = 0;
773 		regs->tstate &= ~TSTATE_PEF;
774 	}
775 out:
776 	return error;
777 }
778 
779 unsigned long get_wchan(struct task_struct *task)
780 {
781 	unsigned long pc, fp, bias = 0;
782 	struct thread_info *tp;
783 	struct reg_window *rw;
784         unsigned long ret = 0;
785 	int count = 0;
786 
787 	if (!task || task == current ||
788             task->state == TASK_RUNNING)
789 		goto out;
790 
791 	tp = task_thread_info(task);
792 	bias = STACK_BIAS;
793 	fp = task_thread_info(task)->ksp + bias;
794 
795 	do {
796 		if (!kstack_valid(tp, fp))
797 			break;
798 		rw = (struct reg_window *) fp;
799 		pc = rw->ins[7];
800 		if (!in_sched_functions(pc)) {
801 			ret = pc;
802 			goto out;
803 		}
804 		fp = rw->ins[6] + bias;
805 	} while (++count < 16);
806 
807 out:
808 	return ret;
809 }
810