1 /* 2 * SPU file system -- file contents 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/fs.h> 26 #include <linux/ioctl.h> 27 #include <linux/export.h> 28 #include <linux/pagemap.h> 29 #include <linux/poll.h> 30 #include <linux/ptrace.h> 31 #include <linux/seq_file.h> 32 #include <linux/slab.h> 33 34 #include <asm/io.h> 35 #include <asm/time.h> 36 #include <asm/spu.h> 37 #include <asm/spu_info.h> 38 #include <linux/uaccess.h> 39 40 #include "spufs.h" 41 #include "sputrace.h" 42 43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) 44 45 /* Simple attribute files */ 46 struct spufs_attr { 47 int (*get)(void *, u64 *); 48 int (*set)(void *, u64); 49 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 50 char set_buf[24]; 51 void *data; 52 const char *fmt; /* format for read operation */ 53 struct mutex mutex; /* protects access to these buffers */ 54 }; 55 56 static int spufs_attr_open(struct inode *inode, struct file *file, 57 int (*get)(void *, u64 *), int (*set)(void *, u64), 58 const char *fmt) 59 { 60 struct spufs_attr *attr; 61 62 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 63 if (!attr) 64 return -ENOMEM; 65 66 attr->get = get; 67 attr->set = set; 68 attr->data = inode->i_private; 69 attr->fmt = fmt; 70 mutex_init(&attr->mutex); 71 file->private_data = attr; 72 73 return nonseekable_open(inode, file); 74 } 75 76 static int spufs_attr_release(struct inode *inode, struct file *file) 77 { 78 kfree(file->private_data); 79 return 0; 80 } 81 82 static ssize_t spufs_attr_read(struct file *file, char __user *buf, 83 size_t len, loff_t *ppos) 84 { 85 struct spufs_attr *attr; 86 size_t size; 87 ssize_t ret; 88 89 attr = file->private_data; 90 if (!attr->get) 91 return -EACCES; 92 93 ret = mutex_lock_interruptible(&attr->mutex); 94 if (ret) 95 return ret; 96 97 if (*ppos) { /* continued read */ 98 size = strlen(attr->get_buf); 99 } else { /* first read */ 100 u64 val; 101 ret = attr->get(attr->data, &val); 102 if (ret) 103 goto out; 104 105 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 106 attr->fmt, (unsigned long long)val); 107 } 108 109 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 110 out: 111 mutex_unlock(&attr->mutex); 112 return ret; 113 } 114 115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf, 116 size_t len, loff_t *ppos) 117 { 118 struct spufs_attr *attr; 119 u64 val; 120 size_t size; 121 ssize_t ret; 122 123 attr = file->private_data; 124 if (!attr->set) 125 return -EACCES; 126 127 ret = mutex_lock_interruptible(&attr->mutex); 128 if (ret) 129 return ret; 130 131 ret = -EFAULT; 132 size = min(sizeof(attr->set_buf) - 1, len); 133 if (copy_from_user(attr->set_buf, buf, size)) 134 goto out; 135 136 ret = len; /* claim we got the whole input */ 137 attr->set_buf[size] = '\0'; 138 val = simple_strtol(attr->set_buf, NULL, 0); 139 attr->set(attr->data, val); 140 out: 141 mutex_unlock(&attr->mutex); 142 return ret; 143 } 144 145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 146 static int __fops ## _open(struct inode *inode, struct file *file) \ 147 { \ 148 __simple_attr_check_format(__fmt, 0ull); \ 149 return spufs_attr_open(inode, file, __get, __set, __fmt); \ 150 } \ 151 static const struct file_operations __fops = { \ 152 .open = __fops ## _open, \ 153 .release = spufs_attr_release, \ 154 .read = spufs_attr_read, \ 155 .write = spufs_attr_write, \ 156 .llseek = generic_file_llseek, \ 157 }; 158 159 160 static int 161 spufs_mem_open(struct inode *inode, struct file *file) 162 { 163 struct spufs_inode_info *i = SPUFS_I(inode); 164 struct spu_context *ctx = i->i_ctx; 165 166 mutex_lock(&ctx->mapping_lock); 167 file->private_data = ctx; 168 if (!i->i_openers++) 169 ctx->local_store = inode->i_mapping; 170 mutex_unlock(&ctx->mapping_lock); 171 return 0; 172 } 173 174 static int 175 spufs_mem_release(struct inode *inode, struct file *file) 176 { 177 struct spufs_inode_info *i = SPUFS_I(inode); 178 struct spu_context *ctx = i->i_ctx; 179 180 mutex_lock(&ctx->mapping_lock); 181 if (!--i->i_openers) 182 ctx->local_store = NULL; 183 mutex_unlock(&ctx->mapping_lock); 184 return 0; 185 } 186 187 static ssize_t 188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer, 189 size_t size, loff_t *pos) 190 { 191 char *local_store = ctx->ops->get_ls(ctx); 192 return simple_read_from_buffer(buffer, size, pos, local_store, 193 LS_SIZE); 194 } 195 196 static ssize_t 197 spufs_mem_read(struct file *file, char __user *buffer, 198 size_t size, loff_t *pos) 199 { 200 struct spu_context *ctx = file->private_data; 201 ssize_t ret; 202 203 ret = spu_acquire(ctx); 204 if (ret) 205 return ret; 206 ret = __spufs_mem_read(ctx, buffer, size, pos); 207 spu_release(ctx); 208 209 return ret; 210 } 211 212 static ssize_t 213 spufs_mem_write(struct file *file, const char __user *buffer, 214 size_t size, loff_t *ppos) 215 { 216 struct spu_context *ctx = file->private_data; 217 char *local_store; 218 loff_t pos = *ppos; 219 int ret; 220 221 if (pos > LS_SIZE) 222 return -EFBIG; 223 224 ret = spu_acquire(ctx); 225 if (ret) 226 return ret; 227 228 local_store = ctx->ops->get_ls(ctx); 229 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size); 230 spu_release(ctx); 231 232 return size; 233 } 234 235 static int 236 spufs_mem_mmap_fault(struct vm_fault *vmf) 237 { 238 struct vm_area_struct *vma = vmf->vma; 239 struct spu_context *ctx = vma->vm_file->private_data; 240 unsigned long pfn, offset; 241 242 offset = vmf->pgoff << PAGE_SHIFT; 243 if (offset >= LS_SIZE) 244 return VM_FAULT_SIGBUS; 245 246 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n", 247 vmf->address, offset); 248 249 if (spu_acquire(ctx)) 250 return VM_FAULT_NOPAGE; 251 252 if (ctx->state == SPU_STATE_SAVED) { 253 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); 254 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset); 255 } else { 256 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 257 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT; 258 } 259 vm_insert_pfn(vma, vmf->address, pfn); 260 261 spu_release(ctx); 262 263 return VM_FAULT_NOPAGE; 264 } 265 266 static int spufs_mem_mmap_access(struct vm_area_struct *vma, 267 unsigned long address, 268 void *buf, int len, int write) 269 { 270 struct spu_context *ctx = vma->vm_file->private_data; 271 unsigned long offset = address - vma->vm_start; 272 char *local_store; 273 274 if (write && !(vma->vm_flags & VM_WRITE)) 275 return -EACCES; 276 if (spu_acquire(ctx)) 277 return -EINTR; 278 if ((offset + len) > vma->vm_end) 279 len = vma->vm_end - offset; 280 local_store = ctx->ops->get_ls(ctx); 281 if (write) 282 memcpy_toio(local_store + offset, buf, len); 283 else 284 memcpy_fromio(buf, local_store + offset, len); 285 spu_release(ctx); 286 return len; 287 } 288 289 static const struct vm_operations_struct spufs_mem_mmap_vmops = { 290 .fault = spufs_mem_mmap_fault, 291 .access = spufs_mem_mmap_access, 292 }; 293 294 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) 295 { 296 if (!(vma->vm_flags & VM_SHARED)) 297 return -EINVAL; 298 299 vma->vm_flags |= VM_IO | VM_PFNMAP; 300 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 301 302 vma->vm_ops = &spufs_mem_mmap_vmops; 303 return 0; 304 } 305 306 static const struct file_operations spufs_mem_fops = { 307 .open = spufs_mem_open, 308 .release = spufs_mem_release, 309 .read = spufs_mem_read, 310 .write = spufs_mem_write, 311 .llseek = generic_file_llseek, 312 .mmap = spufs_mem_mmap, 313 }; 314 315 static int spufs_ps_fault(struct vm_fault *vmf, 316 unsigned long ps_offs, 317 unsigned long ps_size) 318 { 319 struct spu_context *ctx = vmf->vma->vm_file->private_data; 320 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT; 321 int ret = 0; 322 323 spu_context_nospu_trace(spufs_ps_fault__enter, ctx); 324 325 if (offset >= ps_size) 326 return VM_FAULT_SIGBUS; 327 328 if (fatal_signal_pending(current)) 329 return VM_FAULT_SIGBUS; 330 331 /* 332 * Because we release the mmap_sem, the context may be destroyed while 333 * we're in spu_wait. Grab an extra reference so it isn't destroyed 334 * in the meantime. 335 */ 336 get_spu_context(ctx); 337 338 /* 339 * We have to wait for context to be loaded before we have 340 * pages to hand out to the user, but we don't want to wait 341 * with the mmap_sem held. 342 * It is possible to drop the mmap_sem here, but then we need 343 * to return VM_FAULT_NOPAGE because the mappings may have 344 * hanged. 345 */ 346 if (spu_acquire(ctx)) 347 goto refault; 348 349 if (ctx->state == SPU_STATE_SAVED) { 350 up_read(¤t->mm->mmap_sem); 351 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx); 352 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 353 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu); 354 down_read(¤t->mm->mmap_sem); 355 } else { 356 area = ctx->spu->problem_phys + ps_offs; 357 vm_insert_pfn(vmf->vma, vmf->address, (area + offset) >> PAGE_SHIFT); 358 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu); 359 } 360 361 if (!ret) 362 spu_release(ctx); 363 364 refault: 365 put_spu_context(ctx); 366 return VM_FAULT_NOPAGE; 367 } 368 369 #if SPUFS_MMAP_4K 370 static int spufs_cntl_mmap_fault(struct vm_fault *vmf) 371 { 372 return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE); 373 } 374 375 static const struct vm_operations_struct spufs_cntl_mmap_vmops = { 376 .fault = spufs_cntl_mmap_fault, 377 }; 378 379 /* 380 * mmap support for problem state control area [0x4000 - 0x4fff]. 381 */ 382 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) 383 { 384 if (!(vma->vm_flags & VM_SHARED)) 385 return -EINVAL; 386 387 vma->vm_flags |= VM_IO | VM_PFNMAP; 388 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 389 390 vma->vm_ops = &spufs_cntl_mmap_vmops; 391 return 0; 392 } 393 #else /* SPUFS_MMAP_4K */ 394 #define spufs_cntl_mmap NULL 395 #endif /* !SPUFS_MMAP_4K */ 396 397 static int spufs_cntl_get(void *data, u64 *val) 398 { 399 struct spu_context *ctx = data; 400 int ret; 401 402 ret = spu_acquire(ctx); 403 if (ret) 404 return ret; 405 *val = ctx->ops->status_read(ctx); 406 spu_release(ctx); 407 408 return 0; 409 } 410 411 static int spufs_cntl_set(void *data, u64 val) 412 { 413 struct spu_context *ctx = data; 414 int ret; 415 416 ret = spu_acquire(ctx); 417 if (ret) 418 return ret; 419 ctx->ops->runcntl_write(ctx, val); 420 spu_release(ctx); 421 422 return 0; 423 } 424 425 static int spufs_cntl_open(struct inode *inode, struct file *file) 426 { 427 struct spufs_inode_info *i = SPUFS_I(inode); 428 struct spu_context *ctx = i->i_ctx; 429 430 mutex_lock(&ctx->mapping_lock); 431 file->private_data = ctx; 432 if (!i->i_openers++) 433 ctx->cntl = inode->i_mapping; 434 mutex_unlock(&ctx->mapping_lock); 435 return simple_attr_open(inode, file, spufs_cntl_get, 436 spufs_cntl_set, "0x%08lx"); 437 } 438 439 static int 440 spufs_cntl_release(struct inode *inode, struct file *file) 441 { 442 struct spufs_inode_info *i = SPUFS_I(inode); 443 struct spu_context *ctx = i->i_ctx; 444 445 simple_attr_release(inode, file); 446 447 mutex_lock(&ctx->mapping_lock); 448 if (!--i->i_openers) 449 ctx->cntl = NULL; 450 mutex_unlock(&ctx->mapping_lock); 451 return 0; 452 } 453 454 static const struct file_operations spufs_cntl_fops = { 455 .open = spufs_cntl_open, 456 .release = spufs_cntl_release, 457 .read = simple_attr_read, 458 .write = simple_attr_write, 459 .llseek = generic_file_llseek, 460 .mmap = spufs_cntl_mmap, 461 }; 462 463 static int 464 spufs_regs_open(struct inode *inode, struct file *file) 465 { 466 struct spufs_inode_info *i = SPUFS_I(inode); 467 file->private_data = i->i_ctx; 468 return 0; 469 } 470 471 static ssize_t 472 __spufs_regs_read(struct spu_context *ctx, char __user *buffer, 473 size_t size, loff_t *pos) 474 { 475 struct spu_lscsa *lscsa = ctx->csa.lscsa; 476 return simple_read_from_buffer(buffer, size, pos, 477 lscsa->gprs, sizeof lscsa->gprs); 478 } 479 480 static ssize_t 481 spufs_regs_read(struct file *file, char __user *buffer, 482 size_t size, loff_t *pos) 483 { 484 int ret; 485 struct spu_context *ctx = file->private_data; 486 487 /* pre-check for file position: if we'd return EOF, there's no point 488 * causing a deschedule */ 489 if (*pos >= sizeof(ctx->csa.lscsa->gprs)) 490 return 0; 491 492 ret = spu_acquire_saved(ctx); 493 if (ret) 494 return ret; 495 ret = __spufs_regs_read(ctx, buffer, size, pos); 496 spu_release_saved(ctx); 497 return ret; 498 } 499 500 static ssize_t 501 spufs_regs_write(struct file *file, const char __user *buffer, 502 size_t size, loff_t *pos) 503 { 504 struct spu_context *ctx = file->private_data; 505 struct spu_lscsa *lscsa = ctx->csa.lscsa; 506 int ret; 507 508 if (*pos >= sizeof(lscsa->gprs)) 509 return -EFBIG; 510 511 ret = spu_acquire_saved(ctx); 512 if (ret) 513 return ret; 514 515 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos, 516 buffer, size); 517 518 spu_release_saved(ctx); 519 return size; 520 } 521 522 static const struct file_operations spufs_regs_fops = { 523 .open = spufs_regs_open, 524 .read = spufs_regs_read, 525 .write = spufs_regs_write, 526 .llseek = generic_file_llseek, 527 }; 528 529 static ssize_t 530 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer, 531 size_t size, loff_t * pos) 532 { 533 struct spu_lscsa *lscsa = ctx->csa.lscsa; 534 return simple_read_from_buffer(buffer, size, pos, 535 &lscsa->fpcr, sizeof(lscsa->fpcr)); 536 } 537 538 static ssize_t 539 spufs_fpcr_read(struct file *file, char __user * buffer, 540 size_t size, loff_t * pos) 541 { 542 int ret; 543 struct spu_context *ctx = file->private_data; 544 545 ret = spu_acquire_saved(ctx); 546 if (ret) 547 return ret; 548 ret = __spufs_fpcr_read(ctx, buffer, size, pos); 549 spu_release_saved(ctx); 550 return ret; 551 } 552 553 static ssize_t 554 spufs_fpcr_write(struct file *file, const char __user * buffer, 555 size_t size, loff_t * pos) 556 { 557 struct spu_context *ctx = file->private_data; 558 struct spu_lscsa *lscsa = ctx->csa.lscsa; 559 int ret; 560 561 if (*pos >= sizeof(lscsa->fpcr)) 562 return -EFBIG; 563 564 ret = spu_acquire_saved(ctx); 565 if (ret) 566 return ret; 567 568 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos, 569 buffer, size); 570 571 spu_release_saved(ctx); 572 return size; 573 } 574 575 static const struct file_operations spufs_fpcr_fops = { 576 .open = spufs_regs_open, 577 .read = spufs_fpcr_read, 578 .write = spufs_fpcr_write, 579 .llseek = generic_file_llseek, 580 }; 581 582 /* generic open function for all pipe-like files */ 583 static int spufs_pipe_open(struct inode *inode, struct file *file) 584 { 585 struct spufs_inode_info *i = SPUFS_I(inode); 586 file->private_data = i->i_ctx; 587 588 return nonseekable_open(inode, file); 589 } 590 591 /* 592 * Read as many bytes from the mailbox as possible, until 593 * one of the conditions becomes true: 594 * 595 * - no more data available in the mailbox 596 * - end of the user provided buffer 597 * - end of the mapped area 598 */ 599 static ssize_t spufs_mbox_read(struct file *file, char __user *buf, 600 size_t len, loff_t *pos) 601 { 602 struct spu_context *ctx = file->private_data; 603 u32 mbox_data, __user *udata; 604 ssize_t count; 605 606 if (len < 4) 607 return -EINVAL; 608 609 if (!access_ok(VERIFY_WRITE, buf, len)) 610 return -EFAULT; 611 612 udata = (void __user *)buf; 613 614 count = spu_acquire(ctx); 615 if (count) 616 return count; 617 618 for (count = 0; (count + 4) <= len; count += 4, udata++) { 619 int ret; 620 ret = ctx->ops->mbox_read(ctx, &mbox_data); 621 if (ret == 0) 622 break; 623 624 /* 625 * at the end of the mapped area, we can fault 626 * but still need to return the data we have 627 * read successfully so far. 628 */ 629 ret = __put_user(mbox_data, udata); 630 if (ret) { 631 if (!count) 632 count = -EFAULT; 633 break; 634 } 635 } 636 spu_release(ctx); 637 638 if (!count) 639 count = -EAGAIN; 640 641 return count; 642 } 643 644 static const struct file_operations spufs_mbox_fops = { 645 .open = spufs_pipe_open, 646 .read = spufs_mbox_read, 647 .llseek = no_llseek, 648 }; 649 650 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, 651 size_t len, loff_t *pos) 652 { 653 struct spu_context *ctx = file->private_data; 654 ssize_t ret; 655 u32 mbox_stat; 656 657 if (len < 4) 658 return -EINVAL; 659 660 ret = spu_acquire(ctx); 661 if (ret) 662 return ret; 663 664 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; 665 666 spu_release(ctx); 667 668 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) 669 return -EFAULT; 670 671 return 4; 672 } 673 674 static const struct file_operations spufs_mbox_stat_fops = { 675 .open = spufs_pipe_open, 676 .read = spufs_mbox_stat_read, 677 .llseek = no_llseek, 678 }; 679 680 /* low-level ibox access function */ 681 size_t spu_ibox_read(struct spu_context *ctx, u32 *data) 682 { 683 return ctx->ops->ibox_read(ctx, data); 684 } 685 686 /* interrupt-level ibox callback function. */ 687 void spufs_ibox_callback(struct spu *spu) 688 { 689 struct spu_context *ctx = spu->ctx; 690 691 if (ctx) 692 wake_up_all(&ctx->ibox_wq); 693 } 694 695 /* 696 * Read as many bytes from the interrupt mailbox as possible, until 697 * one of the conditions becomes true: 698 * 699 * - no more data available in the mailbox 700 * - end of the user provided buffer 701 * - end of the mapped area 702 * 703 * If the file is opened without O_NONBLOCK, we wait here until 704 * any data is available, but return when we have been able to 705 * read something. 706 */ 707 static ssize_t spufs_ibox_read(struct file *file, char __user *buf, 708 size_t len, loff_t *pos) 709 { 710 struct spu_context *ctx = file->private_data; 711 u32 ibox_data, __user *udata; 712 ssize_t count; 713 714 if (len < 4) 715 return -EINVAL; 716 717 if (!access_ok(VERIFY_WRITE, buf, len)) 718 return -EFAULT; 719 720 udata = (void __user *)buf; 721 722 count = spu_acquire(ctx); 723 if (count) 724 goto out; 725 726 /* wait only for the first element */ 727 count = 0; 728 if (file->f_flags & O_NONBLOCK) { 729 if (!spu_ibox_read(ctx, &ibox_data)) { 730 count = -EAGAIN; 731 goto out_unlock; 732 } 733 } else { 734 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); 735 if (count) 736 goto out; 737 } 738 739 /* if we can't write at all, return -EFAULT */ 740 count = __put_user(ibox_data, udata); 741 if (count) 742 goto out_unlock; 743 744 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 745 int ret; 746 ret = ctx->ops->ibox_read(ctx, &ibox_data); 747 if (ret == 0) 748 break; 749 /* 750 * at the end of the mapped area, we can fault 751 * but still need to return the data we have 752 * read successfully so far. 753 */ 754 ret = __put_user(ibox_data, udata); 755 if (ret) 756 break; 757 } 758 759 out_unlock: 760 spu_release(ctx); 761 out: 762 return count; 763 } 764 765 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait) 766 { 767 struct spu_context *ctx = file->private_data; 768 unsigned int mask; 769 770 poll_wait(file, &ctx->ibox_wq, wait); 771 772 /* 773 * For now keep this uninterruptible and also ignore the rule 774 * that poll should not sleep. Will be fixed later. 775 */ 776 mutex_lock(&ctx->state_mutex); 777 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM); 778 spu_release(ctx); 779 780 return mask; 781 } 782 783 static const struct file_operations spufs_ibox_fops = { 784 .open = spufs_pipe_open, 785 .read = spufs_ibox_read, 786 .poll = spufs_ibox_poll, 787 .llseek = no_llseek, 788 }; 789 790 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, 791 size_t len, loff_t *pos) 792 { 793 struct spu_context *ctx = file->private_data; 794 ssize_t ret; 795 u32 ibox_stat; 796 797 if (len < 4) 798 return -EINVAL; 799 800 ret = spu_acquire(ctx); 801 if (ret) 802 return ret; 803 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; 804 spu_release(ctx); 805 806 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) 807 return -EFAULT; 808 809 return 4; 810 } 811 812 static const struct file_operations spufs_ibox_stat_fops = { 813 .open = spufs_pipe_open, 814 .read = spufs_ibox_stat_read, 815 .llseek = no_llseek, 816 }; 817 818 /* low-level mailbox write */ 819 size_t spu_wbox_write(struct spu_context *ctx, u32 data) 820 { 821 return ctx->ops->wbox_write(ctx, data); 822 } 823 824 /* interrupt-level wbox callback function. */ 825 void spufs_wbox_callback(struct spu *spu) 826 { 827 struct spu_context *ctx = spu->ctx; 828 829 if (ctx) 830 wake_up_all(&ctx->wbox_wq); 831 } 832 833 /* 834 * Write as many bytes to the interrupt mailbox as possible, until 835 * one of the conditions becomes true: 836 * 837 * - the mailbox is full 838 * - end of the user provided buffer 839 * - end of the mapped area 840 * 841 * If the file is opened without O_NONBLOCK, we wait here until 842 * space is available, but return when we have been able to 843 * write something. 844 */ 845 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, 846 size_t len, loff_t *pos) 847 { 848 struct spu_context *ctx = file->private_data; 849 u32 wbox_data, __user *udata; 850 ssize_t count; 851 852 if (len < 4) 853 return -EINVAL; 854 855 udata = (void __user *)buf; 856 if (!access_ok(VERIFY_READ, buf, len)) 857 return -EFAULT; 858 859 if (__get_user(wbox_data, udata)) 860 return -EFAULT; 861 862 count = spu_acquire(ctx); 863 if (count) 864 goto out; 865 866 /* 867 * make sure we can at least write one element, by waiting 868 * in case of !O_NONBLOCK 869 */ 870 count = 0; 871 if (file->f_flags & O_NONBLOCK) { 872 if (!spu_wbox_write(ctx, wbox_data)) { 873 count = -EAGAIN; 874 goto out_unlock; 875 } 876 } else { 877 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); 878 if (count) 879 goto out; 880 } 881 882 883 /* write as much as possible */ 884 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 885 int ret; 886 ret = __get_user(wbox_data, udata); 887 if (ret) 888 break; 889 890 ret = spu_wbox_write(ctx, wbox_data); 891 if (ret == 0) 892 break; 893 } 894 895 out_unlock: 896 spu_release(ctx); 897 out: 898 return count; 899 } 900 901 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait) 902 { 903 struct spu_context *ctx = file->private_data; 904 unsigned int mask; 905 906 poll_wait(file, &ctx->wbox_wq, wait); 907 908 /* 909 * For now keep this uninterruptible and also ignore the rule 910 * that poll should not sleep. Will be fixed later. 911 */ 912 mutex_lock(&ctx->state_mutex); 913 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM); 914 spu_release(ctx); 915 916 return mask; 917 } 918 919 static const struct file_operations spufs_wbox_fops = { 920 .open = spufs_pipe_open, 921 .write = spufs_wbox_write, 922 .poll = spufs_wbox_poll, 923 .llseek = no_llseek, 924 }; 925 926 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, 927 size_t len, loff_t *pos) 928 { 929 struct spu_context *ctx = file->private_data; 930 ssize_t ret; 931 u32 wbox_stat; 932 933 if (len < 4) 934 return -EINVAL; 935 936 ret = spu_acquire(ctx); 937 if (ret) 938 return ret; 939 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; 940 spu_release(ctx); 941 942 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) 943 return -EFAULT; 944 945 return 4; 946 } 947 948 static const struct file_operations spufs_wbox_stat_fops = { 949 .open = spufs_pipe_open, 950 .read = spufs_wbox_stat_read, 951 .llseek = no_llseek, 952 }; 953 954 static int spufs_signal1_open(struct inode *inode, struct file *file) 955 { 956 struct spufs_inode_info *i = SPUFS_I(inode); 957 struct spu_context *ctx = i->i_ctx; 958 959 mutex_lock(&ctx->mapping_lock); 960 file->private_data = ctx; 961 if (!i->i_openers++) 962 ctx->signal1 = inode->i_mapping; 963 mutex_unlock(&ctx->mapping_lock); 964 return nonseekable_open(inode, file); 965 } 966 967 static int 968 spufs_signal1_release(struct inode *inode, struct file *file) 969 { 970 struct spufs_inode_info *i = SPUFS_I(inode); 971 struct spu_context *ctx = i->i_ctx; 972 973 mutex_lock(&ctx->mapping_lock); 974 if (!--i->i_openers) 975 ctx->signal1 = NULL; 976 mutex_unlock(&ctx->mapping_lock); 977 return 0; 978 } 979 980 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf, 981 size_t len, loff_t *pos) 982 { 983 int ret = 0; 984 u32 data; 985 986 if (len < 4) 987 return -EINVAL; 988 989 if (ctx->csa.spu_chnlcnt_RW[3]) { 990 data = ctx->csa.spu_chnldata_RW[3]; 991 ret = 4; 992 } 993 994 if (!ret) 995 goto out; 996 997 if (copy_to_user(buf, &data, 4)) 998 return -EFAULT; 999 1000 out: 1001 return ret; 1002 } 1003 1004 static ssize_t spufs_signal1_read(struct file *file, char __user *buf, 1005 size_t len, loff_t *pos) 1006 { 1007 int ret; 1008 struct spu_context *ctx = file->private_data; 1009 1010 ret = spu_acquire_saved(ctx); 1011 if (ret) 1012 return ret; 1013 ret = __spufs_signal1_read(ctx, buf, len, pos); 1014 spu_release_saved(ctx); 1015 1016 return ret; 1017 } 1018 1019 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, 1020 size_t len, loff_t *pos) 1021 { 1022 struct spu_context *ctx; 1023 ssize_t ret; 1024 u32 data; 1025 1026 ctx = file->private_data; 1027 1028 if (len < 4) 1029 return -EINVAL; 1030 1031 if (copy_from_user(&data, buf, 4)) 1032 return -EFAULT; 1033 1034 ret = spu_acquire(ctx); 1035 if (ret) 1036 return ret; 1037 ctx->ops->signal1_write(ctx, data); 1038 spu_release(ctx); 1039 1040 return 4; 1041 } 1042 1043 static int 1044 spufs_signal1_mmap_fault(struct vm_fault *vmf) 1045 { 1046 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1047 return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE); 1048 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1049 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1050 * signal 1 and 2 area 1051 */ 1052 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1053 #else 1054 #error unsupported page size 1055 #endif 1056 } 1057 1058 static const struct vm_operations_struct spufs_signal1_mmap_vmops = { 1059 .fault = spufs_signal1_mmap_fault, 1060 }; 1061 1062 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) 1063 { 1064 if (!(vma->vm_flags & VM_SHARED)) 1065 return -EINVAL; 1066 1067 vma->vm_flags |= VM_IO | VM_PFNMAP; 1068 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1069 1070 vma->vm_ops = &spufs_signal1_mmap_vmops; 1071 return 0; 1072 } 1073 1074 static const struct file_operations spufs_signal1_fops = { 1075 .open = spufs_signal1_open, 1076 .release = spufs_signal1_release, 1077 .read = spufs_signal1_read, 1078 .write = spufs_signal1_write, 1079 .mmap = spufs_signal1_mmap, 1080 .llseek = no_llseek, 1081 }; 1082 1083 static const struct file_operations spufs_signal1_nosched_fops = { 1084 .open = spufs_signal1_open, 1085 .release = spufs_signal1_release, 1086 .write = spufs_signal1_write, 1087 .mmap = spufs_signal1_mmap, 1088 .llseek = no_llseek, 1089 }; 1090 1091 static int spufs_signal2_open(struct inode *inode, struct file *file) 1092 { 1093 struct spufs_inode_info *i = SPUFS_I(inode); 1094 struct spu_context *ctx = i->i_ctx; 1095 1096 mutex_lock(&ctx->mapping_lock); 1097 file->private_data = ctx; 1098 if (!i->i_openers++) 1099 ctx->signal2 = inode->i_mapping; 1100 mutex_unlock(&ctx->mapping_lock); 1101 return nonseekable_open(inode, file); 1102 } 1103 1104 static int 1105 spufs_signal2_release(struct inode *inode, struct file *file) 1106 { 1107 struct spufs_inode_info *i = SPUFS_I(inode); 1108 struct spu_context *ctx = i->i_ctx; 1109 1110 mutex_lock(&ctx->mapping_lock); 1111 if (!--i->i_openers) 1112 ctx->signal2 = NULL; 1113 mutex_unlock(&ctx->mapping_lock); 1114 return 0; 1115 } 1116 1117 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf, 1118 size_t len, loff_t *pos) 1119 { 1120 int ret = 0; 1121 u32 data; 1122 1123 if (len < 4) 1124 return -EINVAL; 1125 1126 if (ctx->csa.spu_chnlcnt_RW[4]) { 1127 data = ctx->csa.spu_chnldata_RW[4]; 1128 ret = 4; 1129 } 1130 1131 if (!ret) 1132 goto out; 1133 1134 if (copy_to_user(buf, &data, 4)) 1135 return -EFAULT; 1136 1137 out: 1138 return ret; 1139 } 1140 1141 static ssize_t spufs_signal2_read(struct file *file, char __user *buf, 1142 size_t len, loff_t *pos) 1143 { 1144 struct spu_context *ctx = file->private_data; 1145 int ret; 1146 1147 ret = spu_acquire_saved(ctx); 1148 if (ret) 1149 return ret; 1150 ret = __spufs_signal2_read(ctx, buf, len, pos); 1151 spu_release_saved(ctx); 1152 1153 return ret; 1154 } 1155 1156 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, 1157 size_t len, loff_t *pos) 1158 { 1159 struct spu_context *ctx; 1160 ssize_t ret; 1161 u32 data; 1162 1163 ctx = file->private_data; 1164 1165 if (len < 4) 1166 return -EINVAL; 1167 1168 if (copy_from_user(&data, buf, 4)) 1169 return -EFAULT; 1170 1171 ret = spu_acquire(ctx); 1172 if (ret) 1173 return ret; 1174 ctx->ops->signal2_write(ctx, data); 1175 spu_release(ctx); 1176 1177 return 4; 1178 } 1179 1180 #if SPUFS_MMAP_4K 1181 static int 1182 spufs_signal2_mmap_fault(struct vm_fault *vmf) 1183 { 1184 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1185 return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE); 1186 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1187 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1188 * signal 1 and 2 area 1189 */ 1190 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1191 #else 1192 #error unsupported page size 1193 #endif 1194 } 1195 1196 static const struct vm_operations_struct spufs_signal2_mmap_vmops = { 1197 .fault = spufs_signal2_mmap_fault, 1198 }; 1199 1200 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) 1201 { 1202 if (!(vma->vm_flags & VM_SHARED)) 1203 return -EINVAL; 1204 1205 vma->vm_flags |= VM_IO | VM_PFNMAP; 1206 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1207 1208 vma->vm_ops = &spufs_signal2_mmap_vmops; 1209 return 0; 1210 } 1211 #else /* SPUFS_MMAP_4K */ 1212 #define spufs_signal2_mmap NULL 1213 #endif /* !SPUFS_MMAP_4K */ 1214 1215 static const struct file_operations spufs_signal2_fops = { 1216 .open = spufs_signal2_open, 1217 .release = spufs_signal2_release, 1218 .read = spufs_signal2_read, 1219 .write = spufs_signal2_write, 1220 .mmap = spufs_signal2_mmap, 1221 .llseek = no_llseek, 1222 }; 1223 1224 static const struct file_operations spufs_signal2_nosched_fops = { 1225 .open = spufs_signal2_open, 1226 .release = spufs_signal2_release, 1227 .write = spufs_signal2_write, 1228 .mmap = spufs_signal2_mmap, 1229 .llseek = no_llseek, 1230 }; 1231 1232 /* 1233 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the 1234 * work of acquiring (or not) the SPU context before calling through 1235 * to the actual get routine. The set routine is called directly. 1236 */ 1237 #define SPU_ATTR_NOACQUIRE 0 1238 #define SPU_ATTR_ACQUIRE 1 1239 #define SPU_ATTR_ACQUIRE_SAVED 2 1240 1241 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \ 1242 static int __##__get(void *data, u64 *val) \ 1243 { \ 1244 struct spu_context *ctx = data; \ 1245 int ret = 0; \ 1246 \ 1247 if (__acquire == SPU_ATTR_ACQUIRE) { \ 1248 ret = spu_acquire(ctx); \ 1249 if (ret) \ 1250 return ret; \ 1251 *val = __get(ctx); \ 1252 spu_release(ctx); \ 1253 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \ 1254 ret = spu_acquire_saved(ctx); \ 1255 if (ret) \ 1256 return ret; \ 1257 *val = __get(ctx); \ 1258 spu_release_saved(ctx); \ 1259 } else \ 1260 *val = __get(ctx); \ 1261 \ 1262 return 0; \ 1263 } \ 1264 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt); 1265 1266 static int spufs_signal1_type_set(void *data, u64 val) 1267 { 1268 struct spu_context *ctx = data; 1269 int ret; 1270 1271 ret = spu_acquire(ctx); 1272 if (ret) 1273 return ret; 1274 ctx->ops->signal1_type_set(ctx, val); 1275 spu_release(ctx); 1276 1277 return 0; 1278 } 1279 1280 static u64 spufs_signal1_type_get(struct spu_context *ctx) 1281 { 1282 return ctx->ops->signal1_type_get(ctx); 1283 } 1284 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, 1285 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1286 1287 1288 static int spufs_signal2_type_set(void *data, u64 val) 1289 { 1290 struct spu_context *ctx = data; 1291 int ret; 1292 1293 ret = spu_acquire(ctx); 1294 if (ret) 1295 return ret; 1296 ctx->ops->signal2_type_set(ctx, val); 1297 spu_release(ctx); 1298 1299 return 0; 1300 } 1301 1302 static u64 spufs_signal2_type_get(struct spu_context *ctx) 1303 { 1304 return ctx->ops->signal2_type_get(ctx); 1305 } 1306 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, 1307 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1308 1309 #if SPUFS_MMAP_4K 1310 static int 1311 spufs_mss_mmap_fault(struct vm_fault *vmf) 1312 { 1313 return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE); 1314 } 1315 1316 static const struct vm_operations_struct spufs_mss_mmap_vmops = { 1317 .fault = spufs_mss_mmap_fault, 1318 }; 1319 1320 /* 1321 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1322 */ 1323 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) 1324 { 1325 if (!(vma->vm_flags & VM_SHARED)) 1326 return -EINVAL; 1327 1328 vma->vm_flags |= VM_IO | VM_PFNMAP; 1329 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1330 1331 vma->vm_ops = &spufs_mss_mmap_vmops; 1332 return 0; 1333 } 1334 #else /* SPUFS_MMAP_4K */ 1335 #define spufs_mss_mmap NULL 1336 #endif /* !SPUFS_MMAP_4K */ 1337 1338 static int spufs_mss_open(struct inode *inode, struct file *file) 1339 { 1340 struct spufs_inode_info *i = SPUFS_I(inode); 1341 struct spu_context *ctx = i->i_ctx; 1342 1343 file->private_data = i->i_ctx; 1344 1345 mutex_lock(&ctx->mapping_lock); 1346 if (!i->i_openers++) 1347 ctx->mss = inode->i_mapping; 1348 mutex_unlock(&ctx->mapping_lock); 1349 return nonseekable_open(inode, file); 1350 } 1351 1352 static int 1353 spufs_mss_release(struct inode *inode, struct file *file) 1354 { 1355 struct spufs_inode_info *i = SPUFS_I(inode); 1356 struct spu_context *ctx = i->i_ctx; 1357 1358 mutex_lock(&ctx->mapping_lock); 1359 if (!--i->i_openers) 1360 ctx->mss = NULL; 1361 mutex_unlock(&ctx->mapping_lock); 1362 return 0; 1363 } 1364 1365 static const struct file_operations spufs_mss_fops = { 1366 .open = spufs_mss_open, 1367 .release = spufs_mss_release, 1368 .mmap = spufs_mss_mmap, 1369 .llseek = no_llseek, 1370 }; 1371 1372 static int 1373 spufs_psmap_mmap_fault(struct vm_fault *vmf) 1374 { 1375 return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE); 1376 } 1377 1378 static const struct vm_operations_struct spufs_psmap_mmap_vmops = { 1379 .fault = spufs_psmap_mmap_fault, 1380 }; 1381 1382 /* 1383 * mmap support for full problem state area [0x00000 - 0x1ffff]. 1384 */ 1385 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) 1386 { 1387 if (!(vma->vm_flags & VM_SHARED)) 1388 return -EINVAL; 1389 1390 vma->vm_flags |= VM_IO | VM_PFNMAP; 1391 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1392 1393 vma->vm_ops = &spufs_psmap_mmap_vmops; 1394 return 0; 1395 } 1396 1397 static int spufs_psmap_open(struct inode *inode, struct file *file) 1398 { 1399 struct spufs_inode_info *i = SPUFS_I(inode); 1400 struct spu_context *ctx = i->i_ctx; 1401 1402 mutex_lock(&ctx->mapping_lock); 1403 file->private_data = i->i_ctx; 1404 if (!i->i_openers++) 1405 ctx->psmap = inode->i_mapping; 1406 mutex_unlock(&ctx->mapping_lock); 1407 return nonseekable_open(inode, file); 1408 } 1409 1410 static int 1411 spufs_psmap_release(struct inode *inode, struct file *file) 1412 { 1413 struct spufs_inode_info *i = SPUFS_I(inode); 1414 struct spu_context *ctx = i->i_ctx; 1415 1416 mutex_lock(&ctx->mapping_lock); 1417 if (!--i->i_openers) 1418 ctx->psmap = NULL; 1419 mutex_unlock(&ctx->mapping_lock); 1420 return 0; 1421 } 1422 1423 static const struct file_operations spufs_psmap_fops = { 1424 .open = spufs_psmap_open, 1425 .release = spufs_psmap_release, 1426 .mmap = spufs_psmap_mmap, 1427 .llseek = no_llseek, 1428 }; 1429 1430 1431 #if SPUFS_MMAP_4K 1432 static int 1433 spufs_mfc_mmap_fault(struct vm_fault *vmf) 1434 { 1435 return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE); 1436 } 1437 1438 static const struct vm_operations_struct spufs_mfc_mmap_vmops = { 1439 .fault = spufs_mfc_mmap_fault, 1440 }; 1441 1442 /* 1443 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1444 */ 1445 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) 1446 { 1447 if (!(vma->vm_flags & VM_SHARED)) 1448 return -EINVAL; 1449 1450 vma->vm_flags |= VM_IO | VM_PFNMAP; 1451 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1452 1453 vma->vm_ops = &spufs_mfc_mmap_vmops; 1454 return 0; 1455 } 1456 #else /* SPUFS_MMAP_4K */ 1457 #define spufs_mfc_mmap NULL 1458 #endif /* !SPUFS_MMAP_4K */ 1459 1460 static int spufs_mfc_open(struct inode *inode, struct file *file) 1461 { 1462 struct spufs_inode_info *i = SPUFS_I(inode); 1463 struct spu_context *ctx = i->i_ctx; 1464 1465 /* we don't want to deal with DMA into other processes */ 1466 if (ctx->owner != current->mm) 1467 return -EINVAL; 1468 1469 if (atomic_read(&inode->i_count) != 1) 1470 return -EBUSY; 1471 1472 mutex_lock(&ctx->mapping_lock); 1473 file->private_data = ctx; 1474 if (!i->i_openers++) 1475 ctx->mfc = inode->i_mapping; 1476 mutex_unlock(&ctx->mapping_lock); 1477 return nonseekable_open(inode, file); 1478 } 1479 1480 static int 1481 spufs_mfc_release(struct inode *inode, struct file *file) 1482 { 1483 struct spufs_inode_info *i = SPUFS_I(inode); 1484 struct spu_context *ctx = i->i_ctx; 1485 1486 mutex_lock(&ctx->mapping_lock); 1487 if (!--i->i_openers) 1488 ctx->mfc = NULL; 1489 mutex_unlock(&ctx->mapping_lock); 1490 return 0; 1491 } 1492 1493 /* interrupt-level mfc callback function. */ 1494 void spufs_mfc_callback(struct spu *spu) 1495 { 1496 struct spu_context *ctx = spu->ctx; 1497 1498 if (ctx) 1499 wake_up_all(&ctx->mfc_wq); 1500 } 1501 1502 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) 1503 { 1504 /* See if there is one tag group is complete */ 1505 /* FIXME we need locking around tagwait */ 1506 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; 1507 ctx->tagwait &= ~*status; 1508 if (*status) 1509 return 1; 1510 1511 /* enable interrupt waiting for any tag group, 1512 may silently fail if interrupts are already enabled */ 1513 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1514 return 0; 1515 } 1516 1517 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, 1518 size_t size, loff_t *pos) 1519 { 1520 struct spu_context *ctx = file->private_data; 1521 int ret = -EINVAL; 1522 u32 status; 1523 1524 if (size != 4) 1525 goto out; 1526 1527 ret = spu_acquire(ctx); 1528 if (ret) 1529 return ret; 1530 1531 ret = -EINVAL; 1532 if (file->f_flags & O_NONBLOCK) { 1533 status = ctx->ops->read_mfc_tagstatus(ctx); 1534 if (!(status & ctx->tagwait)) 1535 ret = -EAGAIN; 1536 else 1537 /* XXX(hch): shouldn't we clear ret here? */ 1538 ctx->tagwait &= ~status; 1539 } else { 1540 ret = spufs_wait(ctx->mfc_wq, 1541 spufs_read_mfc_tagstatus(ctx, &status)); 1542 if (ret) 1543 goto out; 1544 } 1545 spu_release(ctx); 1546 1547 ret = 4; 1548 if (copy_to_user(buffer, &status, 4)) 1549 ret = -EFAULT; 1550 1551 out: 1552 return ret; 1553 } 1554 1555 static int spufs_check_valid_dma(struct mfc_dma_command *cmd) 1556 { 1557 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa, 1558 cmd->ea, cmd->size, cmd->tag, cmd->cmd); 1559 1560 switch (cmd->cmd) { 1561 case MFC_PUT_CMD: 1562 case MFC_PUTF_CMD: 1563 case MFC_PUTB_CMD: 1564 case MFC_GET_CMD: 1565 case MFC_GETF_CMD: 1566 case MFC_GETB_CMD: 1567 break; 1568 default: 1569 pr_debug("invalid DMA opcode %x\n", cmd->cmd); 1570 return -EIO; 1571 } 1572 1573 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { 1574 pr_debug("invalid DMA alignment, ea %llx lsa %x\n", 1575 cmd->ea, cmd->lsa); 1576 return -EIO; 1577 } 1578 1579 switch (cmd->size & 0xf) { 1580 case 1: 1581 break; 1582 case 2: 1583 if (cmd->lsa & 1) 1584 goto error; 1585 break; 1586 case 4: 1587 if (cmd->lsa & 3) 1588 goto error; 1589 break; 1590 case 8: 1591 if (cmd->lsa & 7) 1592 goto error; 1593 break; 1594 case 0: 1595 if (cmd->lsa & 15) 1596 goto error; 1597 break; 1598 error: 1599 default: 1600 pr_debug("invalid DMA alignment %x for size %x\n", 1601 cmd->lsa & 0xf, cmd->size); 1602 return -EIO; 1603 } 1604 1605 if (cmd->size > 16 * 1024) { 1606 pr_debug("invalid DMA size %x\n", cmd->size); 1607 return -EIO; 1608 } 1609 1610 if (cmd->tag & 0xfff0) { 1611 /* we reserve the higher tag numbers for kernel use */ 1612 pr_debug("invalid DMA tag\n"); 1613 return -EIO; 1614 } 1615 1616 if (cmd->class) { 1617 /* not supported in this version */ 1618 pr_debug("invalid DMA class\n"); 1619 return -EIO; 1620 } 1621 1622 return 0; 1623 } 1624 1625 static int spu_send_mfc_command(struct spu_context *ctx, 1626 struct mfc_dma_command cmd, 1627 int *error) 1628 { 1629 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1630 if (*error == -EAGAIN) { 1631 /* wait for any tag group to complete 1632 so we have space for the new command */ 1633 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1634 /* try again, because the queue might be 1635 empty again */ 1636 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1637 if (*error == -EAGAIN) 1638 return 0; 1639 } 1640 return 1; 1641 } 1642 1643 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, 1644 size_t size, loff_t *pos) 1645 { 1646 struct spu_context *ctx = file->private_data; 1647 struct mfc_dma_command cmd; 1648 int ret = -EINVAL; 1649 1650 if (size != sizeof cmd) 1651 goto out; 1652 1653 ret = -EFAULT; 1654 if (copy_from_user(&cmd, buffer, sizeof cmd)) 1655 goto out; 1656 1657 ret = spufs_check_valid_dma(&cmd); 1658 if (ret) 1659 goto out; 1660 1661 ret = spu_acquire(ctx); 1662 if (ret) 1663 goto out; 1664 1665 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 1666 if (ret) 1667 goto out; 1668 1669 if (file->f_flags & O_NONBLOCK) { 1670 ret = ctx->ops->send_mfc_command(ctx, &cmd); 1671 } else { 1672 int status; 1673 ret = spufs_wait(ctx->mfc_wq, 1674 spu_send_mfc_command(ctx, cmd, &status)); 1675 if (ret) 1676 goto out; 1677 if (status) 1678 ret = status; 1679 } 1680 1681 if (ret) 1682 goto out_unlock; 1683 1684 ctx->tagwait |= 1 << cmd.tag; 1685 ret = size; 1686 1687 out_unlock: 1688 spu_release(ctx); 1689 out: 1690 return ret; 1691 } 1692 1693 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait) 1694 { 1695 struct spu_context *ctx = file->private_data; 1696 u32 free_elements, tagstatus; 1697 unsigned int mask; 1698 1699 poll_wait(file, &ctx->mfc_wq, wait); 1700 1701 /* 1702 * For now keep this uninterruptible and also ignore the rule 1703 * that poll should not sleep. Will be fixed later. 1704 */ 1705 mutex_lock(&ctx->state_mutex); 1706 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); 1707 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1708 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1709 spu_release(ctx); 1710 1711 mask = 0; 1712 if (free_elements & 0xffff) 1713 mask |= POLLOUT | POLLWRNORM; 1714 if (tagstatus & ctx->tagwait) 1715 mask |= POLLIN | POLLRDNORM; 1716 1717 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__, 1718 free_elements, tagstatus, ctx->tagwait); 1719 1720 return mask; 1721 } 1722 1723 static int spufs_mfc_flush(struct file *file, fl_owner_t id) 1724 { 1725 struct spu_context *ctx = file->private_data; 1726 int ret; 1727 1728 ret = spu_acquire(ctx); 1729 if (ret) 1730 goto out; 1731 #if 0 1732 /* this currently hangs */ 1733 ret = spufs_wait(ctx->mfc_wq, 1734 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2)); 1735 if (ret) 1736 goto out; 1737 ret = spufs_wait(ctx->mfc_wq, 1738 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait); 1739 if (ret) 1740 goto out; 1741 #else 1742 ret = 0; 1743 #endif 1744 spu_release(ctx); 1745 out: 1746 return ret; 1747 } 1748 1749 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1750 { 1751 struct inode *inode = file_inode(file); 1752 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 1753 if (!err) { 1754 inode_lock(inode); 1755 err = spufs_mfc_flush(file, NULL); 1756 inode_unlock(inode); 1757 } 1758 return err; 1759 } 1760 1761 static const struct file_operations spufs_mfc_fops = { 1762 .open = spufs_mfc_open, 1763 .release = spufs_mfc_release, 1764 .read = spufs_mfc_read, 1765 .write = spufs_mfc_write, 1766 .poll = spufs_mfc_poll, 1767 .flush = spufs_mfc_flush, 1768 .fsync = spufs_mfc_fsync, 1769 .mmap = spufs_mfc_mmap, 1770 .llseek = no_llseek, 1771 }; 1772 1773 static int spufs_npc_set(void *data, u64 val) 1774 { 1775 struct spu_context *ctx = data; 1776 int ret; 1777 1778 ret = spu_acquire(ctx); 1779 if (ret) 1780 return ret; 1781 ctx->ops->npc_write(ctx, val); 1782 spu_release(ctx); 1783 1784 return 0; 1785 } 1786 1787 static u64 spufs_npc_get(struct spu_context *ctx) 1788 { 1789 return ctx->ops->npc_read(ctx); 1790 } 1791 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, 1792 "0x%llx\n", SPU_ATTR_ACQUIRE); 1793 1794 static int spufs_decr_set(void *data, u64 val) 1795 { 1796 struct spu_context *ctx = data; 1797 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1798 int ret; 1799 1800 ret = spu_acquire_saved(ctx); 1801 if (ret) 1802 return ret; 1803 lscsa->decr.slot[0] = (u32) val; 1804 spu_release_saved(ctx); 1805 1806 return 0; 1807 } 1808 1809 static u64 spufs_decr_get(struct spu_context *ctx) 1810 { 1811 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1812 return lscsa->decr.slot[0]; 1813 } 1814 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, 1815 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); 1816 1817 static int spufs_decr_status_set(void *data, u64 val) 1818 { 1819 struct spu_context *ctx = data; 1820 int ret; 1821 1822 ret = spu_acquire_saved(ctx); 1823 if (ret) 1824 return ret; 1825 if (val) 1826 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING; 1827 else 1828 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING; 1829 spu_release_saved(ctx); 1830 1831 return 0; 1832 } 1833 1834 static u64 spufs_decr_status_get(struct spu_context *ctx) 1835 { 1836 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) 1837 return SPU_DECR_STATUS_RUNNING; 1838 else 1839 return 0; 1840 } 1841 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, 1842 spufs_decr_status_set, "0x%llx\n", 1843 SPU_ATTR_ACQUIRE_SAVED); 1844 1845 static int spufs_event_mask_set(void *data, u64 val) 1846 { 1847 struct spu_context *ctx = data; 1848 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1849 int ret; 1850 1851 ret = spu_acquire_saved(ctx); 1852 if (ret) 1853 return ret; 1854 lscsa->event_mask.slot[0] = (u32) val; 1855 spu_release_saved(ctx); 1856 1857 return 0; 1858 } 1859 1860 static u64 spufs_event_mask_get(struct spu_context *ctx) 1861 { 1862 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1863 return lscsa->event_mask.slot[0]; 1864 } 1865 1866 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, 1867 spufs_event_mask_set, "0x%llx\n", 1868 SPU_ATTR_ACQUIRE_SAVED); 1869 1870 static u64 spufs_event_status_get(struct spu_context *ctx) 1871 { 1872 struct spu_state *state = &ctx->csa; 1873 u64 stat; 1874 stat = state->spu_chnlcnt_RW[0]; 1875 if (stat) 1876 return state->spu_chnldata_RW[0]; 1877 return 0; 1878 } 1879 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get, 1880 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1881 1882 static int spufs_srr0_set(void *data, u64 val) 1883 { 1884 struct spu_context *ctx = data; 1885 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1886 int ret; 1887 1888 ret = spu_acquire_saved(ctx); 1889 if (ret) 1890 return ret; 1891 lscsa->srr0.slot[0] = (u32) val; 1892 spu_release_saved(ctx); 1893 1894 return 0; 1895 } 1896 1897 static u64 spufs_srr0_get(struct spu_context *ctx) 1898 { 1899 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1900 return lscsa->srr0.slot[0]; 1901 } 1902 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, 1903 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1904 1905 static u64 spufs_id_get(struct spu_context *ctx) 1906 { 1907 u64 num; 1908 1909 if (ctx->state == SPU_STATE_RUNNABLE) 1910 num = ctx->spu->number; 1911 else 1912 num = (unsigned int)-1; 1913 1914 return num; 1915 } 1916 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n", 1917 SPU_ATTR_ACQUIRE) 1918 1919 static u64 spufs_object_id_get(struct spu_context *ctx) 1920 { 1921 /* FIXME: Should there really be no locking here? */ 1922 return ctx->object_id; 1923 } 1924 1925 static int spufs_object_id_set(void *data, u64 id) 1926 { 1927 struct spu_context *ctx = data; 1928 ctx->object_id = id; 1929 1930 return 0; 1931 } 1932 1933 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, 1934 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE); 1935 1936 static u64 spufs_lslr_get(struct spu_context *ctx) 1937 { 1938 return ctx->csa.priv2.spu_lslr_RW; 1939 } 1940 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n", 1941 SPU_ATTR_ACQUIRE_SAVED); 1942 1943 static int spufs_info_open(struct inode *inode, struct file *file) 1944 { 1945 struct spufs_inode_info *i = SPUFS_I(inode); 1946 struct spu_context *ctx = i->i_ctx; 1947 file->private_data = ctx; 1948 return 0; 1949 } 1950 1951 static int spufs_caps_show(struct seq_file *s, void *private) 1952 { 1953 struct spu_context *ctx = s->private; 1954 1955 if (!(ctx->flags & SPU_CREATE_NOSCHED)) 1956 seq_puts(s, "sched\n"); 1957 if (!(ctx->flags & SPU_CREATE_ISOLATE)) 1958 seq_puts(s, "step\n"); 1959 return 0; 1960 } 1961 1962 static int spufs_caps_open(struct inode *inode, struct file *file) 1963 { 1964 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx); 1965 } 1966 1967 static const struct file_operations spufs_caps_fops = { 1968 .open = spufs_caps_open, 1969 .read = seq_read, 1970 .llseek = seq_lseek, 1971 .release = single_release, 1972 }; 1973 1974 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx, 1975 char __user *buf, size_t len, loff_t *pos) 1976 { 1977 u32 data; 1978 1979 /* EOF if there's no entry in the mbox */ 1980 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff)) 1981 return 0; 1982 1983 data = ctx->csa.prob.pu_mb_R; 1984 1985 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 1986 } 1987 1988 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf, 1989 size_t len, loff_t *pos) 1990 { 1991 int ret; 1992 struct spu_context *ctx = file->private_data; 1993 1994 if (!access_ok(VERIFY_WRITE, buf, len)) 1995 return -EFAULT; 1996 1997 ret = spu_acquire_saved(ctx); 1998 if (ret) 1999 return ret; 2000 spin_lock(&ctx->csa.register_lock); 2001 ret = __spufs_mbox_info_read(ctx, buf, len, pos); 2002 spin_unlock(&ctx->csa.register_lock); 2003 spu_release_saved(ctx); 2004 2005 return ret; 2006 } 2007 2008 static const struct file_operations spufs_mbox_info_fops = { 2009 .open = spufs_info_open, 2010 .read = spufs_mbox_info_read, 2011 .llseek = generic_file_llseek, 2012 }; 2013 2014 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx, 2015 char __user *buf, size_t len, loff_t *pos) 2016 { 2017 u32 data; 2018 2019 /* EOF if there's no entry in the ibox */ 2020 if (!(ctx->csa.prob.mb_stat_R & 0xff0000)) 2021 return 0; 2022 2023 data = ctx->csa.priv2.puint_mb_R; 2024 2025 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 2026 } 2027 2028 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf, 2029 size_t len, loff_t *pos) 2030 { 2031 struct spu_context *ctx = file->private_data; 2032 int ret; 2033 2034 if (!access_ok(VERIFY_WRITE, buf, len)) 2035 return -EFAULT; 2036 2037 ret = spu_acquire_saved(ctx); 2038 if (ret) 2039 return ret; 2040 spin_lock(&ctx->csa.register_lock); 2041 ret = __spufs_ibox_info_read(ctx, buf, len, pos); 2042 spin_unlock(&ctx->csa.register_lock); 2043 spu_release_saved(ctx); 2044 2045 return ret; 2046 } 2047 2048 static const struct file_operations spufs_ibox_info_fops = { 2049 .open = spufs_info_open, 2050 .read = spufs_ibox_info_read, 2051 .llseek = generic_file_llseek, 2052 }; 2053 2054 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx, 2055 char __user *buf, size_t len, loff_t *pos) 2056 { 2057 int i, cnt; 2058 u32 data[4]; 2059 u32 wbox_stat; 2060 2061 wbox_stat = ctx->csa.prob.mb_stat_R; 2062 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8); 2063 for (i = 0; i < cnt; i++) { 2064 data[i] = ctx->csa.spu_mailbox_data[i]; 2065 } 2066 2067 return simple_read_from_buffer(buf, len, pos, &data, 2068 cnt * sizeof(u32)); 2069 } 2070 2071 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf, 2072 size_t len, loff_t *pos) 2073 { 2074 struct spu_context *ctx = file->private_data; 2075 int ret; 2076 2077 if (!access_ok(VERIFY_WRITE, buf, len)) 2078 return -EFAULT; 2079 2080 ret = spu_acquire_saved(ctx); 2081 if (ret) 2082 return ret; 2083 spin_lock(&ctx->csa.register_lock); 2084 ret = __spufs_wbox_info_read(ctx, buf, len, pos); 2085 spin_unlock(&ctx->csa.register_lock); 2086 spu_release_saved(ctx); 2087 2088 return ret; 2089 } 2090 2091 static const struct file_operations spufs_wbox_info_fops = { 2092 .open = spufs_info_open, 2093 .read = spufs_wbox_info_read, 2094 .llseek = generic_file_llseek, 2095 }; 2096 2097 static ssize_t __spufs_dma_info_read(struct spu_context *ctx, 2098 char __user *buf, size_t len, loff_t *pos) 2099 { 2100 struct spu_dma_info info; 2101 struct mfc_cq_sr *qp, *spuqp; 2102 int i; 2103 2104 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW; 2105 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0]; 2106 info.dma_info_status = ctx->csa.spu_chnldata_RW[24]; 2107 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25]; 2108 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27]; 2109 for (i = 0; i < 16; i++) { 2110 qp = &info.dma_info_command_data[i]; 2111 spuqp = &ctx->csa.priv2.spuq[i]; 2112 2113 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW; 2114 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW; 2115 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW; 2116 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW; 2117 } 2118 2119 return simple_read_from_buffer(buf, len, pos, &info, 2120 sizeof info); 2121 } 2122 2123 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf, 2124 size_t len, loff_t *pos) 2125 { 2126 struct spu_context *ctx = file->private_data; 2127 int ret; 2128 2129 if (!access_ok(VERIFY_WRITE, buf, len)) 2130 return -EFAULT; 2131 2132 ret = spu_acquire_saved(ctx); 2133 if (ret) 2134 return ret; 2135 spin_lock(&ctx->csa.register_lock); 2136 ret = __spufs_dma_info_read(ctx, buf, len, pos); 2137 spin_unlock(&ctx->csa.register_lock); 2138 spu_release_saved(ctx); 2139 2140 return ret; 2141 } 2142 2143 static const struct file_operations spufs_dma_info_fops = { 2144 .open = spufs_info_open, 2145 .read = spufs_dma_info_read, 2146 .llseek = no_llseek, 2147 }; 2148 2149 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx, 2150 char __user *buf, size_t len, loff_t *pos) 2151 { 2152 struct spu_proxydma_info info; 2153 struct mfc_cq_sr *qp, *puqp; 2154 int ret = sizeof info; 2155 int i; 2156 2157 if (len < ret) 2158 return -EINVAL; 2159 2160 if (!access_ok(VERIFY_WRITE, buf, len)) 2161 return -EFAULT; 2162 2163 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW; 2164 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW; 2165 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R; 2166 for (i = 0; i < 8; i++) { 2167 qp = &info.proxydma_info_command_data[i]; 2168 puqp = &ctx->csa.priv2.puq[i]; 2169 2170 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW; 2171 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW; 2172 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW; 2173 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW; 2174 } 2175 2176 return simple_read_from_buffer(buf, len, pos, &info, 2177 sizeof info); 2178 } 2179 2180 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf, 2181 size_t len, loff_t *pos) 2182 { 2183 struct spu_context *ctx = file->private_data; 2184 int ret; 2185 2186 ret = spu_acquire_saved(ctx); 2187 if (ret) 2188 return ret; 2189 spin_lock(&ctx->csa.register_lock); 2190 ret = __spufs_proxydma_info_read(ctx, buf, len, pos); 2191 spin_unlock(&ctx->csa.register_lock); 2192 spu_release_saved(ctx); 2193 2194 return ret; 2195 } 2196 2197 static const struct file_operations spufs_proxydma_info_fops = { 2198 .open = spufs_info_open, 2199 .read = spufs_proxydma_info_read, 2200 .llseek = no_llseek, 2201 }; 2202 2203 static int spufs_show_tid(struct seq_file *s, void *private) 2204 { 2205 struct spu_context *ctx = s->private; 2206 2207 seq_printf(s, "%d\n", ctx->tid); 2208 return 0; 2209 } 2210 2211 static int spufs_tid_open(struct inode *inode, struct file *file) 2212 { 2213 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx); 2214 } 2215 2216 static const struct file_operations spufs_tid_fops = { 2217 .open = spufs_tid_open, 2218 .read = seq_read, 2219 .llseek = seq_lseek, 2220 .release = single_release, 2221 }; 2222 2223 static const char *ctx_state_names[] = { 2224 "user", "system", "iowait", "loaded" 2225 }; 2226 2227 static unsigned long long spufs_acct_time(struct spu_context *ctx, 2228 enum spu_utilization_state state) 2229 { 2230 unsigned long long time = ctx->stats.times[state]; 2231 2232 /* 2233 * In general, utilization statistics are updated by the controlling 2234 * thread as the spu context moves through various well defined 2235 * state transitions, but if the context is lazily loaded its 2236 * utilization statistics are not updated as the controlling thread 2237 * is not tightly coupled with the execution of the spu context. We 2238 * calculate and apply the time delta from the last recorded state 2239 * of the spu context. 2240 */ 2241 if (ctx->spu && ctx->stats.util_state == state) { 2242 time += ktime_get_ns() - ctx->stats.tstamp; 2243 } 2244 2245 return time / NSEC_PER_MSEC; 2246 } 2247 2248 static unsigned long long spufs_slb_flts(struct spu_context *ctx) 2249 { 2250 unsigned long long slb_flts = ctx->stats.slb_flt; 2251 2252 if (ctx->state == SPU_STATE_RUNNABLE) { 2253 slb_flts += (ctx->spu->stats.slb_flt - 2254 ctx->stats.slb_flt_base); 2255 } 2256 2257 return slb_flts; 2258 } 2259 2260 static unsigned long long spufs_class2_intrs(struct spu_context *ctx) 2261 { 2262 unsigned long long class2_intrs = ctx->stats.class2_intr; 2263 2264 if (ctx->state == SPU_STATE_RUNNABLE) { 2265 class2_intrs += (ctx->spu->stats.class2_intr - 2266 ctx->stats.class2_intr_base); 2267 } 2268 2269 return class2_intrs; 2270 } 2271 2272 2273 static int spufs_show_stat(struct seq_file *s, void *private) 2274 { 2275 struct spu_context *ctx = s->private; 2276 int ret; 2277 2278 ret = spu_acquire(ctx); 2279 if (ret) 2280 return ret; 2281 2282 seq_printf(s, "%s %llu %llu %llu %llu " 2283 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 2284 ctx_state_names[ctx->stats.util_state], 2285 spufs_acct_time(ctx, SPU_UTIL_USER), 2286 spufs_acct_time(ctx, SPU_UTIL_SYSTEM), 2287 spufs_acct_time(ctx, SPU_UTIL_IOWAIT), 2288 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED), 2289 ctx->stats.vol_ctx_switch, 2290 ctx->stats.invol_ctx_switch, 2291 spufs_slb_flts(ctx), 2292 ctx->stats.hash_flt, 2293 ctx->stats.min_flt, 2294 ctx->stats.maj_flt, 2295 spufs_class2_intrs(ctx), 2296 ctx->stats.libassist); 2297 spu_release(ctx); 2298 return 0; 2299 } 2300 2301 static int spufs_stat_open(struct inode *inode, struct file *file) 2302 { 2303 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx); 2304 } 2305 2306 static const struct file_operations spufs_stat_fops = { 2307 .open = spufs_stat_open, 2308 .read = seq_read, 2309 .llseek = seq_lseek, 2310 .release = single_release, 2311 }; 2312 2313 static inline int spufs_switch_log_used(struct spu_context *ctx) 2314 { 2315 return (ctx->switch_log->head - ctx->switch_log->tail) % 2316 SWITCH_LOG_BUFSIZE; 2317 } 2318 2319 static inline int spufs_switch_log_avail(struct spu_context *ctx) 2320 { 2321 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx); 2322 } 2323 2324 static int spufs_switch_log_open(struct inode *inode, struct file *file) 2325 { 2326 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2327 int rc; 2328 2329 rc = spu_acquire(ctx); 2330 if (rc) 2331 return rc; 2332 2333 if (ctx->switch_log) { 2334 rc = -EBUSY; 2335 goto out; 2336 } 2337 2338 ctx->switch_log = kmalloc(sizeof(struct switch_log) + 2339 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry), 2340 GFP_KERNEL); 2341 2342 if (!ctx->switch_log) { 2343 rc = -ENOMEM; 2344 goto out; 2345 } 2346 2347 ctx->switch_log->head = ctx->switch_log->tail = 0; 2348 init_waitqueue_head(&ctx->switch_log->wait); 2349 rc = 0; 2350 2351 out: 2352 spu_release(ctx); 2353 return rc; 2354 } 2355 2356 static int spufs_switch_log_release(struct inode *inode, struct file *file) 2357 { 2358 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2359 int rc; 2360 2361 rc = spu_acquire(ctx); 2362 if (rc) 2363 return rc; 2364 2365 kfree(ctx->switch_log); 2366 ctx->switch_log = NULL; 2367 spu_release(ctx); 2368 2369 return 0; 2370 } 2371 2372 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n) 2373 { 2374 struct switch_log_entry *p; 2375 2376 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE; 2377 2378 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n", 2379 (unsigned int) p->tstamp.tv_sec, 2380 (unsigned int) p->tstamp.tv_nsec, 2381 p->spu_id, 2382 (unsigned int) p->type, 2383 (unsigned int) p->val, 2384 (unsigned long long) p->timebase); 2385 } 2386 2387 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf, 2388 size_t len, loff_t *ppos) 2389 { 2390 struct inode *inode = file_inode(file); 2391 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2392 int error = 0, cnt = 0; 2393 2394 if (!buf) 2395 return -EINVAL; 2396 2397 error = spu_acquire(ctx); 2398 if (error) 2399 return error; 2400 2401 while (cnt < len) { 2402 char tbuf[128]; 2403 int width; 2404 2405 if (spufs_switch_log_used(ctx) == 0) { 2406 if (cnt > 0) { 2407 /* If there's data ready to go, we can 2408 * just return straight away */ 2409 break; 2410 2411 } else if (file->f_flags & O_NONBLOCK) { 2412 error = -EAGAIN; 2413 break; 2414 2415 } else { 2416 /* spufs_wait will drop the mutex and 2417 * re-acquire, but since we're in read(), the 2418 * file cannot be _released (and so 2419 * ctx->switch_log is stable). 2420 */ 2421 error = spufs_wait(ctx->switch_log->wait, 2422 spufs_switch_log_used(ctx) > 0); 2423 2424 /* On error, spufs_wait returns without the 2425 * state mutex held */ 2426 if (error) 2427 return error; 2428 2429 /* We may have had entries read from underneath 2430 * us while we dropped the mutex in spufs_wait, 2431 * so re-check */ 2432 if (spufs_switch_log_used(ctx) == 0) 2433 continue; 2434 } 2435 } 2436 2437 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf)); 2438 if (width < len) 2439 ctx->switch_log->tail = 2440 (ctx->switch_log->tail + 1) % 2441 SWITCH_LOG_BUFSIZE; 2442 else 2443 /* If the record is greater than space available return 2444 * partial buffer (so far) */ 2445 break; 2446 2447 error = copy_to_user(buf + cnt, tbuf, width); 2448 if (error) 2449 break; 2450 cnt += width; 2451 } 2452 2453 spu_release(ctx); 2454 2455 return cnt == 0 ? error : cnt; 2456 } 2457 2458 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait) 2459 { 2460 struct inode *inode = file_inode(file); 2461 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2462 unsigned int mask = 0; 2463 int rc; 2464 2465 poll_wait(file, &ctx->switch_log->wait, wait); 2466 2467 rc = spu_acquire(ctx); 2468 if (rc) 2469 return rc; 2470 2471 if (spufs_switch_log_used(ctx) > 0) 2472 mask |= POLLIN; 2473 2474 spu_release(ctx); 2475 2476 return mask; 2477 } 2478 2479 static const struct file_operations spufs_switch_log_fops = { 2480 .open = spufs_switch_log_open, 2481 .read = spufs_switch_log_read, 2482 .poll = spufs_switch_log_poll, 2483 .release = spufs_switch_log_release, 2484 .llseek = no_llseek, 2485 }; 2486 2487 /** 2488 * Log a context switch event to a switch log reader. 2489 * 2490 * Must be called with ctx->state_mutex held. 2491 */ 2492 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx, 2493 u32 type, u32 val) 2494 { 2495 if (!ctx->switch_log) 2496 return; 2497 2498 if (spufs_switch_log_avail(ctx) > 1) { 2499 struct switch_log_entry *p; 2500 2501 p = ctx->switch_log->log + ctx->switch_log->head; 2502 ktime_get_ts(&p->tstamp); 2503 p->timebase = get_tb(); 2504 p->spu_id = spu ? spu->number : -1; 2505 p->type = type; 2506 p->val = val; 2507 2508 ctx->switch_log->head = 2509 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE; 2510 } 2511 2512 wake_up(&ctx->switch_log->wait); 2513 } 2514 2515 static int spufs_show_ctx(struct seq_file *s, void *private) 2516 { 2517 struct spu_context *ctx = s->private; 2518 u64 mfc_control_RW; 2519 2520 mutex_lock(&ctx->state_mutex); 2521 if (ctx->spu) { 2522 struct spu *spu = ctx->spu; 2523 struct spu_priv2 __iomem *priv2 = spu->priv2; 2524 2525 spin_lock_irq(&spu->register_lock); 2526 mfc_control_RW = in_be64(&priv2->mfc_control_RW); 2527 spin_unlock_irq(&spu->register_lock); 2528 } else { 2529 struct spu_state *csa = &ctx->csa; 2530 2531 mfc_control_RW = csa->priv2.mfc_control_RW; 2532 } 2533 2534 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)" 2535 " %c %llx %llx %llx %llx %x %x\n", 2536 ctx->state == SPU_STATE_SAVED ? 'S' : 'R', 2537 ctx->flags, 2538 ctx->sched_flags, 2539 ctx->prio, 2540 ctx->time_slice, 2541 ctx->spu ? ctx->spu->number : -1, 2542 !list_empty(&ctx->rq) ? 'q' : ' ', 2543 ctx->csa.class_0_pending, 2544 ctx->csa.class_0_dar, 2545 ctx->csa.class_1_dsisr, 2546 mfc_control_RW, 2547 ctx->ops->runcntl_read(ctx), 2548 ctx->ops->status_read(ctx)); 2549 2550 mutex_unlock(&ctx->state_mutex); 2551 2552 return 0; 2553 } 2554 2555 static int spufs_ctx_open(struct inode *inode, struct file *file) 2556 { 2557 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx); 2558 } 2559 2560 static const struct file_operations spufs_ctx_fops = { 2561 .open = spufs_ctx_open, 2562 .read = seq_read, 2563 .llseek = seq_lseek, 2564 .release = single_release, 2565 }; 2566 2567 const struct spufs_tree_descr spufs_dir_contents[] = { 2568 { "capabilities", &spufs_caps_fops, 0444, }, 2569 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2570 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), }, 2571 { "mbox", &spufs_mbox_fops, 0444, }, 2572 { "ibox", &spufs_ibox_fops, 0444, }, 2573 { "wbox", &spufs_wbox_fops, 0222, }, 2574 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2575 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2576 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2577 { "signal1", &spufs_signal1_fops, 0666, }, 2578 { "signal2", &spufs_signal2_fops, 0666, }, 2579 { "signal1_type", &spufs_signal1_type, 0666, }, 2580 { "signal2_type", &spufs_signal2_type, 0666, }, 2581 { "cntl", &spufs_cntl_fops, 0666, }, 2582 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), }, 2583 { "lslr", &spufs_lslr_ops, 0444, }, 2584 { "mfc", &spufs_mfc_fops, 0666, }, 2585 { "mss", &spufs_mss_fops, 0666, }, 2586 { "npc", &spufs_npc_ops, 0666, }, 2587 { "srr0", &spufs_srr0_ops, 0666, }, 2588 { "decr", &spufs_decr_ops, 0666, }, 2589 { "decr_status", &spufs_decr_status_ops, 0666, }, 2590 { "event_mask", &spufs_event_mask_ops, 0666, }, 2591 { "event_status", &spufs_event_status_ops, 0444, }, 2592 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2593 { "phys-id", &spufs_id_ops, 0666, }, 2594 { "object-id", &spufs_object_id_ops, 0666, }, 2595 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), }, 2596 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), }, 2597 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), }, 2598 { "dma_info", &spufs_dma_info_fops, 0444, 2599 sizeof(struct spu_dma_info), }, 2600 { "proxydma_info", &spufs_proxydma_info_fops, 0444, 2601 sizeof(struct spu_proxydma_info)}, 2602 { "tid", &spufs_tid_fops, 0444, }, 2603 { "stat", &spufs_stat_fops, 0444, }, 2604 { "switch_log", &spufs_switch_log_fops, 0444 }, 2605 {}, 2606 }; 2607 2608 const struct spufs_tree_descr spufs_dir_nosched_contents[] = { 2609 { "capabilities", &spufs_caps_fops, 0444, }, 2610 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2611 { "mbox", &spufs_mbox_fops, 0444, }, 2612 { "ibox", &spufs_ibox_fops, 0444, }, 2613 { "wbox", &spufs_wbox_fops, 0222, }, 2614 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2615 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2616 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2617 { "signal1", &spufs_signal1_nosched_fops, 0222, }, 2618 { "signal2", &spufs_signal2_nosched_fops, 0222, }, 2619 { "signal1_type", &spufs_signal1_type, 0666, }, 2620 { "signal2_type", &spufs_signal2_type, 0666, }, 2621 { "mss", &spufs_mss_fops, 0666, }, 2622 { "mfc", &spufs_mfc_fops, 0666, }, 2623 { "cntl", &spufs_cntl_fops, 0666, }, 2624 { "npc", &spufs_npc_ops, 0666, }, 2625 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2626 { "phys-id", &spufs_id_ops, 0666, }, 2627 { "object-id", &spufs_object_id_ops, 0666, }, 2628 { "tid", &spufs_tid_fops, 0444, }, 2629 { "stat", &spufs_stat_fops, 0444, }, 2630 {}, 2631 }; 2632 2633 const struct spufs_tree_descr spufs_dir_debug_contents[] = { 2634 { ".ctx", &spufs_ctx_fops, 0444, }, 2635 {}, 2636 }; 2637 2638 const struct spufs_coredump_reader spufs_coredump_read[] = { 2639 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])}, 2640 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) }, 2641 { "lslr", NULL, spufs_lslr_get, 19 }, 2642 { "decr", NULL, spufs_decr_get, 19 }, 2643 { "decr_status", NULL, spufs_decr_status_get, 19 }, 2644 { "mem", __spufs_mem_read, NULL, LS_SIZE, }, 2645 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) }, 2646 { "signal1_type", NULL, spufs_signal1_type_get, 19 }, 2647 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) }, 2648 { "signal2_type", NULL, spufs_signal2_type_get, 19 }, 2649 { "event_mask", NULL, spufs_event_mask_get, 19 }, 2650 { "event_status", NULL, spufs_event_status_get, 19 }, 2651 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) }, 2652 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) }, 2653 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)}, 2654 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)}, 2655 { "proxydma_info", __spufs_proxydma_info_read, 2656 NULL, sizeof(struct spu_proxydma_info)}, 2657 { "object-id", NULL, spufs_object_id_get, 19 }, 2658 { "npc", NULL, spufs_npc_get, 19 }, 2659 { NULL }, 2660 }; 2661