xref: /linux/arch/riscv/mm/context.c (revision 69bfec7548f4c1595bac0e3ddfc0458a5af31f4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2017 SiFive
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/cpumask.h>
10 #include <linux/mm.h>
11 #include <linux/percpu.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/static_key.h>
15 #include <asm/tlbflush.h>
16 #include <asm/cacheflush.h>
17 #include <asm/mmu_context.h>
18 
19 #ifdef CONFIG_MMU
20 
21 DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
22 
23 static unsigned long asid_bits;
24 static unsigned long num_asids;
25 static unsigned long asid_mask;
26 
27 static atomic_long_t current_version;
28 
29 static DEFINE_RAW_SPINLOCK(context_lock);
30 static cpumask_t context_tlb_flush_pending;
31 static unsigned long *context_asid_map;
32 
33 static DEFINE_PER_CPU(atomic_long_t, active_context);
34 static DEFINE_PER_CPU(unsigned long, reserved_context);
35 
36 static bool check_update_reserved_context(unsigned long cntx,
37 					  unsigned long newcntx)
38 {
39 	int cpu;
40 	bool hit = false;
41 
42 	/*
43 	 * Iterate over the set of reserved CONTEXT looking for a match.
44 	 * If we find one, then we can update our mm to use new CONTEXT
45 	 * (i.e. the same CONTEXT in the current_version) but we can't
46 	 * exit the loop early, since we need to ensure that all copies
47 	 * of the old CONTEXT are updated to reflect the mm. Failure to do
48 	 * so could result in us missing the reserved CONTEXT in a future
49 	 * version.
50 	 */
51 	for_each_possible_cpu(cpu) {
52 		if (per_cpu(reserved_context, cpu) == cntx) {
53 			hit = true;
54 			per_cpu(reserved_context, cpu) = newcntx;
55 		}
56 	}
57 
58 	return hit;
59 }
60 
61 static void __flush_context(void)
62 {
63 	int i;
64 	unsigned long cntx;
65 
66 	/* Must be called with context_lock held */
67 	lockdep_assert_held(&context_lock);
68 
69 	/* Update the list of reserved ASIDs and the ASID bitmap. */
70 	bitmap_clear(context_asid_map, 0, num_asids);
71 
72 	/* Mark already active ASIDs as used */
73 	for_each_possible_cpu(i) {
74 		cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
75 		/*
76 		 * If this CPU has already been through a rollover, but
77 		 * hasn't run another task in the meantime, we must preserve
78 		 * its reserved CONTEXT, as this is the only trace we have of
79 		 * the process it is still running.
80 		 */
81 		if (cntx == 0)
82 			cntx = per_cpu(reserved_context, i);
83 
84 		__set_bit(cntx & asid_mask, context_asid_map);
85 		per_cpu(reserved_context, i) = cntx;
86 	}
87 
88 	/* Mark ASID #0 as used because it is used at boot-time */
89 	__set_bit(0, context_asid_map);
90 
91 	/* Queue a TLB invalidation for each CPU on next context-switch */
92 	cpumask_setall(&context_tlb_flush_pending);
93 }
94 
95 static unsigned long __new_context(struct mm_struct *mm)
96 {
97 	static u32 cur_idx = 1;
98 	unsigned long cntx = atomic_long_read(&mm->context.id);
99 	unsigned long asid, ver = atomic_long_read(&current_version);
100 
101 	/* Must be called with context_lock held */
102 	lockdep_assert_held(&context_lock);
103 
104 	if (cntx != 0) {
105 		unsigned long newcntx = ver | (cntx & asid_mask);
106 
107 		/*
108 		 * If our current CONTEXT was active during a rollover, we
109 		 * can continue to use it and this was just a false alarm.
110 		 */
111 		if (check_update_reserved_context(cntx, newcntx))
112 			return newcntx;
113 
114 		/*
115 		 * We had a valid CONTEXT in a previous life, so try to
116 		 * re-use it if possible.
117 		 */
118 		if (!__test_and_set_bit(cntx & asid_mask, context_asid_map))
119 			return newcntx;
120 	}
121 
122 	/*
123 	 * Allocate a free ASID. If we can't find one then increment
124 	 * current_version and flush all ASIDs.
125 	 */
126 	asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
127 	if (asid != num_asids)
128 		goto set_asid;
129 
130 	/* We're out of ASIDs, so increment current_version */
131 	ver = atomic_long_add_return_relaxed(num_asids, &current_version);
132 
133 	/* Flush everything  */
134 	__flush_context();
135 
136 	/* We have more ASIDs than CPUs, so this will always succeed */
137 	asid = find_next_zero_bit(context_asid_map, num_asids, 1);
138 
139 set_asid:
140 	__set_bit(asid, context_asid_map);
141 	cur_idx = asid;
142 	return asid | ver;
143 }
144 
145 static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
146 {
147 	unsigned long flags;
148 	bool need_flush_tlb = false;
149 	unsigned long cntx, old_active_cntx;
150 
151 	cntx = atomic_long_read(&mm->context.id);
152 
153 	/*
154 	 * If our active_context is non-zero and the context matches the
155 	 * current_version, then we update the active_context entry with a
156 	 * relaxed cmpxchg.
157 	 *
158 	 * Following is how we handle racing with a concurrent rollover:
159 	 *
160 	 * - We get a zero back from the cmpxchg and end up waiting on the
161 	 *   lock. Taking the lock synchronises with the rollover and so
162 	 *   we are forced to see the updated verion.
163 	 *
164 	 * - We get a valid context back from the cmpxchg then we continue
165 	 *   using old ASID because __flush_context() would have marked ASID
166 	 *   of active_context as used and next context switch we will
167 	 *   allocate new context.
168 	 */
169 	old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
170 	if (old_active_cntx &&
171 	    ((cntx & ~asid_mask) == atomic_long_read(&current_version)) &&
172 	    atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
173 					old_active_cntx, cntx))
174 		goto switch_mm_fast;
175 
176 	raw_spin_lock_irqsave(&context_lock, flags);
177 
178 	/* Check that our ASID belongs to the current_version. */
179 	cntx = atomic_long_read(&mm->context.id);
180 	if ((cntx & ~asid_mask) != atomic_long_read(&current_version)) {
181 		cntx = __new_context(mm);
182 		atomic_long_set(&mm->context.id, cntx);
183 	}
184 
185 	if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
186 		need_flush_tlb = true;
187 
188 	atomic_long_set(&per_cpu(active_context, cpu), cntx);
189 
190 	raw_spin_unlock_irqrestore(&context_lock, flags);
191 
192 switch_mm_fast:
193 	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
194 		  ((cntx & asid_mask) << SATP_ASID_SHIFT) |
195 		  satp_mode);
196 
197 	if (need_flush_tlb)
198 		local_flush_tlb_all();
199 #ifdef CONFIG_SMP
200 	else {
201 		cpumask_t *mask = &mm->context.tlb_stale_mask;
202 
203 		if (cpumask_test_cpu(cpu, mask)) {
204 			cpumask_clear_cpu(cpu, mask);
205 			local_flush_tlb_all_asid(cntx & asid_mask);
206 		}
207 	}
208 #endif
209 }
210 
211 static void set_mm_noasid(struct mm_struct *mm)
212 {
213 	/* Switch the page table and blindly nuke entire local TLB */
214 	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
215 	local_flush_tlb_all();
216 }
217 
218 static inline void set_mm(struct mm_struct *mm, unsigned int cpu)
219 {
220 	if (static_branch_unlikely(&use_asid_allocator))
221 		set_mm_asid(mm, cpu);
222 	else
223 		set_mm_noasid(mm);
224 }
225 
226 static int __init asids_init(void)
227 {
228 	unsigned long old;
229 
230 	/* Figure-out number of ASID bits in HW */
231 	old = csr_read(CSR_SATP);
232 	asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
233 	csr_write(CSR_SATP, asid_bits);
234 	asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
235 	asid_bits = fls_long(asid_bits);
236 	csr_write(CSR_SATP, old);
237 
238 	/*
239 	 * In the process of determining number of ASID bits (above)
240 	 * we polluted the TLB of current HART so let's do TLB flushed
241 	 * to remove unwanted TLB enteries.
242 	 */
243 	local_flush_tlb_all();
244 
245 	/* Pre-compute ASID details */
246 	if (asid_bits) {
247 		num_asids = 1 << asid_bits;
248 		asid_mask = num_asids - 1;
249 	}
250 
251 	/*
252 	 * Use ASID allocator only if number of HW ASIDs are
253 	 * at-least twice more than CPUs
254 	 */
255 	if (num_asids > (2 * num_possible_cpus())) {
256 		atomic_long_set(&current_version, num_asids);
257 
258 		context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
259 		if (!context_asid_map)
260 			panic("Failed to allocate bitmap for %lu ASIDs\n",
261 			      num_asids);
262 
263 		__set_bit(0, context_asid_map);
264 
265 		static_branch_enable(&use_asid_allocator);
266 
267 		pr_info("ASID allocator using %lu bits (%lu entries)\n",
268 			asid_bits, num_asids);
269 	} else {
270 		pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
271 	}
272 
273 	return 0;
274 }
275 early_initcall(asids_init);
276 #else
277 static inline void set_mm(struct mm_struct *mm, unsigned int cpu)
278 {
279 	/* Nothing to do here when there is no MMU */
280 }
281 #endif
282 
283 /*
284  * When necessary, performs a deferred icache flush for the given MM context,
285  * on the local CPU.  RISC-V has no direct mechanism for instruction cache
286  * shoot downs, so instead we send an IPI that informs the remote harts they
287  * need to flush their local instruction caches.  To avoid pathologically slow
288  * behavior in a common case (a bunch of single-hart processes on a many-hart
289  * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
290  * executing a MM context and instead schedule a deferred local instruction
291  * cache flush to be performed before execution resumes on each hart.  This
292  * actually performs that local instruction cache flush, which implicitly only
293  * refers to the current hart.
294  *
295  * The "cpu" argument must be the current local CPU number.
296  */
297 static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu)
298 {
299 #ifdef CONFIG_SMP
300 	cpumask_t *mask = &mm->context.icache_stale_mask;
301 
302 	if (cpumask_test_cpu(cpu, mask)) {
303 		cpumask_clear_cpu(cpu, mask);
304 		/*
305 		 * Ensure the remote hart's writes are visible to this hart.
306 		 * This pairs with a barrier in flush_icache_mm.
307 		 */
308 		smp_mb();
309 		local_flush_icache_all();
310 	}
311 
312 #endif
313 }
314 
315 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
316 	struct task_struct *task)
317 {
318 	unsigned int cpu;
319 
320 	if (unlikely(prev == next))
321 		return;
322 
323 	/*
324 	 * Mark the current MM context as inactive, and the next as
325 	 * active.  This is at least used by the icache flushing
326 	 * routines in order to determine who should be flushed.
327 	 */
328 	cpu = smp_processor_id();
329 
330 	cpumask_clear_cpu(cpu, mm_cpumask(prev));
331 	cpumask_set_cpu(cpu, mm_cpumask(next));
332 
333 	set_mm(next, cpu);
334 
335 	flush_icache_deferred(next, cpu);
336 }
337