1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/ptrace.h> 23 #include <linux/slab.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/compat.h> 27 #include <linux/tick.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/sysrq.h> 32 #include <linux/nmi.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/system.h> 36 #include <asm/page.h> 37 #include <asm/pgalloc.h> 38 #include <asm/pgtable.h> 39 #include <asm/processor.h> 40 #include <asm/pstate.h> 41 #include <asm/elf.h> 42 #include <asm/fpumacro.h> 43 #include <asm/head.h> 44 #include <asm/cpudata.h> 45 #include <asm/mmu_context.h> 46 #include <asm/unistd.h> 47 #include <asm/hypervisor.h> 48 #include <asm/syscalls.h> 49 #include <asm/irq_regs.h> 50 #include <asm/smp.h> 51 52 #include "kstack.h" 53 54 static void sparc64_yield(int cpu) 55 { 56 if (tlb_type != hypervisor) { 57 touch_nmi_watchdog(); 58 return; 59 } 60 61 clear_thread_flag(TIF_POLLING_NRFLAG); 62 smp_mb__after_clear_bit(); 63 64 while (!need_resched() && !cpu_is_offline(cpu)) { 65 unsigned long pstate; 66 67 /* Disable interrupts. */ 68 __asm__ __volatile__( 69 "rdpr %%pstate, %0\n\t" 70 "andn %0, %1, %0\n\t" 71 "wrpr %0, %%g0, %%pstate" 72 : "=&r" (pstate) 73 : "i" (PSTATE_IE)); 74 75 if (!need_resched() && !cpu_is_offline(cpu)) 76 sun4v_cpu_yield(); 77 78 /* Re-enable interrupts. */ 79 __asm__ __volatile__( 80 "rdpr %%pstate, %0\n\t" 81 "or %0, %1, %0\n\t" 82 "wrpr %0, %%g0, %%pstate" 83 : "=&r" (pstate) 84 : "i" (PSTATE_IE)); 85 } 86 87 set_thread_flag(TIF_POLLING_NRFLAG); 88 } 89 90 /* The idle loop on sparc64. */ 91 void cpu_idle(void) 92 { 93 int cpu = smp_processor_id(); 94 95 set_thread_flag(TIF_POLLING_NRFLAG); 96 97 while(1) { 98 tick_nohz_idle_enter(); 99 rcu_idle_enter(); 100 101 while (!need_resched() && !cpu_is_offline(cpu)) 102 sparc64_yield(cpu); 103 104 rcu_idle_exit(); 105 tick_nohz_idle_exit(); 106 107 preempt_enable_no_resched(); 108 109 #ifdef CONFIG_HOTPLUG_CPU 110 if (cpu_is_offline(cpu)) 111 cpu_play_dead(); 112 #endif 113 114 schedule(); 115 preempt_disable(); 116 } 117 } 118 119 #ifdef CONFIG_COMPAT 120 static void show_regwindow32(struct pt_regs *regs) 121 { 122 struct reg_window32 __user *rw; 123 struct reg_window32 r_w; 124 mm_segment_t old_fs; 125 126 __asm__ __volatile__ ("flushw"); 127 rw = compat_ptr((unsigned)regs->u_regs[14]); 128 old_fs = get_fs(); 129 set_fs (USER_DS); 130 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 131 set_fs (old_fs); 132 return; 133 } 134 135 set_fs (old_fs); 136 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 137 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 138 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 139 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 140 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 141 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 142 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 143 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 144 } 145 #else 146 #define show_regwindow32(regs) do { } while (0) 147 #endif 148 149 static void show_regwindow(struct pt_regs *regs) 150 { 151 struct reg_window __user *rw; 152 struct reg_window *rwk; 153 struct reg_window r_w; 154 mm_segment_t old_fs; 155 156 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 157 __asm__ __volatile__ ("flushw"); 158 rw = (struct reg_window __user *) 159 (regs->u_regs[14] + STACK_BIAS); 160 rwk = (struct reg_window *) 161 (regs->u_regs[14] + STACK_BIAS); 162 if (!(regs->tstate & TSTATE_PRIV)) { 163 old_fs = get_fs(); 164 set_fs (USER_DS); 165 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 166 set_fs (old_fs); 167 return; 168 } 169 rwk = &r_w; 170 set_fs (old_fs); 171 } 172 } else { 173 show_regwindow32(regs); 174 return; 175 } 176 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 177 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 178 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 179 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 180 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 181 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 182 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 183 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 184 if (regs->tstate & TSTATE_PRIV) 185 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 186 } 187 188 void show_regs(struct pt_regs *regs) 189 { 190 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 191 regs->tpc, regs->tnpc, regs->y, print_tainted()); 192 printk("TPC: <%pS>\n", (void *) regs->tpc); 193 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 194 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 195 regs->u_regs[3]); 196 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 197 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 198 regs->u_regs[7]); 199 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 200 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 201 regs->u_regs[11]); 202 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 203 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 204 regs->u_regs[15]); 205 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 206 show_regwindow(regs); 207 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 208 } 209 210 struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; 211 static DEFINE_SPINLOCK(global_reg_snapshot_lock); 212 213 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 214 int this_cpu) 215 { 216 flushw_all(); 217 218 global_reg_snapshot[this_cpu].tstate = regs->tstate; 219 global_reg_snapshot[this_cpu].tpc = regs->tpc; 220 global_reg_snapshot[this_cpu].tnpc = regs->tnpc; 221 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; 222 223 if (regs->tstate & TSTATE_PRIV) { 224 struct reg_window *rw; 225 226 rw = (struct reg_window *) 227 (regs->u_regs[UREG_FP] + STACK_BIAS); 228 if (kstack_valid(tp, (unsigned long) rw)) { 229 global_reg_snapshot[this_cpu].i7 = rw->ins[7]; 230 rw = (struct reg_window *) 231 (rw->ins[6] + STACK_BIAS); 232 if (kstack_valid(tp, (unsigned long) rw)) 233 global_reg_snapshot[this_cpu].rpc = rw->ins[7]; 234 } 235 } else { 236 global_reg_snapshot[this_cpu].i7 = 0; 237 global_reg_snapshot[this_cpu].rpc = 0; 238 } 239 global_reg_snapshot[this_cpu].thread = tp; 240 } 241 242 /* In order to avoid hangs we do not try to synchronize with the 243 * global register dump client cpus. The last store they make is to 244 * the thread pointer, so do a short poll waiting for that to become 245 * non-NULL. 246 */ 247 static void __global_reg_poll(struct global_reg_snapshot *gp) 248 { 249 int limit = 0; 250 251 while (!gp->thread && ++limit < 100) { 252 barrier(); 253 udelay(1); 254 } 255 } 256 257 void arch_trigger_all_cpu_backtrace(void) 258 { 259 struct thread_info *tp = current_thread_info(); 260 struct pt_regs *regs = get_irq_regs(); 261 unsigned long flags; 262 int this_cpu, cpu; 263 264 if (!regs) 265 regs = tp->kregs; 266 267 spin_lock_irqsave(&global_reg_snapshot_lock, flags); 268 269 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 270 271 this_cpu = raw_smp_processor_id(); 272 273 __global_reg_self(tp, regs, this_cpu); 274 275 smp_fetch_global_regs(); 276 277 for_each_online_cpu(cpu) { 278 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; 279 280 __global_reg_poll(gp); 281 282 tp = gp->thread; 283 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 284 (cpu == this_cpu ? '*' : ' '), cpu, 285 gp->tstate, gp->tpc, gp->tnpc, 286 ((tp && tp->task) ? tp->task->comm : "NULL"), 287 ((tp && tp->task) ? tp->task->pid : -1)); 288 289 if (gp->tstate & TSTATE_PRIV) { 290 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 291 (void *) gp->tpc, 292 (void *) gp->o7, 293 (void *) gp->i7, 294 (void *) gp->rpc); 295 } else { 296 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 297 gp->tpc, gp->o7, gp->i7, gp->rpc); 298 } 299 } 300 301 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 302 303 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); 304 } 305 306 #ifdef CONFIG_MAGIC_SYSRQ 307 308 static void sysrq_handle_globreg(int key) 309 { 310 arch_trigger_all_cpu_backtrace(); 311 } 312 313 static struct sysrq_key_op sparc_globalreg_op = { 314 .handler = sysrq_handle_globreg, 315 .help_msg = "Globalregs", 316 .action_msg = "Show Global CPU Regs", 317 }; 318 319 static int __init sparc_globreg_init(void) 320 { 321 return register_sysrq_key('y', &sparc_globalreg_op); 322 } 323 324 core_initcall(sparc_globreg_init); 325 326 #endif 327 328 unsigned long thread_saved_pc(struct task_struct *tsk) 329 { 330 struct thread_info *ti = task_thread_info(tsk); 331 unsigned long ret = 0xdeadbeefUL; 332 333 if (ti && ti->ksp) { 334 unsigned long *sp; 335 sp = (unsigned long *)(ti->ksp + STACK_BIAS); 336 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && 337 sp[14]) { 338 unsigned long *fp; 339 fp = (unsigned long *)(sp[14] + STACK_BIAS); 340 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) 341 ret = fp[15]; 342 } 343 } 344 return ret; 345 } 346 347 /* Free current thread data structures etc.. */ 348 void exit_thread(void) 349 { 350 struct thread_info *t = current_thread_info(); 351 352 if (t->utraps) { 353 if (t->utraps[0] < 2) 354 kfree (t->utraps); 355 else 356 t->utraps[0]--; 357 } 358 } 359 360 void flush_thread(void) 361 { 362 struct thread_info *t = current_thread_info(); 363 struct mm_struct *mm; 364 365 mm = t->task->mm; 366 if (mm) 367 tsb_context_switch(mm); 368 369 set_thread_wsaved(0); 370 371 /* Clear FPU register state. */ 372 t->fpsaved[0] = 0; 373 } 374 375 /* It's a bit more tricky when 64-bit tasks are involved... */ 376 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 377 { 378 unsigned long fp, distance, rval; 379 380 if (!(test_thread_flag(TIF_32BIT))) { 381 csp += STACK_BIAS; 382 psp += STACK_BIAS; 383 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 384 fp += STACK_BIAS; 385 } else 386 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 387 388 /* Now align the stack as this is mandatory in the Sparc ABI 389 * due to how register windows work. This hides the 390 * restriction from thread libraries etc. 391 */ 392 csp &= ~15UL; 393 394 distance = fp - psp; 395 rval = (csp - distance); 396 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 397 rval = 0; 398 else if (test_thread_flag(TIF_32BIT)) { 399 if (put_user(((u32)csp), 400 &(((struct reg_window32 __user *)rval)->ins[6]))) 401 rval = 0; 402 } else { 403 if (put_user(((u64)csp - STACK_BIAS), 404 &(((struct reg_window __user *)rval)->ins[6]))) 405 rval = 0; 406 else 407 rval = rval - STACK_BIAS; 408 } 409 410 return rval; 411 } 412 413 /* Standard stuff. */ 414 static inline void shift_window_buffer(int first_win, int last_win, 415 struct thread_info *t) 416 { 417 int i; 418 419 for (i = first_win; i < last_win; i++) { 420 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 421 memcpy(&t->reg_window[i], &t->reg_window[i+1], 422 sizeof(struct reg_window)); 423 } 424 } 425 426 void synchronize_user_stack(void) 427 { 428 struct thread_info *t = current_thread_info(); 429 unsigned long window; 430 431 flush_user_windows(); 432 if ((window = get_thread_wsaved()) != 0) { 433 int winsize = sizeof(struct reg_window); 434 int bias = 0; 435 436 if (test_thread_flag(TIF_32BIT)) 437 winsize = sizeof(struct reg_window32); 438 else 439 bias = STACK_BIAS; 440 441 window -= 1; 442 do { 443 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 444 struct reg_window *rwin = &t->reg_window[window]; 445 446 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 447 shift_window_buffer(window, get_thread_wsaved() - 1, t); 448 set_thread_wsaved(get_thread_wsaved() - 1); 449 } 450 } while (window--); 451 } 452 } 453 454 static void stack_unaligned(unsigned long sp) 455 { 456 siginfo_t info; 457 458 info.si_signo = SIGBUS; 459 info.si_errno = 0; 460 info.si_code = BUS_ADRALN; 461 info.si_addr = (void __user *) sp; 462 info.si_trapno = 0; 463 force_sig_info(SIGBUS, &info, current); 464 } 465 466 void fault_in_user_windows(void) 467 { 468 struct thread_info *t = current_thread_info(); 469 unsigned long window; 470 int winsize = sizeof(struct reg_window); 471 int bias = 0; 472 473 if (test_thread_flag(TIF_32BIT)) 474 winsize = sizeof(struct reg_window32); 475 else 476 bias = STACK_BIAS; 477 478 flush_user_windows(); 479 window = get_thread_wsaved(); 480 481 if (likely(window != 0)) { 482 window -= 1; 483 do { 484 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 485 struct reg_window *rwin = &t->reg_window[window]; 486 487 if (unlikely(sp & 0x7UL)) 488 stack_unaligned(sp); 489 490 if (unlikely(copy_to_user((char __user *)sp, 491 rwin, winsize))) 492 goto barf; 493 } while (window--); 494 } 495 set_thread_wsaved(0); 496 return; 497 498 barf: 499 set_thread_wsaved(window + 1); 500 do_exit(SIGILL); 501 } 502 503 asmlinkage long sparc_do_fork(unsigned long clone_flags, 504 unsigned long stack_start, 505 struct pt_regs *regs, 506 unsigned long stack_size) 507 { 508 int __user *parent_tid_ptr, *child_tid_ptr; 509 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 510 long ret; 511 512 #ifdef CONFIG_COMPAT 513 if (test_thread_flag(TIF_32BIT)) { 514 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 515 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 516 } else 517 #endif 518 { 519 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 520 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 521 } 522 523 ret = do_fork(clone_flags, stack_start, 524 regs, stack_size, 525 parent_tid_ptr, child_tid_ptr); 526 527 /* If we get an error and potentially restart the system 528 * call, we're screwed because copy_thread() clobbered 529 * the parent's %o1. So detect that case and restore it 530 * here. 531 */ 532 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 533 regs->u_regs[UREG_I1] = orig_i1; 534 535 return ret; 536 } 537 538 /* Copy a Sparc thread. The fork() return value conventions 539 * under SunOS are nothing short of bletcherous: 540 * Parent --> %o0 == childs pid, %o1 == 0 541 * Child --> %o0 == parents pid, %o1 == 1 542 */ 543 int copy_thread(unsigned long clone_flags, unsigned long sp, 544 unsigned long unused, 545 struct task_struct *p, struct pt_regs *regs) 546 { 547 struct thread_info *t = task_thread_info(p); 548 struct sparc_stackf *parent_sf; 549 unsigned long child_stack_sz; 550 char *child_trap_frame; 551 int kernel_thread; 552 553 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; 554 parent_sf = ((struct sparc_stackf *) regs) - 1; 555 556 /* Calculate offset to stack_frame & pt_regs */ 557 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + 558 (kernel_thread ? STACKFRAME_SZ : 0)); 559 child_trap_frame = (task_stack_page(p) + 560 (THREAD_SIZE - child_stack_sz)); 561 memcpy(child_trap_frame, parent_sf, child_stack_sz); 562 563 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | 564 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | 565 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); 566 t->new_child = 1; 567 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 568 t->kregs = (struct pt_regs *) (child_trap_frame + 569 sizeof(struct sparc_stackf)); 570 t->fpsaved[0] = 0; 571 572 if (kernel_thread) { 573 struct sparc_stackf *child_sf = (struct sparc_stackf *) 574 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); 575 576 /* Zero terminate the stack backtrace. */ 577 child_sf->fp = NULL; 578 t->kregs->u_regs[UREG_FP] = 579 ((unsigned long) child_sf) - STACK_BIAS; 580 581 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); 582 t->kregs->u_regs[UREG_G6] = (unsigned long) t; 583 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; 584 } else { 585 if (t->flags & _TIF_32BIT) { 586 sp &= 0x00000000ffffffffUL; 587 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 588 } 589 t->kregs->u_regs[UREG_FP] = sp; 590 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); 591 if (sp != regs->u_regs[UREG_FP]) { 592 unsigned long csp; 593 594 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 595 if (!csp) 596 return -EFAULT; 597 t->kregs->u_regs[UREG_FP] = csp; 598 } 599 if (t->utraps) 600 t->utraps[0]++; 601 } 602 603 /* Set the return value for the child. */ 604 t->kregs->u_regs[UREG_I0] = current->pid; 605 t->kregs->u_regs[UREG_I1] = 1; 606 607 /* Set the second return value for the parent. */ 608 regs->u_regs[UREG_I1] = 0; 609 610 if (clone_flags & CLONE_SETTLS) 611 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 612 613 return 0; 614 } 615 616 /* 617 * This is the mechanism for creating a new kernel thread. 618 * 619 * NOTE! Only a kernel-only process(ie the swapper or direct descendants 620 * who haven't done an "execve()") should use this: it will work within 621 * a system call from a "real" process, but the process memory space will 622 * not be freed until both the parent and the child have exited. 623 */ 624 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 625 { 626 long retval; 627 628 /* If the parent runs before fn(arg) is called by the child, 629 * the input registers of this function can be clobbered. 630 * So we stash 'fn' and 'arg' into global registers which 631 * will not be modified by the parent. 632 */ 633 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ 634 "mov %5, %%g3\n\t" /* Save ARG into global */ 635 "mov %1, %%g1\n\t" /* Clone syscall nr. */ 636 "mov %2, %%o0\n\t" /* Clone flags. */ 637 "mov 0, %%o1\n\t" /* usp arg == 0 */ 638 "t 0x6d\n\t" /* Linux/Sparc clone(). */ 639 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ 640 " mov %%o0, %0\n\t" 641 "jmpl %%g2, %%o7\n\t" /* Call the function. */ 642 " mov %%g3, %%o0\n\t" /* Set arg in delay. */ 643 "mov %3, %%g1\n\t" 644 "t 0x6d\n\t" /* Linux/Sparc exit(). */ 645 /* Notreached by child. */ 646 "1:" : 647 "=r" (retval) : 648 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), 649 "i" (__NR_exit), "r" (fn), "r" (arg) : 650 "g1", "g2", "g3", "o0", "o1", "memory", "cc"); 651 return retval; 652 } 653 EXPORT_SYMBOL(kernel_thread); 654 655 typedef struct { 656 union { 657 unsigned int pr_regs[32]; 658 unsigned long pr_dregs[16]; 659 } pr_fr; 660 unsigned int __unused; 661 unsigned int pr_fsr; 662 unsigned char pr_qcnt; 663 unsigned char pr_q_entrysize; 664 unsigned char pr_en; 665 unsigned int pr_q[64]; 666 } elf_fpregset_t32; 667 668 /* 669 * fill in the fpu structure for a core dump. 670 */ 671 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 672 { 673 unsigned long *kfpregs = current_thread_info()->fpregs; 674 unsigned long fprs = current_thread_info()->fpsaved[0]; 675 676 if (test_thread_flag(TIF_32BIT)) { 677 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 678 679 if (fprs & FPRS_DL) 680 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 681 sizeof(unsigned int) * 32); 682 else 683 memset(&fpregs32->pr_fr.pr_regs[0], 0, 684 sizeof(unsigned int) * 32); 685 fpregs32->pr_qcnt = 0; 686 fpregs32->pr_q_entrysize = 8; 687 memset(&fpregs32->pr_q[0], 0, 688 (sizeof(unsigned int) * 64)); 689 if (fprs & FPRS_FEF) { 690 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 691 fpregs32->pr_en = 1; 692 } else { 693 fpregs32->pr_fsr = 0; 694 fpregs32->pr_en = 0; 695 } 696 } else { 697 if(fprs & FPRS_DL) 698 memcpy(&fpregs->pr_regs[0], kfpregs, 699 sizeof(unsigned int) * 32); 700 else 701 memset(&fpregs->pr_regs[0], 0, 702 sizeof(unsigned int) * 32); 703 if(fprs & FPRS_DU) 704 memcpy(&fpregs->pr_regs[16], kfpregs+16, 705 sizeof(unsigned int) * 32); 706 else 707 memset(&fpregs->pr_regs[16], 0, 708 sizeof(unsigned int) * 32); 709 if(fprs & FPRS_FEF) { 710 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 711 fpregs->pr_gsr = current_thread_info()->gsr[0]; 712 } else { 713 fpregs->pr_fsr = fpregs->pr_gsr = 0; 714 } 715 fpregs->pr_fprs = fprs; 716 } 717 return 1; 718 } 719 EXPORT_SYMBOL(dump_fpu); 720 721 /* 722 * sparc_execve() executes a new program after the asm stub has set 723 * things up for us. This should basically do what I want it to. 724 */ 725 asmlinkage int sparc_execve(struct pt_regs *regs) 726 { 727 int error, base = 0; 728 char *filename; 729 730 /* User register window flush is done by entry.S */ 731 732 /* Check for indirect call. */ 733 if (regs->u_regs[UREG_G1] == 0) 734 base = 1; 735 736 filename = getname((char __user *)regs->u_regs[base + UREG_I0]); 737 error = PTR_ERR(filename); 738 if (IS_ERR(filename)) 739 goto out; 740 error = do_execve(filename, 741 (const char __user *const __user *) 742 regs->u_regs[base + UREG_I1], 743 (const char __user *const __user *) 744 regs->u_regs[base + UREG_I2], regs); 745 putname(filename); 746 if (!error) { 747 fprs_write(0); 748 current_thread_info()->xfsr[0] = 0; 749 current_thread_info()->fpsaved[0] = 0; 750 regs->tstate &= ~TSTATE_PEF; 751 } 752 out: 753 return error; 754 } 755 756 unsigned long get_wchan(struct task_struct *task) 757 { 758 unsigned long pc, fp, bias = 0; 759 struct thread_info *tp; 760 struct reg_window *rw; 761 unsigned long ret = 0; 762 int count = 0; 763 764 if (!task || task == current || 765 task->state == TASK_RUNNING) 766 goto out; 767 768 tp = task_thread_info(task); 769 bias = STACK_BIAS; 770 fp = task_thread_info(task)->ksp + bias; 771 772 do { 773 if (!kstack_valid(tp, fp)) 774 break; 775 rw = (struct reg_window *) fp; 776 pc = rw->ins[7]; 777 if (!in_sched_functions(pc)) { 778 ret = pc; 779 goto out; 780 } 781 fp = rw->ins[6] + bias; 782 } while (++count < 16); 783 784 out: 785 return ret; 786 } 787