xref: /linux/arch/sparc/kernel/process_64.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7 
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11 
12 #include <stdarg.h>
13 
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52 
53 #include "kstack.h"
54 
55 static void sparc64_yield(int cpu)
56 {
57 	if (tlb_type != hypervisor) {
58 		touch_nmi_watchdog();
59 		return;
60 	}
61 
62 	clear_thread_flag(TIF_POLLING_NRFLAG);
63 	smp_mb__after_clear_bit();
64 
65 	while (!need_resched() && !cpu_is_offline(cpu)) {
66 		unsigned long pstate;
67 
68 		/* Disable interrupts. */
69 		__asm__ __volatile__(
70 			"rdpr %%pstate, %0\n\t"
71 			"andn %0, %1, %0\n\t"
72 			"wrpr %0, %%g0, %%pstate"
73 			: "=&r" (pstate)
74 			: "i" (PSTATE_IE));
75 
76 		if (!need_resched() && !cpu_is_offline(cpu))
77 			sun4v_cpu_yield();
78 
79 		/* Re-enable interrupts. */
80 		__asm__ __volatile__(
81 			"rdpr %%pstate, %0\n\t"
82 			"or %0, %1, %0\n\t"
83 			"wrpr %0, %%g0, %%pstate"
84 			: "=&r" (pstate)
85 			: "i" (PSTATE_IE));
86 	}
87 
88 	set_thread_flag(TIF_POLLING_NRFLAG);
89 }
90 
91 /* The idle loop on sparc64. */
92 void cpu_idle(void)
93 {
94 	int cpu = smp_processor_id();
95 
96 	set_thread_flag(TIF_POLLING_NRFLAG);
97 
98 	while(1) {
99 		tick_nohz_idle_enter();
100 		rcu_idle_enter();
101 
102 		while (!need_resched() && !cpu_is_offline(cpu))
103 			sparc64_yield(cpu);
104 
105 		rcu_idle_exit();
106 		tick_nohz_idle_exit();
107 
108 #ifdef CONFIG_HOTPLUG_CPU
109 		if (cpu_is_offline(cpu)) {
110 			sched_preempt_enable_no_resched();
111 			cpu_play_dead();
112 		}
113 #endif
114 		schedule_preempt_disabled();
115 	}
116 }
117 
118 #ifdef CONFIG_COMPAT
119 static void show_regwindow32(struct pt_regs *regs)
120 {
121 	struct reg_window32 __user *rw;
122 	struct reg_window32 r_w;
123 	mm_segment_t old_fs;
124 
125 	__asm__ __volatile__ ("flushw");
126 	rw = compat_ptr((unsigned)regs->u_regs[14]);
127 	old_fs = get_fs();
128 	set_fs (USER_DS);
129 	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
130 		set_fs (old_fs);
131 		return;
132 	}
133 
134 	set_fs (old_fs);
135 	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
136 	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
137 	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
138 	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
139 	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
140 	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
141 	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
142 	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
143 }
144 #else
145 #define show_regwindow32(regs)	do { } while (0)
146 #endif
147 
148 static void show_regwindow(struct pt_regs *regs)
149 {
150 	struct reg_window __user *rw;
151 	struct reg_window *rwk;
152 	struct reg_window r_w;
153 	mm_segment_t old_fs;
154 
155 	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
156 		__asm__ __volatile__ ("flushw");
157 		rw = (struct reg_window __user *)
158 			(regs->u_regs[14] + STACK_BIAS);
159 		rwk = (struct reg_window *)
160 			(regs->u_regs[14] + STACK_BIAS);
161 		if (!(regs->tstate & TSTATE_PRIV)) {
162 			old_fs = get_fs();
163 			set_fs (USER_DS);
164 			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
165 				set_fs (old_fs);
166 				return;
167 			}
168 			rwk = &r_w;
169 			set_fs (old_fs);
170 		}
171 	} else {
172 		show_regwindow32(regs);
173 		return;
174 	}
175 	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
176 	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
177 	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
178 	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
179 	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
180 	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
181 	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
182 	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
183 	if (regs->tstate & TSTATE_PRIV)
184 		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
185 }
186 
187 void show_regs(struct pt_regs *regs)
188 {
189 	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
190 	       regs->tpc, regs->tnpc, regs->y, print_tainted());
191 	printk("TPC: <%pS>\n", (void *) regs->tpc);
192 	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
193 	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
194 	       regs->u_regs[3]);
195 	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
196 	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
197 	       regs->u_regs[7]);
198 	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
199 	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
200 	       regs->u_regs[11]);
201 	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
202 	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
203 	       regs->u_regs[15]);
204 	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
205 	show_regwindow(regs);
206 	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
207 }
208 
209 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
210 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
211 
212 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
213 			      int this_cpu)
214 {
215 	struct global_reg_snapshot *rp;
216 
217 	flushw_all();
218 
219 	rp = &global_cpu_snapshot[this_cpu].reg;
220 
221 	rp->tstate = regs->tstate;
222 	rp->tpc = regs->tpc;
223 	rp->tnpc = regs->tnpc;
224 	rp->o7 = regs->u_regs[UREG_I7];
225 
226 	if (regs->tstate & TSTATE_PRIV) {
227 		struct reg_window *rw;
228 
229 		rw = (struct reg_window *)
230 			(regs->u_regs[UREG_FP] + STACK_BIAS);
231 		if (kstack_valid(tp, (unsigned long) rw)) {
232 			rp->i7 = rw->ins[7];
233 			rw = (struct reg_window *)
234 				(rw->ins[6] + STACK_BIAS);
235 			if (kstack_valid(tp, (unsigned long) rw))
236 				rp->rpc = rw->ins[7];
237 		}
238 	} else {
239 		rp->i7 = 0;
240 		rp->rpc = 0;
241 	}
242 	rp->thread = tp;
243 }
244 
245 /* In order to avoid hangs we do not try to synchronize with the
246  * global register dump client cpus.  The last store they make is to
247  * the thread pointer, so do a short poll waiting for that to become
248  * non-NULL.
249  */
250 static void __global_reg_poll(struct global_reg_snapshot *gp)
251 {
252 	int limit = 0;
253 
254 	while (!gp->thread && ++limit < 100) {
255 		barrier();
256 		udelay(1);
257 	}
258 }
259 
260 void arch_trigger_all_cpu_backtrace(void)
261 {
262 	struct thread_info *tp = current_thread_info();
263 	struct pt_regs *regs = get_irq_regs();
264 	unsigned long flags;
265 	int this_cpu, cpu;
266 
267 	if (!regs)
268 		regs = tp->kregs;
269 
270 	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
271 
272 	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
273 
274 	this_cpu = raw_smp_processor_id();
275 
276 	__global_reg_self(tp, regs, this_cpu);
277 
278 	smp_fetch_global_regs();
279 
280 	for_each_online_cpu(cpu) {
281 		struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
282 
283 		__global_reg_poll(gp);
284 
285 		tp = gp->thread;
286 		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
287 		       (cpu == this_cpu ? '*' : ' '), cpu,
288 		       gp->tstate, gp->tpc, gp->tnpc,
289 		       ((tp && tp->task) ? tp->task->comm : "NULL"),
290 		       ((tp && tp->task) ? tp->task->pid : -1));
291 
292 		if (gp->tstate & TSTATE_PRIV) {
293 			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
294 			       (void *) gp->tpc,
295 			       (void *) gp->o7,
296 			       (void *) gp->i7,
297 			       (void *) gp->rpc);
298 		} else {
299 			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
300 			       gp->tpc, gp->o7, gp->i7, gp->rpc);
301 		}
302 	}
303 
304 	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305 
306 	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307 }
308 
309 #ifdef CONFIG_MAGIC_SYSRQ
310 
311 static void sysrq_handle_globreg(int key)
312 {
313 	arch_trigger_all_cpu_backtrace();
314 }
315 
316 static struct sysrq_key_op sparc_globalreg_op = {
317 	.handler	= sysrq_handle_globreg,
318 	.help_msg	= "global-regs(Y)",
319 	.action_msg	= "Show Global CPU Regs",
320 };
321 
322 static void __global_pmu_self(int this_cpu)
323 {
324 	struct global_pmu_snapshot *pp;
325 	int i, num;
326 
327 	pp = &global_cpu_snapshot[this_cpu].pmu;
328 
329 	num = 1;
330 	if (tlb_type == hypervisor &&
331 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
332 		num = 4;
333 
334 	for (i = 0; i < num; i++) {
335 		pp->pcr[i] = pcr_ops->read_pcr(i);
336 		pp->pic[i] = pcr_ops->read_pic(i);
337 	}
338 }
339 
340 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
341 {
342 	int limit = 0;
343 
344 	while (!pp->pcr[0] && ++limit < 100) {
345 		barrier();
346 		udelay(1);
347 	}
348 }
349 
350 static void pmu_snapshot_all_cpus(void)
351 {
352 	unsigned long flags;
353 	int this_cpu, cpu;
354 
355 	spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
356 
357 	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
358 
359 	this_cpu = raw_smp_processor_id();
360 
361 	__global_pmu_self(this_cpu);
362 
363 	smp_fetch_global_pmu();
364 
365 	for_each_online_cpu(cpu) {
366 		struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
367 
368 		__global_pmu_poll(pp);
369 
370 		printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
371 		       (cpu == this_cpu ? '*' : ' '), cpu,
372 		       pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
373 		       pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
374 	}
375 
376 	memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
377 
378 	spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
379 }
380 
381 static void sysrq_handle_globpmu(int key)
382 {
383 	pmu_snapshot_all_cpus();
384 }
385 
386 static struct sysrq_key_op sparc_globalpmu_op = {
387 	.handler	= sysrq_handle_globpmu,
388 	.help_msg	= "global-pmu(X)",
389 	.action_msg	= "Show Global PMU Regs",
390 };
391 
392 static int __init sparc_sysrq_init(void)
393 {
394 	int ret = register_sysrq_key('y', &sparc_globalreg_op);
395 
396 	if (!ret)
397 		ret = register_sysrq_key('x', &sparc_globalpmu_op);
398 	return ret;
399 }
400 
401 core_initcall(sparc_sysrq_init);
402 
403 #endif
404 
405 unsigned long thread_saved_pc(struct task_struct *tsk)
406 {
407 	struct thread_info *ti = task_thread_info(tsk);
408 	unsigned long ret = 0xdeadbeefUL;
409 
410 	if (ti && ti->ksp) {
411 		unsigned long *sp;
412 		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
413 		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
414 		    sp[14]) {
415 			unsigned long *fp;
416 			fp = (unsigned long *)(sp[14] + STACK_BIAS);
417 			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
418 				ret = fp[15];
419 		}
420 	}
421 	return ret;
422 }
423 
424 /* Free current thread data structures etc.. */
425 void exit_thread(void)
426 {
427 	struct thread_info *t = current_thread_info();
428 
429 	if (t->utraps) {
430 		if (t->utraps[0] < 2)
431 			kfree (t->utraps);
432 		else
433 			t->utraps[0]--;
434 	}
435 }
436 
437 void flush_thread(void)
438 {
439 	struct thread_info *t = current_thread_info();
440 	struct mm_struct *mm;
441 
442 	mm = t->task->mm;
443 	if (mm)
444 		tsb_context_switch(mm);
445 
446 	set_thread_wsaved(0);
447 
448 	/* Clear FPU register state. */
449 	t->fpsaved[0] = 0;
450 }
451 
452 /* It's a bit more tricky when 64-bit tasks are involved... */
453 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
454 {
455 	unsigned long fp, distance, rval;
456 
457 	if (!(test_thread_flag(TIF_32BIT))) {
458 		csp += STACK_BIAS;
459 		psp += STACK_BIAS;
460 		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
461 		fp += STACK_BIAS;
462 	} else
463 		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
464 
465 	/* Now align the stack as this is mandatory in the Sparc ABI
466 	 * due to how register windows work.  This hides the
467 	 * restriction from thread libraries etc.
468 	 */
469 	csp &= ~15UL;
470 
471 	distance = fp - psp;
472 	rval = (csp - distance);
473 	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
474 		rval = 0;
475 	else if (test_thread_flag(TIF_32BIT)) {
476 		if (put_user(((u32)csp),
477 			     &(((struct reg_window32 __user *)rval)->ins[6])))
478 			rval = 0;
479 	} else {
480 		if (put_user(((u64)csp - STACK_BIAS),
481 			     &(((struct reg_window __user *)rval)->ins[6])))
482 			rval = 0;
483 		else
484 			rval = rval - STACK_BIAS;
485 	}
486 
487 	return rval;
488 }
489 
490 /* Standard stuff. */
491 static inline void shift_window_buffer(int first_win, int last_win,
492 				       struct thread_info *t)
493 {
494 	int i;
495 
496 	for (i = first_win; i < last_win; i++) {
497 		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
498 		memcpy(&t->reg_window[i], &t->reg_window[i+1],
499 		       sizeof(struct reg_window));
500 	}
501 }
502 
503 void synchronize_user_stack(void)
504 {
505 	struct thread_info *t = current_thread_info();
506 	unsigned long window;
507 
508 	flush_user_windows();
509 	if ((window = get_thread_wsaved()) != 0) {
510 		int winsize = sizeof(struct reg_window);
511 		int bias = 0;
512 
513 		if (test_thread_flag(TIF_32BIT))
514 			winsize = sizeof(struct reg_window32);
515 		else
516 			bias = STACK_BIAS;
517 
518 		window -= 1;
519 		do {
520 			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
521 			struct reg_window *rwin = &t->reg_window[window];
522 
523 			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
524 				shift_window_buffer(window, get_thread_wsaved() - 1, t);
525 				set_thread_wsaved(get_thread_wsaved() - 1);
526 			}
527 		} while (window--);
528 	}
529 }
530 
531 static void stack_unaligned(unsigned long sp)
532 {
533 	siginfo_t info;
534 
535 	info.si_signo = SIGBUS;
536 	info.si_errno = 0;
537 	info.si_code = BUS_ADRALN;
538 	info.si_addr = (void __user *) sp;
539 	info.si_trapno = 0;
540 	force_sig_info(SIGBUS, &info, current);
541 }
542 
543 void fault_in_user_windows(void)
544 {
545 	struct thread_info *t = current_thread_info();
546 	unsigned long window;
547 	int winsize = sizeof(struct reg_window);
548 	int bias = 0;
549 
550 	if (test_thread_flag(TIF_32BIT))
551 		winsize = sizeof(struct reg_window32);
552 	else
553 		bias = STACK_BIAS;
554 
555 	flush_user_windows();
556 	window = get_thread_wsaved();
557 
558 	if (likely(window != 0)) {
559 		window -= 1;
560 		do {
561 			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
562 			struct reg_window *rwin = &t->reg_window[window];
563 
564 			if (unlikely(sp & 0x7UL))
565 				stack_unaligned(sp);
566 
567 			if (unlikely(copy_to_user((char __user *)sp,
568 						  rwin, winsize)))
569 				goto barf;
570 		} while (window--);
571 	}
572 	set_thread_wsaved(0);
573 	return;
574 
575 barf:
576 	set_thread_wsaved(window + 1);
577 	do_exit(SIGILL);
578 }
579 
580 asmlinkage long sparc_do_fork(unsigned long clone_flags,
581 			      unsigned long stack_start,
582 			      struct pt_regs *regs,
583 			      unsigned long stack_size)
584 {
585 	int __user *parent_tid_ptr, *child_tid_ptr;
586 	unsigned long orig_i1 = regs->u_regs[UREG_I1];
587 	long ret;
588 
589 #ifdef CONFIG_COMPAT
590 	if (test_thread_flag(TIF_32BIT)) {
591 		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
592 		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
593 	} else
594 #endif
595 	{
596 		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
597 		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
598 	}
599 
600 	ret = do_fork(clone_flags, stack_start,
601 		      regs, stack_size,
602 		      parent_tid_ptr, child_tid_ptr);
603 
604 	/* If we get an error and potentially restart the system
605 	 * call, we're screwed because copy_thread() clobbered
606 	 * the parent's %o1.  So detect that case and restore it
607 	 * here.
608 	 */
609 	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
610 		regs->u_regs[UREG_I1] = orig_i1;
611 
612 	return ret;
613 }
614 
615 /* Copy a Sparc thread.  The fork() return value conventions
616  * under SunOS are nothing short of bletcherous:
617  * Parent -->  %o0 == childs  pid, %o1 == 0
618  * Child  -->  %o0 == parents pid, %o1 == 1
619  */
620 int copy_thread(unsigned long clone_flags, unsigned long sp,
621 		unsigned long unused,
622 		struct task_struct *p, struct pt_regs *regs)
623 {
624 	struct thread_info *t = task_thread_info(p);
625 	struct sparc_stackf *parent_sf;
626 	unsigned long child_stack_sz;
627 	char *child_trap_frame;
628 	int kernel_thread;
629 
630 	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
631 	parent_sf = ((struct sparc_stackf *) regs) - 1;
632 
633 	/* Calculate offset to stack_frame & pt_regs */
634 	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
635 			  (kernel_thread ? STACKFRAME_SZ : 0));
636 	child_trap_frame = (task_stack_page(p) +
637 			    (THREAD_SIZE - child_stack_sz));
638 	memcpy(child_trap_frame, parent_sf, child_stack_sz);
639 
640 	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
641 				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
642 		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
643 	t->new_child = 1;
644 	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
645 	t->kregs = (struct pt_regs *) (child_trap_frame +
646 				       sizeof(struct sparc_stackf));
647 	t->fpsaved[0] = 0;
648 
649 	if (kernel_thread) {
650 		struct sparc_stackf *child_sf = (struct sparc_stackf *)
651 			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
652 
653 		/* Zero terminate the stack backtrace.  */
654 		child_sf->fp = NULL;
655 		t->kregs->u_regs[UREG_FP] =
656 		  ((unsigned long) child_sf) - STACK_BIAS;
657 
658 		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
659 		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
660 		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
661 	} else {
662 		if (t->flags & _TIF_32BIT) {
663 			sp &= 0x00000000ffffffffUL;
664 			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
665 		}
666 		t->kregs->u_regs[UREG_FP] = sp;
667 		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
668 		if (sp != regs->u_regs[UREG_FP]) {
669 			unsigned long csp;
670 
671 			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
672 			if (!csp)
673 				return -EFAULT;
674 			t->kregs->u_regs[UREG_FP] = csp;
675 		}
676 		if (t->utraps)
677 			t->utraps[0]++;
678 	}
679 
680 	/* Set the return value for the child. */
681 	t->kregs->u_regs[UREG_I0] = current->pid;
682 	t->kregs->u_regs[UREG_I1] = 1;
683 
684 	/* Set the second return value for the parent. */
685 	regs->u_regs[UREG_I1] = 0;
686 
687 	if (clone_flags & CLONE_SETTLS)
688 		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
689 
690 	return 0;
691 }
692 
693 /*
694  * This is the mechanism for creating a new kernel thread.
695  *
696  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
697  * who haven't done an "execve()") should use this: it will work within
698  * a system call from a "real" process, but the process memory space will
699  * not be freed until both the parent and the child have exited.
700  */
701 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
702 {
703 	long retval;
704 
705 	/* If the parent runs before fn(arg) is called by the child,
706 	 * the input registers of this function can be clobbered.
707 	 * So we stash 'fn' and 'arg' into global registers which
708 	 * will not be modified by the parent.
709 	 */
710 	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
711 			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
712 			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
713 			     "mov %2, %%o0\n\t"	   /* Clone flags. */
714 			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
715 			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
716 			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
717 			     " mov %%o0, %0\n\t"
718 			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
719 			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
720 			     "mov %3, %%g1\n\t"
721 			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
722 			     /* Notreached by child. */
723 			     "1:" :
724 			     "=r" (retval) :
725 			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
726 			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
727 			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
728 	return retval;
729 }
730 EXPORT_SYMBOL(kernel_thread);
731 
732 typedef struct {
733 	union {
734 		unsigned int	pr_regs[32];
735 		unsigned long	pr_dregs[16];
736 	} pr_fr;
737 	unsigned int __unused;
738 	unsigned int	pr_fsr;
739 	unsigned char	pr_qcnt;
740 	unsigned char	pr_q_entrysize;
741 	unsigned char	pr_en;
742 	unsigned int	pr_q[64];
743 } elf_fpregset_t32;
744 
745 /*
746  * fill in the fpu structure for a core dump.
747  */
748 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
749 {
750 	unsigned long *kfpregs = current_thread_info()->fpregs;
751 	unsigned long fprs = current_thread_info()->fpsaved[0];
752 
753 	if (test_thread_flag(TIF_32BIT)) {
754 		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
755 
756 		if (fprs & FPRS_DL)
757 			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
758 			       sizeof(unsigned int) * 32);
759 		else
760 			memset(&fpregs32->pr_fr.pr_regs[0], 0,
761 			       sizeof(unsigned int) * 32);
762 		fpregs32->pr_qcnt = 0;
763 		fpregs32->pr_q_entrysize = 8;
764 		memset(&fpregs32->pr_q[0], 0,
765 		       (sizeof(unsigned int) * 64));
766 		if (fprs & FPRS_FEF) {
767 			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
768 			fpregs32->pr_en = 1;
769 		} else {
770 			fpregs32->pr_fsr = 0;
771 			fpregs32->pr_en = 0;
772 		}
773 	} else {
774 		if(fprs & FPRS_DL)
775 			memcpy(&fpregs->pr_regs[0], kfpregs,
776 			       sizeof(unsigned int) * 32);
777 		else
778 			memset(&fpregs->pr_regs[0], 0,
779 			       sizeof(unsigned int) * 32);
780 		if(fprs & FPRS_DU)
781 			memcpy(&fpregs->pr_regs[16], kfpregs+16,
782 			       sizeof(unsigned int) * 32);
783 		else
784 			memset(&fpregs->pr_regs[16], 0,
785 			       sizeof(unsigned int) * 32);
786 		if(fprs & FPRS_FEF) {
787 			fpregs->pr_fsr = current_thread_info()->xfsr[0];
788 			fpregs->pr_gsr = current_thread_info()->gsr[0];
789 		} else {
790 			fpregs->pr_fsr = fpregs->pr_gsr = 0;
791 		}
792 		fpregs->pr_fprs = fprs;
793 	}
794 	return 1;
795 }
796 EXPORT_SYMBOL(dump_fpu);
797 
798 /*
799  * sparc_execve() executes a new program after the asm stub has set
800  * things up for us.  This should basically do what I want it to.
801  */
802 asmlinkage int sparc_execve(struct pt_regs *regs)
803 {
804 	int error, base = 0;
805 	struct filename *filename;
806 
807 	/* User register window flush is done by entry.S */
808 
809 	/* Check for indirect call. */
810 	if (regs->u_regs[UREG_G1] == 0)
811 		base = 1;
812 
813 	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
814 	error = PTR_ERR(filename);
815 	if (IS_ERR(filename))
816 		goto out;
817 	error = do_execve(filename->name,
818 			  (const char __user *const __user *)
819 			  regs->u_regs[base + UREG_I1],
820 			  (const char __user *const __user *)
821 			  regs->u_regs[base + UREG_I2], regs);
822 	putname(filename);
823 	if (!error) {
824 		fprs_write(0);
825 		current_thread_info()->xfsr[0] = 0;
826 		current_thread_info()->fpsaved[0] = 0;
827 		regs->tstate &= ~TSTATE_PEF;
828 	}
829 out:
830 	return error;
831 }
832 
833 unsigned long get_wchan(struct task_struct *task)
834 {
835 	unsigned long pc, fp, bias = 0;
836 	struct thread_info *tp;
837 	struct reg_window *rw;
838         unsigned long ret = 0;
839 	int count = 0;
840 
841 	if (!task || task == current ||
842             task->state == TASK_RUNNING)
843 		goto out;
844 
845 	tp = task_thread_info(task);
846 	bias = STACK_BIAS;
847 	fp = task_thread_info(task)->ksp + bias;
848 
849 	do {
850 		if (!kstack_valid(tp, fp))
851 			break;
852 		rw = (struct reg_window *) fp;
853 		pc = rw->ins[7];
854 		if (!in_sched_functions(pc)) {
855 			ret = pc;
856 			goto out;
857 		}
858 		fp = rw->ins[6] + bias;
859 	} while (++count < 16);
860 
861 out:
862 	return ret;
863 }
864