1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2017 SiFive 5 * Copyright (C) 2021 Western Digital Corporation or its affiliates. 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/cpumask.h> 10 #include <linux/mm.h> 11 #include <linux/percpu.h> 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/static_key.h> 15 #include <asm/tlbflush.h> 16 #include <asm/cacheflush.h> 17 #include <asm/mmu_context.h> 18 #include <asm/switch_to.h> 19 20 #ifdef CONFIG_MMU 21 22 DEFINE_STATIC_KEY_FALSE(use_asid_allocator); 23 24 static unsigned long num_asids; 25 26 static atomic_long_t current_version; 27 28 static DEFINE_RAW_SPINLOCK(context_lock); 29 static cpumask_t context_tlb_flush_pending; 30 static unsigned long *context_asid_map; 31 32 static DEFINE_PER_CPU(atomic_long_t, active_context); 33 static DEFINE_PER_CPU(unsigned long, reserved_context); 34 35 static bool check_update_reserved_context(unsigned long cntx, 36 unsigned long newcntx) 37 { 38 int cpu; 39 bool hit = false; 40 41 /* 42 * Iterate over the set of reserved CONTEXT looking for a match. 43 * If we find one, then we can update our mm to use new CONTEXT 44 * (i.e. the same CONTEXT in the current_version) but we can't 45 * exit the loop early, since we need to ensure that all copies 46 * of the old CONTEXT are updated to reflect the mm. Failure to do 47 * so could result in us missing the reserved CONTEXT in a future 48 * version. 49 */ 50 for_each_possible_cpu(cpu) { 51 if (per_cpu(reserved_context, cpu) == cntx) { 52 hit = true; 53 per_cpu(reserved_context, cpu) = newcntx; 54 } 55 } 56 57 return hit; 58 } 59 60 static void __flush_context(void) 61 { 62 int i; 63 unsigned long cntx; 64 65 /* Must be called with context_lock held */ 66 lockdep_assert_held(&context_lock); 67 68 /* Update the list of reserved ASIDs and the ASID bitmap. */ 69 bitmap_zero(context_asid_map, num_asids); 70 71 /* Mark already active ASIDs as used */ 72 for_each_possible_cpu(i) { 73 cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0); 74 /* 75 * If this CPU has already been through a rollover, but 76 * hasn't run another task in the meantime, we must preserve 77 * its reserved CONTEXT, as this is the only trace we have of 78 * the process it is still running. 79 */ 80 if (cntx == 0) 81 cntx = per_cpu(reserved_context, i); 82 83 __set_bit(cntx2asid(cntx), context_asid_map); 84 per_cpu(reserved_context, i) = cntx; 85 } 86 87 /* Mark ASID #0 as used because it is used at boot-time */ 88 __set_bit(0, context_asid_map); 89 90 /* Queue a TLB invalidation for each CPU on next context-switch */ 91 cpumask_setall(&context_tlb_flush_pending); 92 } 93 94 static unsigned long __new_context(struct mm_struct *mm) 95 { 96 static u32 cur_idx = 1; 97 unsigned long cntx = atomic_long_read(&mm->context.id); 98 unsigned long asid, ver = atomic_long_read(¤t_version); 99 100 /* Must be called with context_lock held */ 101 lockdep_assert_held(&context_lock); 102 103 if (cntx != 0) { 104 unsigned long newcntx = ver | cntx2asid(cntx); 105 106 /* 107 * If our current CONTEXT was active during a rollover, we 108 * can continue to use it and this was just a false alarm. 109 */ 110 if (check_update_reserved_context(cntx, newcntx)) 111 return newcntx; 112 113 /* 114 * We had a valid CONTEXT in a previous life, so try to 115 * re-use it if possible. 116 */ 117 if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map)) 118 return newcntx; 119 } 120 121 /* 122 * Allocate a free ASID. If we can't find one then increment 123 * current_version and flush all ASIDs. 124 */ 125 asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx); 126 if (asid != num_asids) 127 goto set_asid; 128 129 /* We're out of ASIDs, so increment current_version */ 130 ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), ¤t_version); 131 132 /* Flush everything */ 133 __flush_context(); 134 135 /* We have more ASIDs than CPUs, so this will always succeed */ 136 asid = find_next_zero_bit(context_asid_map, num_asids, 1); 137 138 set_asid: 139 __set_bit(asid, context_asid_map); 140 cur_idx = asid; 141 return asid | ver; 142 } 143 144 static void set_mm_asid(struct mm_struct *mm, unsigned int cpu) 145 { 146 unsigned long flags; 147 bool need_flush_tlb = false; 148 unsigned long cntx, old_active_cntx; 149 150 cntx = atomic_long_read(&mm->context.id); 151 152 /* 153 * If our active_context is non-zero and the context matches the 154 * current_version, then we update the active_context entry with a 155 * relaxed cmpxchg. 156 * 157 * Following is how we handle racing with a concurrent rollover: 158 * 159 * - We get a zero back from the cmpxchg and end up waiting on the 160 * lock. Taking the lock synchronises with the rollover and so 161 * we are forced to see the updated verion. 162 * 163 * - We get a valid context back from the cmpxchg then we continue 164 * using old ASID because __flush_context() would have marked ASID 165 * of active_context as used and next context switch we will 166 * allocate new context. 167 */ 168 old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu)); 169 if (old_active_cntx && 170 (cntx2version(cntx) == atomic_long_read(¤t_version)) && 171 atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu), 172 old_active_cntx, cntx)) 173 goto switch_mm_fast; 174 175 raw_spin_lock_irqsave(&context_lock, flags); 176 177 /* Check that our ASID belongs to the current_version. */ 178 cntx = atomic_long_read(&mm->context.id); 179 if (cntx2version(cntx) != atomic_long_read(¤t_version)) { 180 cntx = __new_context(mm); 181 atomic_long_set(&mm->context.id, cntx); 182 } 183 184 if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending)) 185 need_flush_tlb = true; 186 187 atomic_long_set(&per_cpu(active_context, cpu), cntx); 188 189 raw_spin_unlock_irqrestore(&context_lock, flags); 190 191 switch_mm_fast: 192 csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | 193 (cntx2asid(cntx) << SATP_ASID_SHIFT) | 194 satp_mode); 195 196 if (need_flush_tlb) 197 local_flush_tlb_all(); 198 } 199 200 static void set_mm_noasid(struct mm_struct *mm) 201 { 202 /* Switch the page table and blindly nuke entire local TLB */ 203 csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode); 204 local_flush_tlb_all_asid(0); 205 } 206 207 static inline void set_mm(struct mm_struct *prev, 208 struct mm_struct *next, unsigned int cpu) 209 { 210 /* 211 * The mm_cpumask indicates which harts' TLBs contain the virtual 212 * address mapping of the mm. Compared to noasid, using asid 213 * can't guarantee that stale TLB entries are invalidated because 214 * the asid mechanism wouldn't flush TLB for every switch_mm for 215 * performance. So when using asid, keep all CPUs footmarks in 216 * cpumask() until mm reset. 217 */ 218 cpumask_set_cpu(cpu, mm_cpumask(next)); 219 if (static_branch_unlikely(&use_asid_allocator)) { 220 set_mm_asid(next, cpu); 221 } else { 222 cpumask_clear_cpu(cpu, mm_cpumask(prev)); 223 set_mm_noasid(next); 224 } 225 } 226 227 static int __init asids_init(void) 228 { 229 unsigned long asid_bits, old; 230 231 /* Figure-out number of ASID bits in HW */ 232 old = csr_read(CSR_SATP); 233 asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT); 234 csr_write(CSR_SATP, asid_bits); 235 asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT) & SATP_ASID_MASK; 236 asid_bits = fls_long(asid_bits); 237 csr_write(CSR_SATP, old); 238 239 /* 240 * In the process of determining number of ASID bits (above) 241 * we polluted the TLB of current HART so let's do TLB flushed 242 * to remove unwanted TLB enteries. 243 */ 244 local_flush_tlb_all(); 245 246 /* Pre-compute ASID details */ 247 if (asid_bits) { 248 num_asids = 1 << asid_bits; 249 } 250 251 /* 252 * Use ASID allocator only if number of HW ASIDs are 253 * at-least twice more than CPUs 254 */ 255 if (num_asids > (2 * num_possible_cpus())) { 256 atomic_long_set(¤t_version, BIT(SATP_ASID_BITS)); 257 258 context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL); 259 if (!context_asid_map) 260 panic("Failed to allocate bitmap for %lu ASIDs\n", 261 num_asids); 262 263 __set_bit(0, context_asid_map); 264 265 static_branch_enable(&use_asid_allocator); 266 267 pr_info("ASID allocator using %lu bits (%lu entries)\n", 268 asid_bits, num_asids); 269 } else { 270 pr_info("ASID allocator disabled (%lu bits)\n", asid_bits); 271 } 272 273 return 0; 274 } 275 early_initcall(asids_init); 276 #else 277 static inline void set_mm(struct mm_struct *prev, 278 struct mm_struct *next, unsigned int cpu) 279 { 280 /* Nothing to do here when there is no MMU */ 281 } 282 #endif 283 284 /* 285 * When necessary, performs a deferred icache flush for the given MM context, 286 * on the local CPU. RISC-V has no direct mechanism for instruction cache 287 * shoot downs, so instead we send an IPI that informs the remote harts they 288 * need to flush their local instruction caches. To avoid pathologically slow 289 * behavior in a common case (a bunch of single-hart processes on a many-hart 290 * machine, ie 'make -j') we avoid the IPIs for harts that are not currently 291 * executing a MM context and instead schedule a deferred local instruction 292 * cache flush to be performed before execution resumes on each hart. This 293 * actually performs that local instruction cache flush, which implicitly only 294 * refers to the current hart. 295 * 296 * The "cpu" argument must be the current local CPU number. 297 */ 298 static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu, 299 struct task_struct *task) 300 { 301 #ifdef CONFIG_SMP 302 if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) { 303 /* 304 * Ensure the remote hart's writes are visible to this hart. 305 * This pairs with a barrier in flush_icache_mm. 306 */ 307 smp_mb(); 308 309 /* 310 * If cache will be flushed in switch_to, no need to flush here. 311 */ 312 if (!(task && switch_to_should_flush_icache(task))) 313 local_flush_icache_all(); 314 } 315 #endif 316 } 317 318 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 319 struct task_struct *task) 320 { 321 unsigned int cpu; 322 323 if (unlikely(prev == next)) 324 return; 325 326 membarrier_arch_switch_mm(prev, next, task); 327 328 /* 329 * Mark the current MM context as inactive, and the next as 330 * active. This is at least used by the icache flushing 331 * routines in order to determine who should be flushed. 332 */ 333 cpu = smp_processor_id(); 334 335 set_mm(prev, next, cpu); 336 337 flush_icache_deferred(next, cpu, task); 338 } 339