xref: /linux/arch/riscv/mm/context.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2017 SiFive
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/cpumask.h>
10 #include <linux/mm.h>
11 #include <linux/percpu.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/static_key.h>
15 #include <asm/tlbflush.h>
16 #include <asm/cacheflush.h>
17 #include <asm/mmu_context.h>
18 
19 #ifdef CONFIG_MMU
20 
21 DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
22 
23 static unsigned long asid_bits;
24 static unsigned long num_asids;
25 unsigned long asid_mask;
26 
27 static atomic_long_t current_version;
28 
29 static DEFINE_RAW_SPINLOCK(context_lock);
30 static cpumask_t context_tlb_flush_pending;
31 static unsigned long *context_asid_map;
32 
33 static DEFINE_PER_CPU(atomic_long_t, active_context);
34 static DEFINE_PER_CPU(unsigned long, reserved_context);
35 
36 static bool check_update_reserved_context(unsigned long cntx,
37 					  unsigned long newcntx)
38 {
39 	int cpu;
40 	bool hit = false;
41 
42 	/*
43 	 * Iterate over the set of reserved CONTEXT looking for a match.
44 	 * If we find one, then we can update our mm to use new CONTEXT
45 	 * (i.e. the same CONTEXT in the current_version) but we can't
46 	 * exit the loop early, since we need to ensure that all copies
47 	 * of the old CONTEXT are updated to reflect the mm. Failure to do
48 	 * so could result in us missing the reserved CONTEXT in a future
49 	 * version.
50 	 */
51 	for_each_possible_cpu(cpu) {
52 		if (per_cpu(reserved_context, cpu) == cntx) {
53 			hit = true;
54 			per_cpu(reserved_context, cpu) = newcntx;
55 		}
56 	}
57 
58 	return hit;
59 }
60 
61 static void __flush_context(void)
62 {
63 	int i;
64 	unsigned long cntx;
65 
66 	/* Must be called with context_lock held */
67 	lockdep_assert_held(&context_lock);
68 
69 	/* Update the list of reserved ASIDs and the ASID bitmap. */
70 	bitmap_zero(context_asid_map, num_asids);
71 
72 	/* Mark already active ASIDs as used */
73 	for_each_possible_cpu(i) {
74 		cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
75 		/*
76 		 * If this CPU has already been through a rollover, but
77 		 * hasn't run another task in the meantime, we must preserve
78 		 * its reserved CONTEXT, as this is the only trace we have of
79 		 * the process it is still running.
80 		 */
81 		if (cntx == 0)
82 			cntx = per_cpu(reserved_context, i);
83 
84 		__set_bit(cntx & asid_mask, context_asid_map);
85 		per_cpu(reserved_context, i) = cntx;
86 	}
87 
88 	/* Mark ASID #0 as used because it is used at boot-time */
89 	__set_bit(0, context_asid_map);
90 
91 	/* Queue a TLB invalidation for each CPU on next context-switch */
92 	cpumask_setall(&context_tlb_flush_pending);
93 }
94 
95 static unsigned long __new_context(struct mm_struct *mm)
96 {
97 	static u32 cur_idx = 1;
98 	unsigned long cntx = atomic_long_read(&mm->context.id);
99 	unsigned long asid, ver = atomic_long_read(&current_version);
100 
101 	/* Must be called with context_lock held */
102 	lockdep_assert_held(&context_lock);
103 
104 	if (cntx != 0) {
105 		unsigned long newcntx = ver | (cntx & asid_mask);
106 
107 		/*
108 		 * If our current CONTEXT was active during a rollover, we
109 		 * can continue to use it and this was just a false alarm.
110 		 */
111 		if (check_update_reserved_context(cntx, newcntx))
112 			return newcntx;
113 
114 		/*
115 		 * We had a valid CONTEXT in a previous life, so try to
116 		 * re-use it if possible.
117 		 */
118 		if (!__test_and_set_bit(cntx & asid_mask, context_asid_map))
119 			return newcntx;
120 	}
121 
122 	/*
123 	 * Allocate a free ASID. If we can't find one then increment
124 	 * current_version and flush all ASIDs.
125 	 */
126 	asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
127 	if (asid != num_asids)
128 		goto set_asid;
129 
130 	/* We're out of ASIDs, so increment current_version */
131 	ver = atomic_long_add_return_relaxed(num_asids, &current_version);
132 
133 	/* Flush everything  */
134 	__flush_context();
135 
136 	/* We have more ASIDs than CPUs, so this will always succeed */
137 	asid = find_next_zero_bit(context_asid_map, num_asids, 1);
138 
139 set_asid:
140 	__set_bit(asid, context_asid_map);
141 	cur_idx = asid;
142 	return asid | ver;
143 }
144 
145 static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
146 {
147 	unsigned long flags;
148 	bool need_flush_tlb = false;
149 	unsigned long cntx, old_active_cntx;
150 
151 	cntx = atomic_long_read(&mm->context.id);
152 
153 	/*
154 	 * If our active_context is non-zero and the context matches the
155 	 * current_version, then we update the active_context entry with a
156 	 * relaxed cmpxchg.
157 	 *
158 	 * Following is how we handle racing with a concurrent rollover:
159 	 *
160 	 * - We get a zero back from the cmpxchg and end up waiting on the
161 	 *   lock. Taking the lock synchronises with the rollover and so
162 	 *   we are forced to see the updated verion.
163 	 *
164 	 * - We get a valid context back from the cmpxchg then we continue
165 	 *   using old ASID because __flush_context() would have marked ASID
166 	 *   of active_context as used and next context switch we will
167 	 *   allocate new context.
168 	 */
169 	old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
170 	if (old_active_cntx &&
171 	    ((cntx & ~asid_mask) == atomic_long_read(&current_version)) &&
172 	    atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
173 					old_active_cntx, cntx))
174 		goto switch_mm_fast;
175 
176 	raw_spin_lock_irqsave(&context_lock, flags);
177 
178 	/* Check that our ASID belongs to the current_version. */
179 	cntx = atomic_long_read(&mm->context.id);
180 	if ((cntx & ~asid_mask) != atomic_long_read(&current_version)) {
181 		cntx = __new_context(mm);
182 		atomic_long_set(&mm->context.id, cntx);
183 	}
184 
185 	if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
186 		need_flush_tlb = true;
187 
188 	atomic_long_set(&per_cpu(active_context, cpu), cntx);
189 
190 	raw_spin_unlock_irqrestore(&context_lock, flags);
191 
192 switch_mm_fast:
193 	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
194 		  ((cntx & asid_mask) << SATP_ASID_SHIFT) |
195 		  satp_mode);
196 
197 	if (need_flush_tlb)
198 		local_flush_tlb_all();
199 }
200 
201 static void set_mm_noasid(struct mm_struct *mm)
202 {
203 	/* Switch the page table and blindly nuke entire local TLB */
204 	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
205 	local_flush_tlb_all();
206 }
207 
208 static inline void set_mm(struct mm_struct *prev,
209 			  struct mm_struct *next, unsigned int cpu)
210 {
211 	/*
212 	 * The mm_cpumask indicates which harts' TLBs contain the virtual
213 	 * address mapping of the mm. Compared to noasid, using asid
214 	 * can't guarantee that stale TLB entries are invalidated because
215 	 * the asid mechanism wouldn't flush TLB for every switch_mm for
216 	 * performance. So when using asid, keep all CPUs footmarks in
217 	 * cpumask() until mm reset.
218 	 */
219 	cpumask_set_cpu(cpu, mm_cpumask(next));
220 	if (static_branch_unlikely(&use_asid_allocator)) {
221 		set_mm_asid(next, cpu);
222 	} else {
223 		cpumask_clear_cpu(cpu, mm_cpumask(prev));
224 		set_mm_noasid(next);
225 	}
226 }
227 
228 static int __init asids_init(void)
229 {
230 	unsigned long old;
231 
232 	/* Figure-out number of ASID bits in HW */
233 	old = csr_read(CSR_SATP);
234 	asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
235 	csr_write(CSR_SATP, asid_bits);
236 	asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
237 	asid_bits = fls_long(asid_bits);
238 	csr_write(CSR_SATP, old);
239 
240 	/*
241 	 * In the process of determining number of ASID bits (above)
242 	 * we polluted the TLB of current HART so let's do TLB flushed
243 	 * to remove unwanted TLB enteries.
244 	 */
245 	local_flush_tlb_all();
246 
247 	/* Pre-compute ASID details */
248 	if (asid_bits) {
249 		num_asids = 1 << asid_bits;
250 		asid_mask = num_asids - 1;
251 	}
252 
253 	/*
254 	 * Use ASID allocator only if number of HW ASIDs are
255 	 * at-least twice more than CPUs
256 	 */
257 	if (num_asids > (2 * num_possible_cpus())) {
258 		atomic_long_set(&current_version, num_asids);
259 
260 		context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
261 		if (!context_asid_map)
262 			panic("Failed to allocate bitmap for %lu ASIDs\n",
263 			      num_asids);
264 
265 		__set_bit(0, context_asid_map);
266 
267 		static_branch_enable(&use_asid_allocator);
268 
269 		pr_info("ASID allocator using %lu bits (%lu entries)\n",
270 			asid_bits, num_asids);
271 	} else {
272 		pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
273 	}
274 
275 	return 0;
276 }
277 early_initcall(asids_init);
278 #else
279 static inline void set_mm(struct mm_struct *prev,
280 			  struct mm_struct *next, unsigned int cpu)
281 {
282 	/* Nothing to do here when there is no MMU */
283 }
284 #endif
285 
286 /*
287  * When necessary, performs a deferred icache flush for the given MM context,
288  * on the local CPU.  RISC-V has no direct mechanism for instruction cache
289  * shoot downs, so instead we send an IPI that informs the remote harts they
290  * need to flush their local instruction caches.  To avoid pathologically slow
291  * behavior in a common case (a bunch of single-hart processes on a many-hart
292  * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
293  * executing a MM context and instead schedule a deferred local instruction
294  * cache flush to be performed before execution resumes on each hart.  This
295  * actually performs that local instruction cache flush, which implicitly only
296  * refers to the current hart.
297  *
298  * The "cpu" argument must be the current local CPU number.
299  */
300 static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu)
301 {
302 #ifdef CONFIG_SMP
303 	cpumask_t *mask = &mm->context.icache_stale_mask;
304 
305 	if (cpumask_test_cpu(cpu, mask)) {
306 		cpumask_clear_cpu(cpu, mask);
307 		/*
308 		 * Ensure the remote hart's writes are visible to this hart.
309 		 * This pairs with a barrier in flush_icache_mm.
310 		 */
311 		smp_mb();
312 		local_flush_icache_all();
313 	}
314 
315 #endif
316 }
317 
318 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319 	struct task_struct *task)
320 {
321 	unsigned int cpu;
322 
323 	if (unlikely(prev == next))
324 		return;
325 
326 	/*
327 	 * Mark the current MM context as inactive, and the next as
328 	 * active.  This is at least used by the icache flushing
329 	 * routines in order to determine who should be flushed.
330 	 */
331 	cpu = smp_processor_id();
332 
333 	set_mm(prev, next, cpu);
334 
335 	flush_icache_deferred(next, cpu);
336 }
337