1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SPU file system -- file contents
4 *
5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 *
7 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 */
9
10 #undef DEBUG
11
12 #include <linux/coredump.h>
13 #include <linux/fs.h>
14 #include <linux/ioctl.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/poll.h>
18 #include <linux/ptrace.h>
19 #include <linux/seq_file.h>
20 #include <linux/slab.h>
21
22 #include <asm/io.h>
23 #include <asm/time.h>
24 #include <asm/spu.h>
25 #include <asm/spu_info.h>
26 #include <linux/uaccess.h>
27
28 #include "spufs.h"
29 #include "sputrace.h"
30
31 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
32
33 /* Simple attribute files */
34 struct spufs_attr {
35 int (*get)(void *, u64 *);
36 int (*set)(void *, u64);
37 char get_buf[24]; /* enough to store a u64 and "\n\0" */
38 char set_buf[24];
39 void *data;
40 const char *fmt; /* format for read operation */
41 struct mutex mutex; /* protects access to these buffers */
42 };
43
spufs_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)44 static int spufs_attr_open(struct inode *inode, struct file *file,
45 int (*get)(void *, u64 *), int (*set)(void *, u64),
46 const char *fmt)
47 {
48 struct spufs_attr *attr;
49
50 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
51 if (!attr)
52 return -ENOMEM;
53
54 attr->get = get;
55 attr->set = set;
56 attr->data = inode->i_private;
57 attr->fmt = fmt;
58 mutex_init(&attr->mutex);
59 file->private_data = attr;
60
61 return nonseekable_open(inode, file);
62 }
63
spufs_attr_release(struct inode * inode,struct file * file)64 static int spufs_attr_release(struct inode *inode, struct file *file)
65 {
66 kfree(file->private_data);
67 return 0;
68 }
69
spufs_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)70 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
71 size_t len, loff_t *ppos)
72 {
73 struct spufs_attr *attr;
74 size_t size;
75 ssize_t ret;
76
77 attr = file->private_data;
78 if (!attr->get)
79 return -EACCES;
80
81 ret = mutex_lock_interruptible(&attr->mutex);
82 if (ret)
83 return ret;
84
85 if (*ppos) { /* continued read */
86 size = strlen(attr->get_buf);
87 } else { /* first read */
88 u64 val;
89 ret = attr->get(attr->data, &val);
90 if (ret)
91 goto out;
92
93 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
94 attr->fmt, (unsigned long long)val);
95 }
96
97 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
98 out:
99 mutex_unlock(&attr->mutex);
100 return ret;
101 }
102
spufs_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)103 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
104 size_t len, loff_t *ppos)
105 {
106 struct spufs_attr *attr;
107 u64 val;
108 size_t size;
109 ssize_t ret;
110
111 attr = file->private_data;
112 if (!attr->set)
113 return -EACCES;
114
115 ret = mutex_lock_interruptible(&attr->mutex);
116 if (ret)
117 return ret;
118
119 ret = -EFAULT;
120 size = min(sizeof(attr->set_buf) - 1, len);
121 if (copy_from_user(attr->set_buf, buf, size))
122 goto out;
123
124 ret = len; /* claim we got the whole input */
125 attr->set_buf[size] = '\0';
126 val = simple_strtol(attr->set_buf, NULL, 0);
127 attr->set(attr->data, val);
128 out:
129 mutex_unlock(&attr->mutex);
130 return ret;
131 }
132
spufs_dump_emit(struct coredump_params * cprm,void * buf,size_t size)133 static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf,
134 size_t size)
135 {
136 if (!dump_emit(cprm, buf, size))
137 return -EIO;
138 return size;
139 }
140
141 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
142 static int __fops ## _open(struct inode *inode, struct file *file) \
143 { \
144 __simple_attr_check_format(__fmt, 0ull); \
145 return spufs_attr_open(inode, file, __get, __set, __fmt); \
146 } \
147 static const struct file_operations __fops = { \
148 .open = __fops ## _open, \
149 .release = spufs_attr_release, \
150 .read = spufs_attr_read, \
151 .write = spufs_attr_write, \
152 .llseek = generic_file_llseek, \
153 };
154
155
156 static int
spufs_mem_open(struct inode * inode,struct file * file)157 spufs_mem_open(struct inode *inode, struct file *file)
158 {
159 struct spufs_inode_info *i = SPUFS_I(inode);
160 struct spu_context *ctx = i->i_ctx;
161
162 mutex_lock(&ctx->mapping_lock);
163 file->private_data = ctx;
164 if (!i->i_openers++)
165 ctx->local_store = inode->i_mapping;
166 mutex_unlock(&ctx->mapping_lock);
167 return 0;
168 }
169
170 static int
spufs_mem_release(struct inode * inode,struct file * file)171 spufs_mem_release(struct inode *inode, struct file *file)
172 {
173 struct spufs_inode_info *i = SPUFS_I(inode);
174 struct spu_context *ctx = i->i_ctx;
175
176 mutex_lock(&ctx->mapping_lock);
177 if (!--i->i_openers)
178 ctx->local_store = NULL;
179 mutex_unlock(&ctx->mapping_lock);
180 return 0;
181 }
182
183 static ssize_t
spufs_mem_dump(struct spu_context * ctx,struct coredump_params * cprm)184 spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm)
185 {
186 return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE);
187 }
188
189 static ssize_t
spufs_mem_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)190 spufs_mem_read(struct file *file, char __user *buffer,
191 size_t size, loff_t *pos)
192 {
193 struct spu_context *ctx = file->private_data;
194 ssize_t ret;
195
196 ret = spu_acquire(ctx);
197 if (ret)
198 return ret;
199 ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx),
200 LS_SIZE);
201 spu_release(ctx);
202
203 return ret;
204 }
205
206 static ssize_t
spufs_mem_write(struct file * file,const char __user * buffer,size_t size,loff_t * ppos)207 spufs_mem_write(struct file *file, const char __user *buffer,
208 size_t size, loff_t *ppos)
209 {
210 struct spu_context *ctx = file->private_data;
211 char *local_store;
212 loff_t pos = *ppos;
213 int ret;
214
215 if (pos > LS_SIZE)
216 return -EFBIG;
217
218 ret = spu_acquire(ctx);
219 if (ret)
220 return ret;
221
222 local_store = ctx->ops->get_ls(ctx);
223 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
224 spu_release(ctx);
225
226 return size;
227 }
228
229 static vm_fault_t
spufs_mem_mmap_fault(struct vm_fault * vmf)230 spufs_mem_mmap_fault(struct vm_fault *vmf)
231 {
232 struct vm_area_struct *vma = vmf->vma;
233 struct spu_context *ctx = vma->vm_file->private_data;
234 unsigned long pfn, offset;
235 vm_fault_t ret;
236
237 offset = vmf->pgoff << PAGE_SHIFT;
238 if (offset >= LS_SIZE)
239 return VM_FAULT_SIGBUS;
240
241 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
242 vmf->address, offset);
243
244 if (spu_acquire(ctx))
245 return VM_FAULT_NOPAGE;
246
247 if (ctx->state == SPU_STATE_SAVED) {
248 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
249 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
250 } else {
251 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
252 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
253 }
254 ret = vmf_insert_pfn(vma, vmf->address, pfn);
255
256 spu_release(ctx);
257
258 return ret;
259 }
260
spufs_mem_mmap_access(struct vm_area_struct * vma,unsigned long address,void * buf,int len,int write)261 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
262 unsigned long address,
263 void *buf, int len, int write)
264 {
265 struct spu_context *ctx = vma->vm_file->private_data;
266 unsigned long offset = address - vma->vm_start;
267 char *local_store;
268
269 if (write && !(vma->vm_flags & VM_WRITE))
270 return -EACCES;
271 if (spu_acquire(ctx))
272 return -EINTR;
273 if ((offset + len) > vma->vm_end)
274 len = vma->vm_end - offset;
275 local_store = ctx->ops->get_ls(ctx);
276 if (write)
277 memcpy_toio(local_store + offset, buf, len);
278 else
279 memcpy_fromio(buf, local_store + offset, len);
280 spu_release(ctx);
281 return len;
282 }
283
284 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
285 .fault = spufs_mem_mmap_fault,
286 .access = spufs_mem_mmap_access,
287 };
288
spufs_mem_mmap(struct file * file,struct vm_area_struct * vma)289 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
290 {
291 if (!(vma->vm_flags & VM_SHARED))
292 return -EINVAL;
293
294 vm_flags_set(vma, VM_IO | VM_PFNMAP);
295 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
296
297 vma->vm_ops = &spufs_mem_mmap_vmops;
298 return 0;
299 }
300
301 static const struct file_operations spufs_mem_fops = {
302 .open = spufs_mem_open,
303 .release = spufs_mem_release,
304 .read = spufs_mem_read,
305 .write = spufs_mem_write,
306 .llseek = generic_file_llseek,
307 .mmap = spufs_mem_mmap,
308 };
309
spufs_ps_fault(struct vm_fault * vmf,unsigned long ps_offs,unsigned long ps_size)310 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
311 unsigned long ps_offs,
312 unsigned long ps_size)
313 {
314 struct spu_context *ctx = vmf->vma->vm_file->private_data;
315 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
316 int err = 0;
317 vm_fault_t ret = VM_FAULT_NOPAGE;
318
319 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
320
321 if (offset >= ps_size)
322 return VM_FAULT_SIGBUS;
323
324 if (fatal_signal_pending(current))
325 return VM_FAULT_SIGBUS;
326
327 /*
328 * Because we release the mmap_lock, the context may be destroyed while
329 * we're in spu_wait. Grab an extra reference so it isn't destroyed
330 * in the meantime.
331 */
332 get_spu_context(ctx);
333
334 /*
335 * We have to wait for context to be loaded before we have
336 * pages to hand out to the user, but we don't want to wait
337 * with the mmap_lock held.
338 * It is possible to drop the mmap_lock here, but then we need
339 * to return VM_FAULT_NOPAGE because the mappings may have
340 * hanged.
341 */
342 if (spu_acquire(ctx))
343 goto refault;
344
345 if (ctx->state == SPU_STATE_SAVED) {
346 mmap_read_unlock(current->mm);
347 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
348 err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
349 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
350 mmap_read_lock(current->mm);
351 } else {
352 area = ctx->spu->problem_phys + ps_offs;
353 ret = vmf_insert_pfn(vmf->vma, vmf->address,
354 (area + offset) >> PAGE_SHIFT);
355 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
356 }
357
358 if (!err)
359 spu_release(ctx);
360
361 refault:
362 put_spu_context(ctx);
363 return ret;
364 }
365
366 #if SPUFS_MMAP_4K
spufs_cntl_mmap_fault(struct vm_fault * vmf)367 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
368 {
369 return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
370 }
371
372 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
373 .fault = spufs_cntl_mmap_fault,
374 };
375
376 /*
377 * mmap support for problem state control area [0x4000 - 0x4fff].
378 */
spufs_cntl_mmap(struct file * file,struct vm_area_struct * vma)379 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
380 {
381 if (!(vma->vm_flags & VM_SHARED))
382 return -EINVAL;
383
384 vm_flags_set(vma, VM_IO | VM_PFNMAP);
385 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
386
387 vma->vm_ops = &spufs_cntl_mmap_vmops;
388 return 0;
389 }
390 #else /* SPUFS_MMAP_4K */
391 #define spufs_cntl_mmap NULL
392 #endif /* !SPUFS_MMAP_4K */
393
spufs_cntl_get(void * data,u64 * val)394 static int spufs_cntl_get(void *data, u64 *val)
395 {
396 struct spu_context *ctx = data;
397 int ret;
398
399 ret = spu_acquire(ctx);
400 if (ret)
401 return ret;
402 *val = ctx->ops->status_read(ctx);
403 spu_release(ctx);
404
405 return 0;
406 }
407
spufs_cntl_set(void * data,u64 val)408 static int spufs_cntl_set(void *data, u64 val)
409 {
410 struct spu_context *ctx = data;
411 int ret;
412
413 ret = spu_acquire(ctx);
414 if (ret)
415 return ret;
416 ctx->ops->runcntl_write(ctx, val);
417 spu_release(ctx);
418
419 return 0;
420 }
421
spufs_cntl_open(struct inode * inode,struct file * file)422 static int spufs_cntl_open(struct inode *inode, struct file *file)
423 {
424 struct spufs_inode_info *i = SPUFS_I(inode);
425 struct spu_context *ctx = i->i_ctx;
426
427 mutex_lock(&ctx->mapping_lock);
428 file->private_data = ctx;
429 if (!i->i_openers++)
430 ctx->cntl = inode->i_mapping;
431 mutex_unlock(&ctx->mapping_lock);
432 return simple_attr_open(inode, file, spufs_cntl_get,
433 spufs_cntl_set, "0x%08lx");
434 }
435
436 static int
spufs_cntl_release(struct inode * inode,struct file * file)437 spufs_cntl_release(struct inode *inode, struct file *file)
438 {
439 struct spufs_inode_info *i = SPUFS_I(inode);
440 struct spu_context *ctx = i->i_ctx;
441
442 simple_attr_release(inode, file);
443
444 mutex_lock(&ctx->mapping_lock);
445 if (!--i->i_openers)
446 ctx->cntl = NULL;
447 mutex_unlock(&ctx->mapping_lock);
448 return 0;
449 }
450
451 static const struct file_operations spufs_cntl_fops = {
452 .open = spufs_cntl_open,
453 .release = spufs_cntl_release,
454 .read = simple_attr_read,
455 .write = simple_attr_write,
456 .mmap = spufs_cntl_mmap,
457 };
458
459 static int
spufs_regs_open(struct inode * inode,struct file * file)460 spufs_regs_open(struct inode *inode, struct file *file)
461 {
462 struct spufs_inode_info *i = SPUFS_I(inode);
463 file->private_data = i->i_ctx;
464 return 0;
465 }
466
467 static ssize_t
spufs_regs_dump(struct spu_context * ctx,struct coredump_params * cprm)468 spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm)
469 {
470 return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs,
471 sizeof(ctx->csa.lscsa->gprs));
472 }
473
474 static ssize_t
spufs_regs_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)475 spufs_regs_read(struct file *file, char __user *buffer,
476 size_t size, loff_t *pos)
477 {
478 int ret;
479 struct spu_context *ctx = file->private_data;
480
481 /* pre-check for file position: if we'd return EOF, there's no point
482 * causing a deschedule */
483 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
484 return 0;
485
486 ret = spu_acquire_saved(ctx);
487 if (ret)
488 return ret;
489 ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs,
490 sizeof(ctx->csa.lscsa->gprs));
491 spu_release_saved(ctx);
492 return ret;
493 }
494
495 static ssize_t
spufs_regs_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)496 spufs_regs_write(struct file *file, const char __user *buffer,
497 size_t size, loff_t *pos)
498 {
499 struct spu_context *ctx = file->private_data;
500 struct spu_lscsa *lscsa = ctx->csa.lscsa;
501 int ret;
502
503 if (*pos >= sizeof(lscsa->gprs))
504 return -EFBIG;
505
506 ret = spu_acquire_saved(ctx);
507 if (ret)
508 return ret;
509
510 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
511 buffer, size);
512
513 spu_release_saved(ctx);
514 return size;
515 }
516
517 static const struct file_operations spufs_regs_fops = {
518 .open = spufs_regs_open,
519 .read = spufs_regs_read,
520 .write = spufs_regs_write,
521 .llseek = generic_file_llseek,
522 };
523
524 static ssize_t
spufs_fpcr_dump(struct spu_context * ctx,struct coredump_params * cprm)525 spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm)
526 {
527 return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr,
528 sizeof(ctx->csa.lscsa->fpcr));
529 }
530
531 static ssize_t
spufs_fpcr_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)532 spufs_fpcr_read(struct file *file, char __user * buffer,
533 size_t size, loff_t * pos)
534 {
535 int ret;
536 struct spu_context *ctx = file->private_data;
537
538 ret = spu_acquire_saved(ctx);
539 if (ret)
540 return ret;
541 ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr,
542 sizeof(ctx->csa.lscsa->fpcr));
543 spu_release_saved(ctx);
544 return ret;
545 }
546
547 static ssize_t
spufs_fpcr_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)548 spufs_fpcr_write(struct file *file, const char __user * buffer,
549 size_t size, loff_t * pos)
550 {
551 struct spu_context *ctx = file->private_data;
552 struct spu_lscsa *lscsa = ctx->csa.lscsa;
553 int ret;
554
555 if (*pos >= sizeof(lscsa->fpcr))
556 return -EFBIG;
557
558 ret = spu_acquire_saved(ctx);
559 if (ret)
560 return ret;
561
562 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
563 buffer, size);
564
565 spu_release_saved(ctx);
566 return size;
567 }
568
569 static const struct file_operations spufs_fpcr_fops = {
570 .open = spufs_regs_open,
571 .read = spufs_fpcr_read,
572 .write = spufs_fpcr_write,
573 .llseek = generic_file_llseek,
574 };
575
576 /* generic open function for all pipe-like files */
spufs_pipe_open(struct inode * inode,struct file * file)577 static int spufs_pipe_open(struct inode *inode, struct file *file)
578 {
579 struct spufs_inode_info *i = SPUFS_I(inode);
580 file->private_data = i->i_ctx;
581
582 return stream_open(inode, file);
583 }
584
585 /*
586 * Read as many bytes from the mailbox as possible, until
587 * one of the conditions becomes true:
588 *
589 * - no more data available in the mailbox
590 * - end of the user provided buffer
591 * - end of the mapped area
592 */
spufs_mbox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)593 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
594 size_t len, loff_t *pos)
595 {
596 struct spu_context *ctx = file->private_data;
597 u32 mbox_data, __user *udata = (void __user *)buf;
598 ssize_t count;
599
600 if (len < 4)
601 return -EINVAL;
602
603 count = spu_acquire(ctx);
604 if (count)
605 return count;
606
607 for (count = 0; (count + 4) <= len; count += 4, udata++) {
608 int ret;
609 ret = ctx->ops->mbox_read(ctx, &mbox_data);
610 if (ret == 0)
611 break;
612
613 /*
614 * at the end of the mapped area, we can fault
615 * but still need to return the data we have
616 * read successfully so far.
617 */
618 ret = put_user(mbox_data, udata);
619 if (ret) {
620 if (!count)
621 count = -EFAULT;
622 break;
623 }
624 }
625 spu_release(ctx);
626
627 if (!count)
628 count = -EAGAIN;
629
630 return count;
631 }
632
633 static const struct file_operations spufs_mbox_fops = {
634 .open = spufs_pipe_open,
635 .read = spufs_mbox_read,
636 };
637
spufs_mbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)638 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
639 size_t len, loff_t *pos)
640 {
641 struct spu_context *ctx = file->private_data;
642 ssize_t ret;
643 u32 mbox_stat;
644
645 if (len < 4)
646 return -EINVAL;
647
648 ret = spu_acquire(ctx);
649 if (ret)
650 return ret;
651
652 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
653
654 spu_release(ctx);
655
656 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
657 return -EFAULT;
658
659 return 4;
660 }
661
662 static const struct file_operations spufs_mbox_stat_fops = {
663 .open = spufs_pipe_open,
664 .read = spufs_mbox_stat_read,
665 };
666
667 /* low-level ibox access function */
spu_ibox_read(struct spu_context * ctx,u32 * data)668 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
669 {
670 return ctx->ops->ibox_read(ctx, data);
671 }
672
673 /* interrupt-level ibox callback function. */
spufs_ibox_callback(struct spu * spu)674 void spufs_ibox_callback(struct spu *spu)
675 {
676 struct spu_context *ctx = spu->ctx;
677
678 if (ctx)
679 wake_up_all(&ctx->ibox_wq);
680 }
681
682 /*
683 * Read as many bytes from the interrupt mailbox as possible, until
684 * one of the conditions becomes true:
685 *
686 * - no more data available in the mailbox
687 * - end of the user provided buffer
688 * - end of the mapped area
689 *
690 * If the file is opened without O_NONBLOCK, we wait here until
691 * any data is available, but return when we have been able to
692 * read something.
693 */
spufs_ibox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)694 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
695 size_t len, loff_t *pos)
696 {
697 struct spu_context *ctx = file->private_data;
698 u32 ibox_data, __user *udata = (void __user *)buf;
699 ssize_t count;
700
701 if (len < 4)
702 return -EINVAL;
703
704 count = spu_acquire(ctx);
705 if (count)
706 goto out;
707
708 /* wait only for the first element */
709 count = 0;
710 if (file->f_flags & O_NONBLOCK) {
711 if (!spu_ibox_read(ctx, &ibox_data)) {
712 count = -EAGAIN;
713 goto out_unlock;
714 }
715 } else {
716 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
717 if (count)
718 goto out;
719 }
720
721 /* if we can't write at all, return -EFAULT */
722 count = put_user(ibox_data, udata);
723 if (count)
724 goto out_unlock;
725
726 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
727 int ret;
728 ret = ctx->ops->ibox_read(ctx, &ibox_data);
729 if (ret == 0)
730 break;
731 /*
732 * at the end of the mapped area, we can fault
733 * but still need to return the data we have
734 * read successfully so far.
735 */
736 ret = put_user(ibox_data, udata);
737 if (ret)
738 break;
739 }
740
741 out_unlock:
742 spu_release(ctx);
743 out:
744 return count;
745 }
746
spufs_ibox_poll(struct file * file,poll_table * wait)747 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
748 {
749 struct spu_context *ctx = file->private_data;
750 __poll_t mask;
751
752 poll_wait(file, &ctx->ibox_wq, wait);
753
754 /*
755 * For now keep this uninterruptible and also ignore the rule
756 * that poll should not sleep. Will be fixed later.
757 */
758 mutex_lock(&ctx->state_mutex);
759 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
760 spu_release(ctx);
761
762 return mask;
763 }
764
765 static const struct file_operations spufs_ibox_fops = {
766 .open = spufs_pipe_open,
767 .read = spufs_ibox_read,
768 .poll = spufs_ibox_poll,
769 };
770
spufs_ibox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)771 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
772 size_t len, loff_t *pos)
773 {
774 struct spu_context *ctx = file->private_data;
775 ssize_t ret;
776 u32 ibox_stat;
777
778 if (len < 4)
779 return -EINVAL;
780
781 ret = spu_acquire(ctx);
782 if (ret)
783 return ret;
784 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
785 spu_release(ctx);
786
787 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
788 return -EFAULT;
789
790 return 4;
791 }
792
793 static const struct file_operations spufs_ibox_stat_fops = {
794 .open = spufs_pipe_open,
795 .read = spufs_ibox_stat_read,
796 };
797
798 /* low-level mailbox write */
spu_wbox_write(struct spu_context * ctx,u32 data)799 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
800 {
801 return ctx->ops->wbox_write(ctx, data);
802 }
803
804 /* interrupt-level wbox callback function. */
spufs_wbox_callback(struct spu * spu)805 void spufs_wbox_callback(struct spu *spu)
806 {
807 struct spu_context *ctx = spu->ctx;
808
809 if (ctx)
810 wake_up_all(&ctx->wbox_wq);
811 }
812
813 /*
814 * Write as many bytes to the interrupt mailbox as possible, until
815 * one of the conditions becomes true:
816 *
817 * - the mailbox is full
818 * - end of the user provided buffer
819 * - end of the mapped area
820 *
821 * If the file is opened without O_NONBLOCK, we wait here until
822 * space is available, but return when we have been able to
823 * write something.
824 */
spufs_wbox_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)825 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
826 size_t len, loff_t *pos)
827 {
828 struct spu_context *ctx = file->private_data;
829 u32 wbox_data, __user *udata = (void __user *)buf;
830 ssize_t count;
831
832 if (len < 4)
833 return -EINVAL;
834
835 if (get_user(wbox_data, udata))
836 return -EFAULT;
837
838 count = spu_acquire(ctx);
839 if (count)
840 goto out;
841
842 /*
843 * make sure we can at least write one element, by waiting
844 * in case of !O_NONBLOCK
845 */
846 count = 0;
847 if (file->f_flags & O_NONBLOCK) {
848 if (!spu_wbox_write(ctx, wbox_data)) {
849 count = -EAGAIN;
850 goto out_unlock;
851 }
852 } else {
853 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
854 if (count)
855 goto out;
856 }
857
858
859 /* write as much as possible */
860 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
861 int ret;
862 ret = get_user(wbox_data, udata);
863 if (ret)
864 break;
865
866 ret = spu_wbox_write(ctx, wbox_data);
867 if (ret == 0)
868 break;
869 }
870
871 out_unlock:
872 spu_release(ctx);
873 out:
874 return count;
875 }
876
spufs_wbox_poll(struct file * file,poll_table * wait)877 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
878 {
879 struct spu_context *ctx = file->private_data;
880 __poll_t mask;
881
882 poll_wait(file, &ctx->wbox_wq, wait);
883
884 /*
885 * For now keep this uninterruptible and also ignore the rule
886 * that poll should not sleep. Will be fixed later.
887 */
888 mutex_lock(&ctx->state_mutex);
889 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
890 spu_release(ctx);
891
892 return mask;
893 }
894
895 static const struct file_operations spufs_wbox_fops = {
896 .open = spufs_pipe_open,
897 .write = spufs_wbox_write,
898 .poll = spufs_wbox_poll,
899 };
900
spufs_wbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)901 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
902 size_t len, loff_t *pos)
903 {
904 struct spu_context *ctx = file->private_data;
905 ssize_t ret;
906 u32 wbox_stat;
907
908 if (len < 4)
909 return -EINVAL;
910
911 ret = spu_acquire(ctx);
912 if (ret)
913 return ret;
914 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
915 spu_release(ctx);
916
917 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
918 return -EFAULT;
919
920 return 4;
921 }
922
923 static const struct file_operations spufs_wbox_stat_fops = {
924 .open = spufs_pipe_open,
925 .read = spufs_wbox_stat_read,
926 };
927
spufs_signal1_open(struct inode * inode,struct file * file)928 static int spufs_signal1_open(struct inode *inode, struct file *file)
929 {
930 struct spufs_inode_info *i = SPUFS_I(inode);
931 struct spu_context *ctx = i->i_ctx;
932
933 mutex_lock(&ctx->mapping_lock);
934 file->private_data = ctx;
935 if (!i->i_openers++)
936 ctx->signal1 = inode->i_mapping;
937 mutex_unlock(&ctx->mapping_lock);
938 return nonseekable_open(inode, file);
939 }
940
941 static int
spufs_signal1_release(struct inode * inode,struct file * file)942 spufs_signal1_release(struct inode *inode, struct file *file)
943 {
944 struct spufs_inode_info *i = SPUFS_I(inode);
945 struct spu_context *ctx = i->i_ctx;
946
947 mutex_lock(&ctx->mapping_lock);
948 if (!--i->i_openers)
949 ctx->signal1 = NULL;
950 mutex_unlock(&ctx->mapping_lock);
951 return 0;
952 }
953
spufs_signal1_dump(struct spu_context * ctx,struct coredump_params * cprm)954 static ssize_t spufs_signal1_dump(struct spu_context *ctx,
955 struct coredump_params *cprm)
956 {
957 if (!ctx->csa.spu_chnlcnt_RW[3])
958 return 0;
959 return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3],
960 sizeof(ctx->csa.spu_chnldata_RW[3]));
961 }
962
__spufs_signal1_read(struct spu_context * ctx,char __user * buf,size_t len)963 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
964 size_t len)
965 {
966 if (len < sizeof(ctx->csa.spu_chnldata_RW[3]))
967 return -EINVAL;
968 if (!ctx->csa.spu_chnlcnt_RW[3])
969 return 0;
970 if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3],
971 sizeof(ctx->csa.spu_chnldata_RW[3])))
972 return -EFAULT;
973 return sizeof(ctx->csa.spu_chnldata_RW[3]);
974 }
975
spufs_signal1_read(struct file * file,char __user * buf,size_t len,loff_t * pos)976 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
977 size_t len, loff_t *pos)
978 {
979 int ret;
980 struct spu_context *ctx = file->private_data;
981
982 ret = spu_acquire_saved(ctx);
983 if (ret)
984 return ret;
985 ret = __spufs_signal1_read(ctx, buf, len);
986 spu_release_saved(ctx);
987
988 return ret;
989 }
990
spufs_signal1_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)991 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
992 size_t len, loff_t *pos)
993 {
994 struct spu_context *ctx;
995 ssize_t ret;
996 u32 data;
997
998 ctx = file->private_data;
999
1000 if (len < 4)
1001 return -EINVAL;
1002
1003 if (copy_from_user(&data, buf, 4))
1004 return -EFAULT;
1005
1006 ret = spu_acquire(ctx);
1007 if (ret)
1008 return ret;
1009 ctx->ops->signal1_write(ctx, data);
1010 spu_release(ctx);
1011
1012 return 4;
1013 }
1014
1015 static vm_fault_t
spufs_signal1_mmap_fault(struct vm_fault * vmf)1016 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1017 {
1018 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1019 return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1020 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1021 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1022 * signal 1 and 2 area
1023 */
1024 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1025 #else
1026 #error unsupported page size
1027 #endif
1028 }
1029
1030 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1031 .fault = spufs_signal1_mmap_fault,
1032 };
1033
spufs_signal1_mmap(struct file * file,struct vm_area_struct * vma)1034 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1035 {
1036 if (!(vma->vm_flags & VM_SHARED))
1037 return -EINVAL;
1038
1039 vm_flags_set(vma, VM_IO | VM_PFNMAP);
1040 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1041
1042 vma->vm_ops = &spufs_signal1_mmap_vmops;
1043 return 0;
1044 }
1045
1046 static const struct file_operations spufs_signal1_fops = {
1047 .open = spufs_signal1_open,
1048 .release = spufs_signal1_release,
1049 .read = spufs_signal1_read,
1050 .write = spufs_signal1_write,
1051 .mmap = spufs_signal1_mmap,
1052 };
1053
1054 static const struct file_operations spufs_signal1_nosched_fops = {
1055 .open = spufs_signal1_open,
1056 .release = spufs_signal1_release,
1057 .write = spufs_signal1_write,
1058 .mmap = spufs_signal1_mmap,
1059 };
1060
spufs_signal2_open(struct inode * inode,struct file * file)1061 static int spufs_signal2_open(struct inode *inode, struct file *file)
1062 {
1063 struct spufs_inode_info *i = SPUFS_I(inode);
1064 struct spu_context *ctx = i->i_ctx;
1065
1066 mutex_lock(&ctx->mapping_lock);
1067 file->private_data = ctx;
1068 if (!i->i_openers++)
1069 ctx->signal2 = inode->i_mapping;
1070 mutex_unlock(&ctx->mapping_lock);
1071 return nonseekable_open(inode, file);
1072 }
1073
1074 static int
spufs_signal2_release(struct inode * inode,struct file * file)1075 spufs_signal2_release(struct inode *inode, struct file *file)
1076 {
1077 struct spufs_inode_info *i = SPUFS_I(inode);
1078 struct spu_context *ctx = i->i_ctx;
1079
1080 mutex_lock(&ctx->mapping_lock);
1081 if (!--i->i_openers)
1082 ctx->signal2 = NULL;
1083 mutex_unlock(&ctx->mapping_lock);
1084 return 0;
1085 }
1086
spufs_signal2_dump(struct spu_context * ctx,struct coredump_params * cprm)1087 static ssize_t spufs_signal2_dump(struct spu_context *ctx,
1088 struct coredump_params *cprm)
1089 {
1090 if (!ctx->csa.spu_chnlcnt_RW[4])
1091 return 0;
1092 return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4],
1093 sizeof(ctx->csa.spu_chnldata_RW[4]));
1094 }
1095
__spufs_signal2_read(struct spu_context * ctx,char __user * buf,size_t len)1096 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1097 size_t len)
1098 {
1099 if (len < sizeof(ctx->csa.spu_chnldata_RW[4]))
1100 return -EINVAL;
1101 if (!ctx->csa.spu_chnlcnt_RW[4])
1102 return 0;
1103 if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4],
1104 sizeof(ctx->csa.spu_chnldata_RW[4])))
1105 return -EFAULT;
1106 return sizeof(ctx->csa.spu_chnldata_RW[4]);
1107 }
1108
spufs_signal2_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1109 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1110 size_t len, loff_t *pos)
1111 {
1112 struct spu_context *ctx = file->private_data;
1113 int ret;
1114
1115 ret = spu_acquire_saved(ctx);
1116 if (ret)
1117 return ret;
1118 ret = __spufs_signal2_read(ctx, buf, len);
1119 spu_release_saved(ctx);
1120
1121 return ret;
1122 }
1123
spufs_signal2_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)1124 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1125 size_t len, loff_t *pos)
1126 {
1127 struct spu_context *ctx;
1128 ssize_t ret;
1129 u32 data;
1130
1131 ctx = file->private_data;
1132
1133 if (len < 4)
1134 return -EINVAL;
1135
1136 if (copy_from_user(&data, buf, 4))
1137 return -EFAULT;
1138
1139 ret = spu_acquire(ctx);
1140 if (ret)
1141 return ret;
1142 ctx->ops->signal2_write(ctx, data);
1143 spu_release(ctx);
1144
1145 return 4;
1146 }
1147
1148 #if SPUFS_MMAP_4K
1149 static vm_fault_t
spufs_signal2_mmap_fault(struct vm_fault * vmf)1150 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1151 {
1152 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1153 return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1154 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1155 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1156 * signal 1 and 2 area
1157 */
1158 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1159 #else
1160 #error unsupported page size
1161 #endif
1162 }
1163
1164 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1165 .fault = spufs_signal2_mmap_fault,
1166 };
1167
spufs_signal2_mmap(struct file * file,struct vm_area_struct * vma)1168 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1169 {
1170 if (!(vma->vm_flags & VM_SHARED))
1171 return -EINVAL;
1172
1173 vm_flags_set(vma, VM_IO | VM_PFNMAP);
1174 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1175
1176 vma->vm_ops = &spufs_signal2_mmap_vmops;
1177 return 0;
1178 }
1179 #else /* SPUFS_MMAP_4K */
1180 #define spufs_signal2_mmap NULL
1181 #endif /* !SPUFS_MMAP_4K */
1182
1183 static const struct file_operations spufs_signal2_fops = {
1184 .open = spufs_signal2_open,
1185 .release = spufs_signal2_release,
1186 .read = spufs_signal2_read,
1187 .write = spufs_signal2_write,
1188 .mmap = spufs_signal2_mmap,
1189 };
1190
1191 static const struct file_operations spufs_signal2_nosched_fops = {
1192 .open = spufs_signal2_open,
1193 .release = spufs_signal2_release,
1194 .write = spufs_signal2_write,
1195 .mmap = spufs_signal2_mmap,
1196 };
1197
1198 /*
1199 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1200 * work of acquiring (or not) the SPU context before calling through
1201 * to the actual get routine. The set routine is called directly.
1202 */
1203 #define SPU_ATTR_NOACQUIRE 0
1204 #define SPU_ATTR_ACQUIRE 1
1205 #define SPU_ATTR_ACQUIRE_SAVED 2
1206
1207 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1208 static int __##__get(void *data, u64 *val) \
1209 { \
1210 struct spu_context *ctx = data; \
1211 int ret = 0; \
1212 \
1213 if (__acquire == SPU_ATTR_ACQUIRE) { \
1214 ret = spu_acquire(ctx); \
1215 if (ret) \
1216 return ret; \
1217 *val = __get(ctx); \
1218 spu_release(ctx); \
1219 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1220 ret = spu_acquire_saved(ctx); \
1221 if (ret) \
1222 return ret; \
1223 *val = __get(ctx); \
1224 spu_release_saved(ctx); \
1225 } else \
1226 *val = __get(ctx); \
1227 \
1228 return 0; \
1229 } \
1230 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1231
spufs_signal1_type_set(void * data,u64 val)1232 static int spufs_signal1_type_set(void *data, u64 val)
1233 {
1234 struct spu_context *ctx = data;
1235 int ret;
1236
1237 ret = spu_acquire(ctx);
1238 if (ret)
1239 return ret;
1240 ctx->ops->signal1_type_set(ctx, val);
1241 spu_release(ctx);
1242
1243 return 0;
1244 }
1245
spufs_signal1_type_get(struct spu_context * ctx)1246 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1247 {
1248 return ctx->ops->signal1_type_get(ctx);
1249 }
1250 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1251 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1252
1253
spufs_signal2_type_set(void * data,u64 val)1254 static int spufs_signal2_type_set(void *data, u64 val)
1255 {
1256 struct spu_context *ctx = data;
1257 int ret;
1258
1259 ret = spu_acquire(ctx);
1260 if (ret)
1261 return ret;
1262 ctx->ops->signal2_type_set(ctx, val);
1263 spu_release(ctx);
1264
1265 return 0;
1266 }
1267
spufs_signal2_type_get(struct spu_context * ctx)1268 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1269 {
1270 return ctx->ops->signal2_type_get(ctx);
1271 }
1272 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1273 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1274
1275 #if SPUFS_MMAP_4K
1276 static vm_fault_t
spufs_mss_mmap_fault(struct vm_fault * vmf)1277 spufs_mss_mmap_fault(struct vm_fault *vmf)
1278 {
1279 return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1280 }
1281
1282 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1283 .fault = spufs_mss_mmap_fault,
1284 };
1285
1286 /*
1287 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1288 */
spufs_mss_mmap(struct file * file,struct vm_area_struct * vma)1289 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1290 {
1291 if (!(vma->vm_flags & VM_SHARED))
1292 return -EINVAL;
1293
1294 vm_flags_set(vma, VM_IO | VM_PFNMAP);
1295 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1296
1297 vma->vm_ops = &spufs_mss_mmap_vmops;
1298 return 0;
1299 }
1300 #else /* SPUFS_MMAP_4K */
1301 #define spufs_mss_mmap NULL
1302 #endif /* !SPUFS_MMAP_4K */
1303
spufs_mss_open(struct inode * inode,struct file * file)1304 static int spufs_mss_open(struct inode *inode, struct file *file)
1305 {
1306 struct spufs_inode_info *i = SPUFS_I(inode);
1307 struct spu_context *ctx = i->i_ctx;
1308
1309 file->private_data = i->i_ctx;
1310
1311 mutex_lock(&ctx->mapping_lock);
1312 if (!i->i_openers++)
1313 ctx->mss = inode->i_mapping;
1314 mutex_unlock(&ctx->mapping_lock);
1315 return nonseekable_open(inode, file);
1316 }
1317
1318 static int
spufs_mss_release(struct inode * inode,struct file * file)1319 spufs_mss_release(struct inode *inode, struct file *file)
1320 {
1321 struct spufs_inode_info *i = SPUFS_I(inode);
1322 struct spu_context *ctx = i->i_ctx;
1323
1324 mutex_lock(&ctx->mapping_lock);
1325 if (!--i->i_openers)
1326 ctx->mss = NULL;
1327 mutex_unlock(&ctx->mapping_lock);
1328 return 0;
1329 }
1330
1331 static const struct file_operations spufs_mss_fops = {
1332 .open = spufs_mss_open,
1333 .release = spufs_mss_release,
1334 .mmap = spufs_mss_mmap,
1335 };
1336
1337 static vm_fault_t
spufs_psmap_mmap_fault(struct vm_fault * vmf)1338 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1339 {
1340 return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1341 }
1342
1343 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1344 .fault = spufs_psmap_mmap_fault,
1345 };
1346
1347 /*
1348 * mmap support for full problem state area [0x00000 - 0x1ffff].
1349 */
spufs_psmap_mmap(struct file * file,struct vm_area_struct * vma)1350 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1351 {
1352 if (!(vma->vm_flags & VM_SHARED))
1353 return -EINVAL;
1354
1355 vm_flags_set(vma, VM_IO | VM_PFNMAP);
1356 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1357
1358 vma->vm_ops = &spufs_psmap_mmap_vmops;
1359 return 0;
1360 }
1361
spufs_psmap_open(struct inode * inode,struct file * file)1362 static int spufs_psmap_open(struct inode *inode, struct file *file)
1363 {
1364 struct spufs_inode_info *i = SPUFS_I(inode);
1365 struct spu_context *ctx = i->i_ctx;
1366
1367 mutex_lock(&ctx->mapping_lock);
1368 file->private_data = i->i_ctx;
1369 if (!i->i_openers++)
1370 ctx->psmap = inode->i_mapping;
1371 mutex_unlock(&ctx->mapping_lock);
1372 return nonseekable_open(inode, file);
1373 }
1374
1375 static int
spufs_psmap_release(struct inode * inode,struct file * file)1376 spufs_psmap_release(struct inode *inode, struct file *file)
1377 {
1378 struct spufs_inode_info *i = SPUFS_I(inode);
1379 struct spu_context *ctx = i->i_ctx;
1380
1381 mutex_lock(&ctx->mapping_lock);
1382 if (!--i->i_openers)
1383 ctx->psmap = NULL;
1384 mutex_unlock(&ctx->mapping_lock);
1385 return 0;
1386 }
1387
1388 static const struct file_operations spufs_psmap_fops = {
1389 .open = spufs_psmap_open,
1390 .release = spufs_psmap_release,
1391 .mmap = spufs_psmap_mmap,
1392 };
1393
1394
1395 #if SPUFS_MMAP_4K
1396 static vm_fault_t
spufs_mfc_mmap_fault(struct vm_fault * vmf)1397 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1398 {
1399 return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1400 }
1401
1402 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1403 .fault = spufs_mfc_mmap_fault,
1404 };
1405
1406 /*
1407 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1408 */
spufs_mfc_mmap(struct file * file,struct vm_area_struct * vma)1409 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1410 {
1411 if (!(vma->vm_flags & VM_SHARED))
1412 return -EINVAL;
1413
1414 vm_flags_set(vma, VM_IO | VM_PFNMAP);
1415 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1416
1417 vma->vm_ops = &spufs_mfc_mmap_vmops;
1418 return 0;
1419 }
1420 #else /* SPUFS_MMAP_4K */
1421 #define spufs_mfc_mmap NULL
1422 #endif /* !SPUFS_MMAP_4K */
1423
spufs_mfc_open(struct inode * inode,struct file * file)1424 static int spufs_mfc_open(struct inode *inode, struct file *file)
1425 {
1426 struct spufs_inode_info *i = SPUFS_I(inode);
1427 struct spu_context *ctx = i->i_ctx;
1428
1429 /* we don't want to deal with DMA into other processes */
1430 if (ctx->owner != current->mm)
1431 return -EINVAL;
1432
1433 if (atomic_read(&inode->i_count) != 1)
1434 return -EBUSY;
1435
1436 mutex_lock(&ctx->mapping_lock);
1437 file->private_data = ctx;
1438 if (!i->i_openers++)
1439 ctx->mfc = inode->i_mapping;
1440 mutex_unlock(&ctx->mapping_lock);
1441 return nonseekable_open(inode, file);
1442 }
1443
1444 static int
spufs_mfc_release(struct inode * inode,struct file * file)1445 spufs_mfc_release(struct inode *inode, struct file *file)
1446 {
1447 struct spufs_inode_info *i = SPUFS_I(inode);
1448 struct spu_context *ctx = i->i_ctx;
1449
1450 mutex_lock(&ctx->mapping_lock);
1451 if (!--i->i_openers)
1452 ctx->mfc = NULL;
1453 mutex_unlock(&ctx->mapping_lock);
1454 return 0;
1455 }
1456
1457 /* interrupt-level mfc callback function. */
spufs_mfc_callback(struct spu * spu)1458 void spufs_mfc_callback(struct spu *spu)
1459 {
1460 struct spu_context *ctx = spu->ctx;
1461
1462 if (ctx)
1463 wake_up_all(&ctx->mfc_wq);
1464 }
1465
spufs_read_mfc_tagstatus(struct spu_context * ctx,u32 * status)1466 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1467 {
1468 /* See if there is one tag group is complete */
1469 /* FIXME we need locking around tagwait */
1470 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1471 ctx->tagwait &= ~*status;
1472 if (*status)
1473 return 1;
1474
1475 /* enable interrupt waiting for any tag group,
1476 may silently fail if interrupts are already enabled */
1477 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1478 return 0;
1479 }
1480
spufs_mfc_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)1481 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1482 size_t size, loff_t *pos)
1483 {
1484 struct spu_context *ctx = file->private_data;
1485 int ret = -EINVAL;
1486 u32 status;
1487
1488 if (size != 4)
1489 goto out;
1490
1491 ret = spu_acquire(ctx);
1492 if (ret)
1493 return ret;
1494
1495 ret = -EINVAL;
1496 if (file->f_flags & O_NONBLOCK) {
1497 status = ctx->ops->read_mfc_tagstatus(ctx);
1498 if (!(status & ctx->tagwait))
1499 ret = -EAGAIN;
1500 else
1501 /* XXX(hch): shouldn't we clear ret here? */
1502 ctx->tagwait &= ~status;
1503 } else {
1504 ret = spufs_wait(ctx->mfc_wq,
1505 spufs_read_mfc_tagstatus(ctx, &status));
1506 if (ret)
1507 goto out;
1508 }
1509 spu_release(ctx);
1510
1511 ret = 4;
1512 if (copy_to_user(buffer, &status, 4))
1513 ret = -EFAULT;
1514
1515 out:
1516 return ret;
1517 }
1518
spufs_check_valid_dma(struct mfc_dma_command * cmd)1519 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1520 {
1521 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1522 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1523
1524 switch (cmd->cmd) {
1525 case MFC_PUT_CMD:
1526 case MFC_PUTF_CMD:
1527 case MFC_PUTB_CMD:
1528 case MFC_GET_CMD:
1529 case MFC_GETF_CMD:
1530 case MFC_GETB_CMD:
1531 break;
1532 default:
1533 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1534 return -EIO;
1535 }
1536
1537 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1538 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1539 cmd->ea, cmd->lsa);
1540 return -EIO;
1541 }
1542
1543 switch (cmd->size & 0xf) {
1544 case 1:
1545 break;
1546 case 2:
1547 if (cmd->lsa & 1)
1548 goto error;
1549 break;
1550 case 4:
1551 if (cmd->lsa & 3)
1552 goto error;
1553 break;
1554 case 8:
1555 if (cmd->lsa & 7)
1556 goto error;
1557 break;
1558 case 0:
1559 if (cmd->lsa & 15)
1560 goto error;
1561 break;
1562 error:
1563 default:
1564 pr_debug("invalid DMA alignment %x for size %x\n",
1565 cmd->lsa & 0xf, cmd->size);
1566 return -EIO;
1567 }
1568
1569 if (cmd->size > 16 * 1024) {
1570 pr_debug("invalid DMA size %x\n", cmd->size);
1571 return -EIO;
1572 }
1573
1574 if (cmd->tag & 0xfff0) {
1575 /* we reserve the higher tag numbers for kernel use */
1576 pr_debug("invalid DMA tag\n");
1577 return -EIO;
1578 }
1579
1580 if (cmd->class) {
1581 /* not supported in this version */
1582 pr_debug("invalid DMA class\n");
1583 return -EIO;
1584 }
1585
1586 return 0;
1587 }
1588
spu_send_mfc_command(struct spu_context * ctx,struct mfc_dma_command cmd,int * error)1589 static int spu_send_mfc_command(struct spu_context *ctx,
1590 struct mfc_dma_command cmd,
1591 int *error)
1592 {
1593 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1594 if (*error == -EAGAIN) {
1595 /* wait for any tag group to complete
1596 so we have space for the new command */
1597 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1598 /* try again, because the queue might be
1599 empty again */
1600 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1601 if (*error == -EAGAIN)
1602 return 0;
1603 }
1604 return 1;
1605 }
1606
spufs_mfc_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)1607 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1608 size_t size, loff_t *pos)
1609 {
1610 struct spu_context *ctx = file->private_data;
1611 struct mfc_dma_command cmd;
1612 int ret = -EINVAL;
1613
1614 if (size != sizeof cmd)
1615 goto out;
1616
1617 ret = -EFAULT;
1618 if (copy_from_user(&cmd, buffer, sizeof cmd))
1619 goto out;
1620
1621 ret = spufs_check_valid_dma(&cmd);
1622 if (ret)
1623 goto out;
1624
1625 ret = spu_acquire(ctx);
1626 if (ret)
1627 goto out;
1628
1629 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1630 if (ret)
1631 goto out;
1632
1633 if (file->f_flags & O_NONBLOCK) {
1634 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1635 } else {
1636 int status;
1637 ret = spufs_wait(ctx->mfc_wq,
1638 spu_send_mfc_command(ctx, cmd, &status));
1639 if (ret)
1640 goto out;
1641 if (status)
1642 ret = status;
1643 }
1644
1645 if (ret)
1646 goto out_unlock;
1647
1648 ctx->tagwait |= 1 << cmd.tag;
1649 ret = size;
1650
1651 out_unlock:
1652 spu_release(ctx);
1653 out:
1654 return ret;
1655 }
1656
spufs_mfc_poll(struct file * file,poll_table * wait)1657 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1658 {
1659 struct spu_context *ctx = file->private_data;
1660 u32 free_elements, tagstatus;
1661 __poll_t mask;
1662
1663 poll_wait(file, &ctx->mfc_wq, wait);
1664
1665 /*
1666 * For now keep this uninterruptible and also ignore the rule
1667 * that poll should not sleep. Will be fixed later.
1668 */
1669 mutex_lock(&ctx->state_mutex);
1670 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1671 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1672 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1673 spu_release(ctx);
1674
1675 mask = 0;
1676 if (free_elements & 0xffff)
1677 mask |= EPOLLOUT | EPOLLWRNORM;
1678 if (tagstatus & ctx->tagwait)
1679 mask |= EPOLLIN | EPOLLRDNORM;
1680
1681 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1682 free_elements, tagstatus, ctx->tagwait);
1683
1684 return mask;
1685 }
1686
spufs_mfc_flush(struct file * file,fl_owner_t id)1687 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1688 {
1689 struct spu_context *ctx = file->private_data;
1690 int ret;
1691
1692 ret = spu_acquire(ctx);
1693 if (ret)
1694 return ret;
1695
1696 spu_release(ctx);
1697
1698 return 0;
1699 }
1700
spufs_mfc_fsync(struct file * file,loff_t start,loff_t end,int datasync)1701 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1702 {
1703 struct inode *inode = file_inode(file);
1704 int err = file_write_and_wait_range(file, start, end);
1705 if (!err) {
1706 inode_lock(inode);
1707 err = spufs_mfc_flush(file, NULL);
1708 inode_unlock(inode);
1709 }
1710 return err;
1711 }
1712
1713 static const struct file_operations spufs_mfc_fops = {
1714 .open = spufs_mfc_open,
1715 .release = spufs_mfc_release,
1716 .read = spufs_mfc_read,
1717 .write = spufs_mfc_write,
1718 .poll = spufs_mfc_poll,
1719 .flush = spufs_mfc_flush,
1720 .fsync = spufs_mfc_fsync,
1721 .mmap = spufs_mfc_mmap,
1722 };
1723
spufs_npc_set(void * data,u64 val)1724 static int spufs_npc_set(void *data, u64 val)
1725 {
1726 struct spu_context *ctx = data;
1727 int ret;
1728
1729 ret = spu_acquire(ctx);
1730 if (ret)
1731 return ret;
1732 ctx->ops->npc_write(ctx, val);
1733 spu_release(ctx);
1734
1735 return 0;
1736 }
1737
spufs_npc_get(struct spu_context * ctx)1738 static u64 spufs_npc_get(struct spu_context *ctx)
1739 {
1740 return ctx->ops->npc_read(ctx);
1741 }
1742 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1743 "0x%llx\n", SPU_ATTR_ACQUIRE);
1744
spufs_decr_set(void * data,u64 val)1745 static int spufs_decr_set(void *data, u64 val)
1746 {
1747 struct spu_context *ctx = data;
1748 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1749 int ret;
1750
1751 ret = spu_acquire_saved(ctx);
1752 if (ret)
1753 return ret;
1754 lscsa->decr.slot[0] = (u32) val;
1755 spu_release_saved(ctx);
1756
1757 return 0;
1758 }
1759
spufs_decr_get(struct spu_context * ctx)1760 static u64 spufs_decr_get(struct spu_context *ctx)
1761 {
1762 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1763 return lscsa->decr.slot[0];
1764 }
1765 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1766 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1767
spufs_decr_status_set(void * data,u64 val)1768 static int spufs_decr_status_set(void *data, u64 val)
1769 {
1770 struct spu_context *ctx = data;
1771 int ret;
1772
1773 ret = spu_acquire_saved(ctx);
1774 if (ret)
1775 return ret;
1776 if (val)
1777 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1778 else
1779 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1780 spu_release_saved(ctx);
1781
1782 return 0;
1783 }
1784
spufs_decr_status_get(struct spu_context * ctx)1785 static u64 spufs_decr_status_get(struct spu_context *ctx)
1786 {
1787 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1788 return SPU_DECR_STATUS_RUNNING;
1789 else
1790 return 0;
1791 }
1792 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1793 spufs_decr_status_set, "0x%llx\n",
1794 SPU_ATTR_ACQUIRE_SAVED);
1795
spufs_event_mask_set(void * data,u64 val)1796 static int spufs_event_mask_set(void *data, u64 val)
1797 {
1798 struct spu_context *ctx = data;
1799 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1800 int ret;
1801
1802 ret = spu_acquire_saved(ctx);
1803 if (ret)
1804 return ret;
1805 lscsa->event_mask.slot[0] = (u32) val;
1806 spu_release_saved(ctx);
1807
1808 return 0;
1809 }
1810
spufs_event_mask_get(struct spu_context * ctx)1811 static u64 spufs_event_mask_get(struct spu_context *ctx)
1812 {
1813 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1814 return lscsa->event_mask.slot[0];
1815 }
1816
1817 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1818 spufs_event_mask_set, "0x%llx\n",
1819 SPU_ATTR_ACQUIRE_SAVED);
1820
spufs_event_status_get(struct spu_context * ctx)1821 static u64 spufs_event_status_get(struct spu_context *ctx)
1822 {
1823 struct spu_state *state = &ctx->csa;
1824 u64 stat;
1825 stat = state->spu_chnlcnt_RW[0];
1826 if (stat)
1827 return state->spu_chnldata_RW[0];
1828 return 0;
1829 }
1830 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1831 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1832
spufs_srr0_set(void * data,u64 val)1833 static int spufs_srr0_set(void *data, u64 val)
1834 {
1835 struct spu_context *ctx = data;
1836 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1837 int ret;
1838
1839 ret = spu_acquire_saved(ctx);
1840 if (ret)
1841 return ret;
1842 lscsa->srr0.slot[0] = (u32) val;
1843 spu_release_saved(ctx);
1844
1845 return 0;
1846 }
1847
spufs_srr0_get(struct spu_context * ctx)1848 static u64 spufs_srr0_get(struct spu_context *ctx)
1849 {
1850 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1851 return lscsa->srr0.slot[0];
1852 }
1853 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1854 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1855
spufs_id_get(struct spu_context * ctx)1856 static u64 spufs_id_get(struct spu_context *ctx)
1857 {
1858 u64 num;
1859
1860 if (ctx->state == SPU_STATE_RUNNABLE)
1861 num = ctx->spu->number;
1862 else
1863 num = (unsigned int)-1;
1864
1865 return num;
1866 }
1867 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1868 SPU_ATTR_ACQUIRE)
1869
spufs_object_id_get(struct spu_context * ctx)1870 static u64 spufs_object_id_get(struct spu_context *ctx)
1871 {
1872 /* FIXME: Should there really be no locking here? */
1873 return ctx->object_id;
1874 }
1875
spufs_object_id_set(void * data,u64 id)1876 static int spufs_object_id_set(void *data, u64 id)
1877 {
1878 struct spu_context *ctx = data;
1879 ctx->object_id = id;
1880
1881 return 0;
1882 }
1883
1884 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1885 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1886
spufs_lslr_get(struct spu_context * ctx)1887 static u64 spufs_lslr_get(struct spu_context *ctx)
1888 {
1889 return ctx->csa.priv2.spu_lslr_RW;
1890 }
1891 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1892 SPU_ATTR_ACQUIRE_SAVED);
1893
spufs_info_open(struct inode * inode,struct file * file)1894 static int spufs_info_open(struct inode *inode, struct file *file)
1895 {
1896 struct spufs_inode_info *i = SPUFS_I(inode);
1897 struct spu_context *ctx = i->i_ctx;
1898 file->private_data = ctx;
1899 return 0;
1900 }
1901
spufs_caps_show(struct seq_file * s,void * private)1902 static int spufs_caps_show(struct seq_file *s, void *private)
1903 {
1904 struct spu_context *ctx = s->private;
1905
1906 if (!(ctx->flags & SPU_CREATE_NOSCHED))
1907 seq_puts(s, "sched\n");
1908 if (!(ctx->flags & SPU_CREATE_ISOLATE))
1909 seq_puts(s, "step\n");
1910 return 0;
1911 }
1912
spufs_caps_open(struct inode * inode,struct file * file)1913 static int spufs_caps_open(struct inode *inode, struct file *file)
1914 {
1915 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1916 }
1917
1918 static const struct file_operations spufs_caps_fops = {
1919 .open = spufs_caps_open,
1920 .read = seq_read,
1921 .llseek = seq_lseek,
1922 .release = single_release,
1923 };
1924
spufs_mbox_info_dump(struct spu_context * ctx,struct coredump_params * cprm)1925 static ssize_t spufs_mbox_info_dump(struct spu_context *ctx,
1926 struct coredump_params *cprm)
1927 {
1928 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1929 return 0;
1930 return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R,
1931 sizeof(ctx->csa.prob.pu_mb_R));
1932 }
1933
spufs_mbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1934 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1935 size_t len, loff_t *pos)
1936 {
1937 struct spu_context *ctx = file->private_data;
1938 u32 stat, data;
1939 int ret;
1940
1941 ret = spu_acquire_saved(ctx);
1942 if (ret)
1943 return ret;
1944 spin_lock(&ctx->csa.register_lock);
1945 stat = ctx->csa.prob.mb_stat_R;
1946 data = ctx->csa.prob.pu_mb_R;
1947 spin_unlock(&ctx->csa.register_lock);
1948 spu_release_saved(ctx);
1949
1950 /* EOF if there's no entry in the mbox */
1951 if (!(stat & 0x0000ff))
1952 return 0;
1953
1954 return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
1955 }
1956
1957 static const struct file_operations spufs_mbox_info_fops = {
1958 .open = spufs_info_open,
1959 .read = spufs_mbox_info_read,
1960 .llseek = generic_file_llseek,
1961 };
1962
spufs_ibox_info_dump(struct spu_context * ctx,struct coredump_params * cprm)1963 static ssize_t spufs_ibox_info_dump(struct spu_context *ctx,
1964 struct coredump_params *cprm)
1965 {
1966 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
1967 return 0;
1968 return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R,
1969 sizeof(ctx->csa.priv2.puint_mb_R));
1970 }
1971
spufs_ibox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1972 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1973 size_t len, loff_t *pos)
1974 {
1975 struct spu_context *ctx = file->private_data;
1976 u32 stat, data;
1977 int ret;
1978
1979 ret = spu_acquire_saved(ctx);
1980 if (ret)
1981 return ret;
1982 spin_lock(&ctx->csa.register_lock);
1983 stat = ctx->csa.prob.mb_stat_R;
1984 data = ctx->csa.priv2.puint_mb_R;
1985 spin_unlock(&ctx->csa.register_lock);
1986 spu_release_saved(ctx);
1987
1988 /* EOF if there's no entry in the ibox */
1989 if (!(stat & 0xff0000))
1990 return 0;
1991
1992 return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
1993 }
1994
1995 static const struct file_operations spufs_ibox_info_fops = {
1996 .open = spufs_info_open,
1997 .read = spufs_ibox_info_read,
1998 .llseek = generic_file_llseek,
1999 };
2000
spufs_wbox_info_cnt(struct spu_context * ctx)2001 static size_t spufs_wbox_info_cnt(struct spu_context *ctx)
2002 {
2003 return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32);
2004 }
2005
spufs_wbox_info_dump(struct spu_context * ctx,struct coredump_params * cprm)2006 static ssize_t spufs_wbox_info_dump(struct spu_context *ctx,
2007 struct coredump_params *cprm)
2008 {
2009 return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data,
2010 spufs_wbox_info_cnt(ctx));
2011 }
2012
spufs_wbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2013 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2014 size_t len, loff_t *pos)
2015 {
2016 struct spu_context *ctx = file->private_data;
2017 u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)];
2018 int ret, count;
2019
2020 ret = spu_acquire_saved(ctx);
2021 if (ret)
2022 return ret;
2023 spin_lock(&ctx->csa.register_lock);
2024 count = spufs_wbox_info_cnt(ctx);
2025 memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data));
2026 spin_unlock(&ctx->csa.register_lock);
2027 spu_release_saved(ctx);
2028
2029 return simple_read_from_buffer(buf, len, pos, &data,
2030 count * sizeof(u32));
2031 }
2032
2033 static const struct file_operations spufs_wbox_info_fops = {
2034 .open = spufs_info_open,
2035 .read = spufs_wbox_info_read,
2036 .llseek = generic_file_llseek,
2037 };
2038
spufs_get_dma_info(struct spu_context * ctx,struct spu_dma_info * info)2039 static void spufs_get_dma_info(struct spu_context *ctx,
2040 struct spu_dma_info *info)
2041 {
2042 int i;
2043
2044 info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2045 info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2046 info->dma_info_status = ctx->csa.spu_chnldata_RW[24];
2047 info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2048 info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2049 for (i = 0; i < 16; i++) {
2050 struct mfc_cq_sr *qp = &info->dma_info_command_data[i];
2051 struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i];
2052
2053 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2054 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2055 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2056 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2057 }
2058 }
2059
spufs_dma_info_dump(struct spu_context * ctx,struct coredump_params * cprm)2060 static ssize_t spufs_dma_info_dump(struct spu_context *ctx,
2061 struct coredump_params *cprm)
2062 {
2063 struct spu_dma_info info;
2064
2065 spufs_get_dma_info(ctx, &info);
2066 return spufs_dump_emit(cprm, &info, sizeof(info));
2067 }
2068
spufs_dma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2069 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2070 size_t len, loff_t *pos)
2071 {
2072 struct spu_context *ctx = file->private_data;
2073 struct spu_dma_info info;
2074 int ret;
2075
2076 ret = spu_acquire_saved(ctx);
2077 if (ret)
2078 return ret;
2079 spin_lock(&ctx->csa.register_lock);
2080 spufs_get_dma_info(ctx, &info);
2081 spin_unlock(&ctx->csa.register_lock);
2082 spu_release_saved(ctx);
2083
2084 return simple_read_from_buffer(buf, len, pos, &info,
2085 sizeof(info));
2086 }
2087
2088 static const struct file_operations spufs_dma_info_fops = {
2089 .open = spufs_info_open,
2090 .read = spufs_dma_info_read,
2091 };
2092
spufs_get_proxydma_info(struct spu_context * ctx,struct spu_proxydma_info * info)2093 static void spufs_get_proxydma_info(struct spu_context *ctx,
2094 struct spu_proxydma_info *info)
2095 {
2096 int i;
2097
2098 info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2099 info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2100 info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2101
2102 for (i = 0; i < 8; i++) {
2103 struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i];
2104 struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i];
2105
2106 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2107 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2108 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2109 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2110 }
2111 }
2112
spufs_proxydma_info_dump(struct spu_context * ctx,struct coredump_params * cprm)2113 static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx,
2114 struct coredump_params *cprm)
2115 {
2116 struct spu_proxydma_info info;
2117
2118 spufs_get_proxydma_info(ctx, &info);
2119 return spufs_dump_emit(cprm, &info, sizeof(info));
2120 }
2121
spufs_proxydma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2122 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2123 size_t len, loff_t *pos)
2124 {
2125 struct spu_context *ctx = file->private_data;
2126 struct spu_proxydma_info info;
2127 int ret;
2128
2129 if (len < sizeof(info))
2130 return -EINVAL;
2131
2132 ret = spu_acquire_saved(ctx);
2133 if (ret)
2134 return ret;
2135 spin_lock(&ctx->csa.register_lock);
2136 spufs_get_proxydma_info(ctx, &info);
2137 spin_unlock(&ctx->csa.register_lock);
2138 spu_release_saved(ctx);
2139
2140 return simple_read_from_buffer(buf, len, pos, &info,
2141 sizeof(info));
2142 }
2143
2144 static const struct file_operations spufs_proxydma_info_fops = {
2145 .open = spufs_info_open,
2146 .read = spufs_proxydma_info_read,
2147 };
2148
spufs_show_tid(struct seq_file * s,void * private)2149 static int spufs_show_tid(struct seq_file *s, void *private)
2150 {
2151 struct spu_context *ctx = s->private;
2152
2153 seq_printf(s, "%d\n", ctx->tid);
2154 return 0;
2155 }
2156
spufs_tid_open(struct inode * inode,struct file * file)2157 static int spufs_tid_open(struct inode *inode, struct file *file)
2158 {
2159 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2160 }
2161
2162 static const struct file_operations spufs_tid_fops = {
2163 .open = spufs_tid_open,
2164 .read = seq_read,
2165 .llseek = seq_lseek,
2166 .release = single_release,
2167 };
2168
2169 static const char *ctx_state_names[] = {
2170 "user", "system", "iowait", "loaded"
2171 };
2172
spufs_acct_time(struct spu_context * ctx,enum spu_utilization_state state)2173 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2174 enum spu_utilization_state state)
2175 {
2176 unsigned long long time = ctx->stats.times[state];
2177
2178 /*
2179 * In general, utilization statistics are updated by the controlling
2180 * thread as the spu context moves through various well defined
2181 * state transitions, but if the context is lazily loaded its
2182 * utilization statistics are not updated as the controlling thread
2183 * is not tightly coupled with the execution of the spu context. We
2184 * calculate and apply the time delta from the last recorded state
2185 * of the spu context.
2186 */
2187 if (ctx->spu && ctx->stats.util_state == state) {
2188 time += ktime_get_ns() - ctx->stats.tstamp;
2189 }
2190
2191 return time / NSEC_PER_MSEC;
2192 }
2193
spufs_slb_flts(struct spu_context * ctx)2194 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2195 {
2196 unsigned long long slb_flts = ctx->stats.slb_flt;
2197
2198 if (ctx->state == SPU_STATE_RUNNABLE) {
2199 slb_flts += (ctx->spu->stats.slb_flt -
2200 ctx->stats.slb_flt_base);
2201 }
2202
2203 return slb_flts;
2204 }
2205
spufs_class2_intrs(struct spu_context * ctx)2206 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2207 {
2208 unsigned long long class2_intrs = ctx->stats.class2_intr;
2209
2210 if (ctx->state == SPU_STATE_RUNNABLE) {
2211 class2_intrs += (ctx->spu->stats.class2_intr -
2212 ctx->stats.class2_intr_base);
2213 }
2214
2215 return class2_intrs;
2216 }
2217
2218
spufs_show_stat(struct seq_file * s,void * private)2219 static int spufs_show_stat(struct seq_file *s, void *private)
2220 {
2221 struct spu_context *ctx = s->private;
2222 int ret;
2223
2224 ret = spu_acquire(ctx);
2225 if (ret)
2226 return ret;
2227
2228 seq_printf(s, "%s %llu %llu %llu %llu "
2229 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2230 ctx_state_names[ctx->stats.util_state],
2231 spufs_acct_time(ctx, SPU_UTIL_USER),
2232 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2233 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2234 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2235 ctx->stats.vol_ctx_switch,
2236 ctx->stats.invol_ctx_switch,
2237 spufs_slb_flts(ctx),
2238 ctx->stats.hash_flt,
2239 ctx->stats.min_flt,
2240 ctx->stats.maj_flt,
2241 spufs_class2_intrs(ctx),
2242 ctx->stats.libassist);
2243 spu_release(ctx);
2244 return 0;
2245 }
2246
spufs_stat_open(struct inode * inode,struct file * file)2247 static int spufs_stat_open(struct inode *inode, struct file *file)
2248 {
2249 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2250 }
2251
2252 static const struct file_operations spufs_stat_fops = {
2253 .open = spufs_stat_open,
2254 .read = seq_read,
2255 .llseek = seq_lseek,
2256 .release = single_release,
2257 };
2258
spufs_switch_log_used(struct spu_context * ctx)2259 static inline int spufs_switch_log_used(struct spu_context *ctx)
2260 {
2261 return (ctx->switch_log->head - ctx->switch_log->tail) %
2262 SWITCH_LOG_BUFSIZE;
2263 }
2264
spufs_switch_log_avail(struct spu_context * ctx)2265 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2266 {
2267 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2268 }
2269
spufs_switch_log_open(struct inode * inode,struct file * file)2270 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2271 {
2272 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2273 int rc;
2274
2275 rc = spu_acquire(ctx);
2276 if (rc)
2277 return rc;
2278
2279 if (ctx->switch_log) {
2280 rc = -EBUSY;
2281 goto out;
2282 }
2283
2284 ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2285 SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2286
2287 if (!ctx->switch_log) {
2288 rc = -ENOMEM;
2289 goto out;
2290 }
2291
2292 ctx->switch_log->head = ctx->switch_log->tail = 0;
2293 init_waitqueue_head(&ctx->switch_log->wait);
2294 rc = 0;
2295
2296 out:
2297 spu_release(ctx);
2298 return rc;
2299 }
2300
spufs_switch_log_release(struct inode * inode,struct file * file)2301 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2302 {
2303 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2304 int rc;
2305
2306 rc = spu_acquire(ctx);
2307 if (rc)
2308 return rc;
2309
2310 kfree(ctx->switch_log);
2311 ctx->switch_log = NULL;
2312 spu_release(ctx);
2313
2314 return 0;
2315 }
2316
switch_log_sprint(struct spu_context * ctx,char * tbuf,int n)2317 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2318 {
2319 struct switch_log_entry *p;
2320
2321 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2322
2323 return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2324 (unsigned long long) p->tstamp.tv_sec,
2325 (unsigned int) p->tstamp.tv_nsec,
2326 p->spu_id,
2327 (unsigned int) p->type,
2328 (unsigned int) p->val,
2329 (unsigned long long) p->timebase);
2330 }
2331
spufs_switch_log_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2332 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2333 size_t len, loff_t *ppos)
2334 {
2335 struct inode *inode = file_inode(file);
2336 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2337 int error = 0, cnt = 0;
2338
2339 if (!buf)
2340 return -EINVAL;
2341
2342 error = spu_acquire(ctx);
2343 if (error)
2344 return error;
2345
2346 while (cnt < len) {
2347 char tbuf[128];
2348 int width;
2349
2350 if (spufs_switch_log_used(ctx) == 0) {
2351 if (cnt > 0) {
2352 /* If there's data ready to go, we can
2353 * just return straight away */
2354 break;
2355
2356 } else if (file->f_flags & O_NONBLOCK) {
2357 error = -EAGAIN;
2358 break;
2359
2360 } else {
2361 /* spufs_wait will drop the mutex and
2362 * re-acquire, but since we're in read(), the
2363 * file cannot be _released (and so
2364 * ctx->switch_log is stable).
2365 */
2366 error = spufs_wait(ctx->switch_log->wait,
2367 spufs_switch_log_used(ctx) > 0);
2368
2369 /* On error, spufs_wait returns without the
2370 * state mutex held */
2371 if (error)
2372 return error;
2373
2374 /* We may have had entries read from underneath
2375 * us while we dropped the mutex in spufs_wait,
2376 * so re-check */
2377 if (spufs_switch_log_used(ctx) == 0)
2378 continue;
2379 }
2380 }
2381
2382 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2383 if (width < len)
2384 ctx->switch_log->tail =
2385 (ctx->switch_log->tail + 1) %
2386 SWITCH_LOG_BUFSIZE;
2387 else
2388 /* If the record is greater than space available return
2389 * partial buffer (so far) */
2390 break;
2391
2392 error = copy_to_user(buf + cnt, tbuf, width);
2393 if (error)
2394 break;
2395 cnt += width;
2396 }
2397
2398 spu_release(ctx);
2399
2400 return cnt == 0 ? error : cnt;
2401 }
2402
spufs_switch_log_poll(struct file * file,poll_table * wait)2403 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2404 {
2405 struct inode *inode = file_inode(file);
2406 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2407 __poll_t mask = 0;
2408 int rc;
2409
2410 poll_wait(file, &ctx->switch_log->wait, wait);
2411
2412 rc = spu_acquire(ctx);
2413 if (rc)
2414 return rc;
2415
2416 if (spufs_switch_log_used(ctx) > 0)
2417 mask |= EPOLLIN;
2418
2419 spu_release(ctx);
2420
2421 return mask;
2422 }
2423
2424 static const struct file_operations spufs_switch_log_fops = {
2425 .open = spufs_switch_log_open,
2426 .read = spufs_switch_log_read,
2427 .poll = spufs_switch_log_poll,
2428 .release = spufs_switch_log_release,
2429 };
2430
2431 /**
2432 * Log a context switch event to a switch log reader.
2433 *
2434 * Must be called with ctx->state_mutex held.
2435 */
spu_switch_log_notify(struct spu * spu,struct spu_context * ctx,u32 type,u32 val)2436 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2437 u32 type, u32 val)
2438 {
2439 if (!ctx->switch_log)
2440 return;
2441
2442 if (spufs_switch_log_avail(ctx) > 1) {
2443 struct switch_log_entry *p;
2444
2445 p = ctx->switch_log->log + ctx->switch_log->head;
2446 ktime_get_ts64(&p->tstamp);
2447 p->timebase = get_tb();
2448 p->spu_id = spu ? spu->number : -1;
2449 p->type = type;
2450 p->val = val;
2451
2452 ctx->switch_log->head =
2453 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2454 }
2455
2456 wake_up(&ctx->switch_log->wait);
2457 }
2458
spufs_show_ctx(struct seq_file * s,void * private)2459 static int spufs_show_ctx(struct seq_file *s, void *private)
2460 {
2461 struct spu_context *ctx = s->private;
2462 u64 mfc_control_RW;
2463
2464 mutex_lock(&ctx->state_mutex);
2465 if (ctx->spu) {
2466 struct spu *spu = ctx->spu;
2467 struct spu_priv2 __iomem *priv2 = spu->priv2;
2468
2469 spin_lock_irq(&spu->register_lock);
2470 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2471 spin_unlock_irq(&spu->register_lock);
2472 } else {
2473 struct spu_state *csa = &ctx->csa;
2474
2475 mfc_control_RW = csa->priv2.mfc_control_RW;
2476 }
2477
2478 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2479 " %c %llx %llx %llx %llx %x %x\n",
2480 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2481 ctx->flags,
2482 ctx->sched_flags,
2483 ctx->prio,
2484 ctx->time_slice,
2485 ctx->spu ? ctx->spu->number : -1,
2486 !list_empty(&ctx->rq) ? 'q' : ' ',
2487 ctx->csa.class_0_pending,
2488 ctx->csa.class_0_dar,
2489 ctx->csa.class_1_dsisr,
2490 mfc_control_RW,
2491 ctx->ops->runcntl_read(ctx),
2492 ctx->ops->status_read(ctx));
2493
2494 mutex_unlock(&ctx->state_mutex);
2495
2496 return 0;
2497 }
2498
spufs_ctx_open(struct inode * inode,struct file * file)2499 static int spufs_ctx_open(struct inode *inode, struct file *file)
2500 {
2501 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2502 }
2503
2504 static const struct file_operations spufs_ctx_fops = {
2505 .open = spufs_ctx_open,
2506 .read = seq_read,
2507 .llseek = seq_lseek,
2508 .release = single_release,
2509 };
2510
2511 const struct spufs_tree_descr spufs_dir_contents[] = {
2512 { "capabilities", &spufs_caps_fops, 0444, },
2513 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2514 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2515 { "mbox", &spufs_mbox_fops, 0444, },
2516 { "ibox", &spufs_ibox_fops, 0444, },
2517 { "wbox", &spufs_wbox_fops, 0222, },
2518 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2519 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2520 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2521 { "signal1", &spufs_signal1_fops, 0666, },
2522 { "signal2", &spufs_signal2_fops, 0666, },
2523 { "signal1_type", &spufs_signal1_type, 0666, },
2524 { "signal2_type", &spufs_signal2_type, 0666, },
2525 { "cntl", &spufs_cntl_fops, 0666, },
2526 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2527 { "lslr", &spufs_lslr_ops, 0444, },
2528 { "mfc", &spufs_mfc_fops, 0666, },
2529 { "mss", &spufs_mss_fops, 0666, },
2530 { "npc", &spufs_npc_ops, 0666, },
2531 { "srr0", &spufs_srr0_ops, 0666, },
2532 { "decr", &spufs_decr_ops, 0666, },
2533 { "decr_status", &spufs_decr_status_ops, 0666, },
2534 { "event_mask", &spufs_event_mask_ops, 0666, },
2535 { "event_status", &spufs_event_status_ops, 0444, },
2536 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2537 { "phys-id", &spufs_id_ops, 0666, },
2538 { "object-id", &spufs_object_id_ops, 0666, },
2539 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2540 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2541 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2542 { "dma_info", &spufs_dma_info_fops, 0444,
2543 sizeof(struct spu_dma_info), },
2544 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2545 sizeof(struct spu_proxydma_info)},
2546 { "tid", &spufs_tid_fops, 0444, },
2547 { "stat", &spufs_stat_fops, 0444, },
2548 { "switch_log", &spufs_switch_log_fops, 0444 },
2549 {},
2550 };
2551
2552 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2553 { "capabilities", &spufs_caps_fops, 0444, },
2554 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2555 { "mbox", &spufs_mbox_fops, 0444, },
2556 { "ibox", &spufs_ibox_fops, 0444, },
2557 { "wbox", &spufs_wbox_fops, 0222, },
2558 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2559 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2560 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2561 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2562 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2563 { "signal1_type", &spufs_signal1_type, 0666, },
2564 { "signal2_type", &spufs_signal2_type, 0666, },
2565 { "mss", &spufs_mss_fops, 0666, },
2566 { "mfc", &spufs_mfc_fops, 0666, },
2567 { "cntl", &spufs_cntl_fops, 0666, },
2568 { "npc", &spufs_npc_ops, 0666, },
2569 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2570 { "phys-id", &spufs_id_ops, 0666, },
2571 { "object-id", &spufs_object_id_ops, 0666, },
2572 { "tid", &spufs_tid_fops, 0444, },
2573 { "stat", &spufs_stat_fops, 0444, },
2574 {},
2575 };
2576
2577 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2578 { ".ctx", &spufs_ctx_fops, 0444, },
2579 {},
2580 };
2581
2582 const struct spufs_coredump_reader spufs_coredump_read[] = {
2583 { "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])},
2584 { "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) },
2585 { "lslr", NULL, spufs_lslr_get, 19 },
2586 { "decr", NULL, spufs_decr_get, 19 },
2587 { "decr_status", NULL, spufs_decr_status_get, 19 },
2588 { "mem", spufs_mem_dump, NULL, LS_SIZE, },
2589 { "signal1", spufs_signal1_dump, NULL, sizeof(u32) },
2590 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2591 { "signal2", spufs_signal2_dump, NULL, sizeof(u32) },
2592 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2593 { "event_mask", NULL, spufs_event_mask_get, 19 },
2594 { "event_status", NULL, spufs_event_status_get, 19 },
2595 { "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) },
2596 { "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) },
2597 { "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)},
2598 { "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)},
2599 { "proxydma_info", spufs_proxydma_info_dump,
2600 NULL, sizeof(struct spu_proxydma_info)},
2601 { "object-id", NULL, spufs_object_id_get, 19 },
2602 { "npc", NULL, spufs_npc_get, 19 },
2603 { NULL },
2604 };
2605