1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SPU file system -- file contents 4 * 5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 6 * 7 * Author: Arnd Bergmann <arndb@de.ibm.com> 8 */ 9 10 #undef DEBUG 11 12 #include <linux/coredump.h> 13 #include <linux/fs.h> 14 #include <linux/ioctl.h> 15 #include <linux/export.h> 16 #include <linux/pagemap.h> 17 #include <linux/poll.h> 18 #include <linux/ptrace.h> 19 #include <linux/seq_file.h> 20 #include <linux/slab.h> 21 22 #include <asm/io.h> 23 #include <asm/time.h> 24 #include <asm/spu.h> 25 #include <asm/spu_info.h> 26 #include <linux/uaccess.h> 27 28 #include "spufs.h" 29 #include "sputrace.h" 30 31 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) 32 33 /* Simple attribute files */ 34 struct spufs_attr { 35 int (*get)(void *, u64 *); 36 int (*set)(void *, u64); 37 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 38 char set_buf[24]; 39 void *data; 40 const char *fmt; /* format for read operation */ 41 struct mutex mutex; /* protects access to these buffers */ 42 }; 43 44 static int spufs_attr_open(struct inode *inode, struct file *file, 45 int (*get)(void *, u64 *), int (*set)(void *, u64), 46 const char *fmt) 47 { 48 struct spufs_attr *attr; 49 50 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 51 if (!attr) 52 return -ENOMEM; 53 54 attr->get = get; 55 attr->set = set; 56 attr->data = inode->i_private; 57 attr->fmt = fmt; 58 mutex_init(&attr->mutex); 59 file->private_data = attr; 60 61 return nonseekable_open(inode, file); 62 } 63 64 static int spufs_attr_release(struct inode *inode, struct file *file) 65 { 66 kfree(file->private_data); 67 return 0; 68 } 69 70 static ssize_t spufs_attr_read(struct file *file, char __user *buf, 71 size_t len, loff_t *ppos) 72 { 73 struct spufs_attr *attr; 74 size_t size; 75 ssize_t ret; 76 77 attr = file->private_data; 78 if (!attr->get) 79 return -EACCES; 80 81 ret = mutex_lock_interruptible(&attr->mutex); 82 if (ret) 83 return ret; 84 85 if (*ppos) { /* continued read */ 86 size = strlen(attr->get_buf); 87 } else { /* first read */ 88 u64 val; 89 ret = attr->get(attr->data, &val); 90 if (ret) 91 goto out; 92 93 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 94 attr->fmt, (unsigned long long)val); 95 } 96 97 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 98 out: 99 mutex_unlock(&attr->mutex); 100 return ret; 101 } 102 103 static ssize_t spufs_attr_write(struct file *file, const char __user *buf, 104 size_t len, loff_t *ppos) 105 { 106 struct spufs_attr *attr; 107 u64 val; 108 size_t size; 109 ssize_t ret; 110 111 attr = file->private_data; 112 if (!attr->set) 113 return -EACCES; 114 115 ret = mutex_lock_interruptible(&attr->mutex); 116 if (ret) 117 return ret; 118 119 ret = -EFAULT; 120 size = min(sizeof(attr->set_buf) - 1, len); 121 if (copy_from_user(attr->set_buf, buf, size)) 122 goto out; 123 124 ret = len; /* claim we got the whole input */ 125 attr->set_buf[size] = '\0'; 126 val = simple_strtol(attr->set_buf, NULL, 0); 127 attr->set(attr->data, val); 128 out: 129 mutex_unlock(&attr->mutex); 130 return ret; 131 } 132 133 static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf, 134 size_t size) 135 { 136 if (!dump_emit(cprm, buf, size)) 137 return -EIO; 138 return size; 139 } 140 141 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 142 static int __fops ## _open(struct inode *inode, struct file *file) \ 143 { \ 144 __simple_attr_check_format(__fmt, 0ull); \ 145 return spufs_attr_open(inode, file, __get, __set, __fmt); \ 146 } \ 147 static const struct file_operations __fops = { \ 148 .open = __fops ## _open, \ 149 .release = spufs_attr_release, \ 150 .read = spufs_attr_read, \ 151 .write = spufs_attr_write, \ 152 .llseek = generic_file_llseek, \ 153 }; 154 155 156 static int 157 spufs_mem_open(struct inode *inode, struct file *file) 158 { 159 struct spufs_inode_info *i = SPUFS_I(inode); 160 struct spu_context *ctx = i->i_ctx; 161 162 mutex_lock(&ctx->mapping_lock); 163 file->private_data = ctx; 164 if (!i->i_openers++) 165 ctx->local_store = inode->i_mapping; 166 mutex_unlock(&ctx->mapping_lock); 167 return 0; 168 } 169 170 static int 171 spufs_mem_release(struct inode *inode, struct file *file) 172 { 173 struct spufs_inode_info *i = SPUFS_I(inode); 174 struct spu_context *ctx = i->i_ctx; 175 176 mutex_lock(&ctx->mapping_lock); 177 if (!--i->i_openers) 178 ctx->local_store = NULL; 179 mutex_unlock(&ctx->mapping_lock); 180 return 0; 181 } 182 183 static ssize_t 184 spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm) 185 { 186 return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE); 187 } 188 189 static ssize_t 190 spufs_mem_read(struct file *file, char __user *buffer, 191 size_t size, loff_t *pos) 192 { 193 struct spu_context *ctx = file->private_data; 194 ssize_t ret; 195 196 ret = spu_acquire(ctx); 197 if (ret) 198 return ret; 199 ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx), 200 LS_SIZE); 201 spu_release(ctx); 202 203 return ret; 204 } 205 206 static ssize_t 207 spufs_mem_write(struct file *file, const char __user *buffer, 208 size_t size, loff_t *ppos) 209 { 210 struct spu_context *ctx = file->private_data; 211 char *local_store; 212 loff_t pos = *ppos; 213 int ret; 214 215 if (pos > LS_SIZE) 216 return -EFBIG; 217 218 ret = spu_acquire(ctx); 219 if (ret) 220 return ret; 221 222 local_store = ctx->ops->get_ls(ctx); 223 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size); 224 spu_release(ctx); 225 226 return size; 227 } 228 229 static vm_fault_t 230 spufs_mem_mmap_fault(struct vm_fault *vmf) 231 { 232 struct vm_area_struct *vma = vmf->vma; 233 struct spu_context *ctx = vma->vm_file->private_data; 234 unsigned long pfn, offset; 235 vm_fault_t ret; 236 237 offset = vmf->pgoff << PAGE_SHIFT; 238 if (offset >= LS_SIZE) 239 return VM_FAULT_SIGBUS; 240 241 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n", 242 vmf->address, offset); 243 244 if (spu_acquire(ctx)) 245 return VM_FAULT_NOPAGE; 246 247 if (ctx->state == SPU_STATE_SAVED) { 248 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot); 249 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset); 250 } else { 251 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 252 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT; 253 } 254 ret = vmf_insert_pfn(vma, vmf->address, pfn); 255 256 spu_release(ctx); 257 258 return ret; 259 } 260 261 static int spufs_mem_mmap_access(struct vm_area_struct *vma, 262 unsigned long address, 263 void *buf, int len, int write) 264 { 265 struct spu_context *ctx = vma->vm_file->private_data; 266 unsigned long offset = address - vma->vm_start; 267 char *local_store; 268 269 if (write && !(vma->vm_flags & VM_WRITE)) 270 return -EACCES; 271 if (spu_acquire(ctx)) 272 return -EINTR; 273 if ((offset + len) > vma->vm_end) 274 len = vma->vm_end - offset; 275 local_store = ctx->ops->get_ls(ctx); 276 if (write) 277 memcpy_toio(local_store + offset, buf, len); 278 else 279 memcpy_fromio(buf, local_store + offset, len); 280 spu_release(ctx); 281 return len; 282 } 283 284 static const struct vm_operations_struct spufs_mem_mmap_vmops = { 285 .fault = spufs_mem_mmap_fault, 286 .access = spufs_mem_mmap_access, 287 }; 288 289 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) 290 { 291 if (!(vma->vm_flags & VM_SHARED)) 292 return -EINVAL; 293 294 vm_flags_set(vma, VM_IO | VM_PFNMAP); 295 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 296 297 vma->vm_ops = &spufs_mem_mmap_vmops; 298 return 0; 299 } 300 301 static const struct file_operations spufs_mem_fops = { 302 .open = spufs_mem_open, 303 .release = spufs_mem_release, 304 .read = spufs_mem_read, 305 .write = spufs_mem_write, 306 .llseek = generic_file_llseek, 307 .mmap = spufs_mem_mmap, 308 }; 309 310 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf, 311 unsigned long ps_offs, 312 unsigned long ps_size) 313 { 314 struct spu_context *ctx = vmf->vma->vm_file->private_data; 315 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT; 316 int err = 0; 317 vm_fault_t ret = VM_FAULT_NOPAGE; 318 319 spu_context_nospu_trace(spufs_ps_fault__enter, ctx); 320 321 if (offset >= ps_size) 322 return VM_FAULT_SIGBUS; 323 324 if (fatal_signal_pending(current)) 325 return VM_FAULT_SIGBUS; 326 327 /* 328 * Because we release the mmap_lock, the context may be destroyed while 329 * we're in spu_wait. Grab an extra reference so it isn't destroyed 330 * in the meantime. 331 */ 332 get_spu_context(ctx); 333 334 /* 335 * We have to wait for context to be loaded before we have 336 * pages to hand out to the user, but we don't want to wait 337 * with the mmap_lock held. 338 * It is possible to drop the mmap_lock here, but then we need 339 * to return VM_FAULT_NOPAGE because the mappings may have 340 * hanged. 341 */ 342 if (spu_acquire(ctx)) 343 goto refault; 344 345 if (ctx->state == SPU_STATE_SAVED) { 346 mmap_read_unlock(current->mm); 347 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx); 348 err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 349 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu); 350 mmap_read_lock(current->mm); 351 } else { 352 area = ctx->spu->problem_phys + ps_offs; 353 ret = vmf_insert_pfn(vmf->vma, vmf->address, 354 (area + offset) >> PAGE_SHIFT); 355 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu); 356 } 357 358 if (!err) 359 spu_release(ctx); 360 361 refault: 362 put_spu_context(ctx); 363 return ret; 364 } 365 366 #if SPUFS_MMAP_4K 367 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf) 368 { 369 return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE); 370 } 371 372 static const struct vm_operations_struct spufs_cntl_mmap_vmops = { 373 .fault = spufs_cntl_mmap_fault, 374 }; 375 376 /* 377 * mmap support for problem state control area [0x4000 - 0x4fff]. 378 */ 379 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) 380 { 381 if (!(vma->vm_flags & VM_SHARED)) 382 return -EINVAL; 383 384 vm_flags_set(vma, VM_IO | VM_PFNMAP); 385 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 386 387 vma->vm_ops = &spufs_cntl_mmap_vmops; 388 return 0; 389 } 390 #else /* SPUFS_MMAP_4K */ 391 #define spufs_cntl_mmap NULL 392 #endif /* !SPUFS_MMAP_4K */ 393 394 static int spufs_cntl_get(void *data, u64 *val) 395 { 396 struct spu_context *ctx = data; 397 int ret; 398 399 ret = spu_acquire(ctx); 400 if (ret) 401 return ret; 402 *val = ctx->ops->status_read(ctx); 403 spu_release(ctx); 404 405 return 0; 406 } 407 408 static int spufs_cntl_set(void *data, u64 val) 409 { 410 struct spu_context *ctx = data; 411 int ret; 412 413 ret = spu_acquire(ctx); 414 if (ret) 415 return ret; 416 ctx->ops->runcntl_write(ctx, val); 417 spu_release(ctx); 418 419 return 0; 420 } 421 422 static int spufs_cntl_open(struct inode *inode, struct file *file) 423 { 424 struct spufs_inode_info *i = SPUFS_I(inode); 425 struct spu_context *ctx = i->i_ctx; 426 427 mutex_lock(&ctx->mapping_lock); 428 file->private_data = ctx; 429 if (!i->i_openers++) 430 ctx->cntl = inode->i_mapping; 431 mutex_unlock(&ctx->mapping_lock); 432 return simple_attr_open(inode, file, spufs_cntl_get, 433 spufs_cntl_set, "0x%08lx"); 434 } 435 436 static int 437 spufs_cntl_release(struct inode *inode, struct file *file) 438 { 439 struct spufs_inode_info *i = SPUFS_I(inode); 440 struct spu_context *ctx = i->i_ctx; 441 442 simple_attr_release(inode, file); 443 444 mutex_lock(&ctx->mapping_lock); 445 if (!--i->i_openers) 446 ctx->cntl = NULL; 447 mutex_unlock(&ctx->mapping_lock); 448 return 0; 449 } 450 451 static const struct file_operations spufs_cntl_fops = { 452 .open = spufs_cntl_open, 453 .release = spufs_cntl_release, 454 .read = simple_attr_read, 455 .write = simple_attr_write, 456 .mmap = spufs_cntl_mmap, 457 }; 458 459 static int 460 spufs_regs_open(struct inode *inode, struct file *file) 461 { 462 struct spufs_inode_info *i = SPUFS_I(inode); 463 file->private_data = i->i_ctx; 464 return 0; 465 } 466 467 static ssize_t 468 spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm) 469 { 470 return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs, 471 sizeof(ctx->csa.lscsa->gprs)); 472 } 473 474 static ssize_t 475 spufs_regs_read(struct file *file, char __user *buffer, 476 size_t size, loff_t *pos) 477 { 478 int ret; 479 struct spu_context *ctx = file->private_data; 480 481 /* pre-check for file position: if we'd return EOF, there's no point 482 * causing a deschedule */ 483 if (*pos >= sizeof(ctx->csa.lscsa->gprs)) 484 return 0; 485 486 ret = spu_acquire_saved(ctx); 487 if (ret) 488 return ret; 489 ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs, 490 sizeof(ctx->csa.lscsa->gprs)); 491 spu_release_saved(ctx); 492 return ret; 493 } 494 495 static ssize_t 496 spufs_regs_write(struct file *file, const char __user *buffer, 497 size_t size, loff_t *pos) 498 { 499 struct spu_context *ctx = file->private_data; 500 struct spu_lscsa *lscsa = ctx->csa.lscsa; 501 int ret; 502 503 if (*pos >= sizeof(lscsa->gprs)) 504 return -EFBIG; 505 506 ret = spu_acquire_saved(ctx); 507 if (ret) 508 return ret; 509 510 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos, 511 buffer, size); 512 513 spu_release_saved(ctx); 514 return size; 515 } 516 517 static const struct file_operations spufs_regs_fops = { 518 .open = spufs_regs_open, 519 .read = spufs_regs_read, 520 .write = spufs_regs_write, 521 .llseek = generic_file_llseek, 522 }; 523 524 static ssize_t 525 spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm) 526 { 527 return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr, 528 sizeof(ctx->csa.lscsa->fpcr)); 529 } 530 531 static ssize_t 532 spufs_fpcr_read(struct file *file, char __user * buffer, 533 size_t size, loff_t * pos) 534 { 535 int ret; 536 struct spu_context *ctx = file->private_data; 537 538 ret = spu_acquire_saved(ctx); 539 if (ret) 540 return ret; 541 ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr, 542 sizeof(ctx->csa.lscsa->fpcr)); 543 spu_release_saved(ctx); 544 return ret; 545 } 546 547 static ssize_t 548 spufs_fpcr_write(struct file *file, const char __user * buffer, 549 size_t size, loff_t * pos) 550 { 551 struct spu_context *ctx = file->private_data; 552 struct spu_lscsa *lscsa = ctx->csa.lscsa; 553 int ret; 554 555 if (*pos >= sizeof(lscsa->fpcr)) 556 return -EFBIG; 557 558 ret = spu_acquire_saved(ctx); 559 if (ret) 560 return ret; 561 562 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos, 563 buffer, size); 564 565 spu_release_saved(ctx); 566 return size; 567 } 568 569 static const struct file_operations spufs_fpcr_fops = { 570 .open = spufs_regs_open, 571 .read = spufs_fpcr_read, 572 .write = spufs_fpcr_write, 573 .llseek = generic_file_llseek, 574 }; 575 576 /* generic open function for all pipe-like files */ 577 static int spufs_pipe_open(struct inode *inode, struct file *file) 578 { 579 struct spufs_inode_info *i = SPUFS_I(inode); 580 file->private_data = i->i_ctx; 581 582 return stream_open(inode, file); 583 } 584 585 /* 586 * Read as many bytes from the mailbox as possible, until 587 * one of the conditions becomes true: 588 * 589 * - no more data available in the mailbox 590 * - end of the user provided buffer 591 * - end of the mapped area 592 */ 593 static ssize_t spufs_mbox_read(struct file *file, char __user *buf, 594 size_t len, loff_t *pos) 595 { 596 struct spu_context *ctx = file->private_data; 597 u32 mbox_data, __user *udata = (void __user *)buf; 598 ssize_t count; 599 600 if (len < 4) 601 return -EINVAL; 602 603 count = spu_acquire(ctx); 604 if (count) 605 return count; 606 607 for (count = 0; (count + 4) <= len; count += 4, udata++) { 608 int ret; 609 ret = ctx->ops->mbox_read(ctx, &mbox_data); 610 if (ret == 0) 611 break; 612 613 /* 614 * at the end of the mapped area, we can fault 615 * but still need to return the data we have 616 * read successfully so far. 617 */ 618 ret = put_user(mbox_data, udata); 619 if (ret) { 620 if (!count) 621 count = -EFAULT; 622 break; 623 } 624 } 625 spu_release(ctx); 626 627 if (!count) 628 count = -EAGAIN; 629 630 return count; 631 } 632 633 static const struct file_operations spufs_mbox_fops = { 634 .open = spufs_pipe_open, 635 .read = spufs_mbox_read, 636 }; 637 638 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, 639 size_t len, loff_t *pos) 640 { 641 struct spu_context *ctx = file->private_data; 642 ssize_t ret; 643 u32 mbox_stat; 644 645 if (len < 4) 646 return -EINVAL; 647 648 ret = spu_acquire(ctx); 649 if (ret) 650 return ret; 651 652 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; 653 654 spu_release(ctx); 655 656 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) 657 return -EFAULT; 658 659 return 4; 660 } 661 662 static const struct file_operations spufs_mbox_stat_fops = { 663 .open = spufs_pipe_open, 664 .read = spufs_mbox_stat_read, 665 }; 666 667 /* low-level ibox access function */ 668 size_t spu_ibox_read(struct spu_context *ctx, u32 *data) 669 { 670 return ctx->ops->ibox_read(ctx, data); 671 } 672 673 /* interrupt-level ibox callback function. */ 674 void spufs_ibox_callback(struct spu *spu) 675 { 676 struct spu_context *ctx = spu->ctx; 677 678 if (ctx) 679 wake_up_all(&ctx->ibox_wq); 680 } 681 682 /* 683 * Read as many bytes from the interrupt mailbox as possible, until 684 * one of the conditions becomes true: 685 * 686 * - no more data available in the mailbox 687 * - end of the user provided buffer 688 * - end of the mapped area 689 * 690 * If the file is opened without O_NONBLOCK, we wait here until 691 * any data is available, but return when we have been able to 692 * read something. 693 */ 694 static ssize_t spufs_ibox_read(struct file *file, char __user *buf, 695 size_t len, loff_t *pos) 696 { 697 struct spu_context *ctx = file->private_data; 698 u32 ibox_data, __user *udata = (void __user *)buf; 699 ssize_t count; 700 701 if (len < 4) 702 return -EINVAL; 703 704 count = spu_acquire(ctx); 705 if (count) 706 goto out; 707 708 /* wait only for the first element */ 709 count = 0; 710 if (file->f_flags & O_NONBLOCK) { 711 if (!spu_ibox_read(ctx, &ibox_data)) { 712 count = -EAGAIN; 713 goto out_unlock; 714 } 715 } else { 716 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); 717 if (count) 718 goto out; 719 } 720 721 /* if we can't write at all, return -EFAULT */ 722 count = put_user(ibox_data, udata); 723 if (count) 724 goto out_unlock; 725 726 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 727 int ret; 728 ret = ctx->ops->ibox_read(ctx, &ibox_data); 729 if (ret == 0) 730 break; 731 /* 732 * at the end of the mapped area, we can fault 733 * but still need to return the data we have 734 * read successfully so far. 735 */ 736 ret = put_user(ibox_data, udata); 737 if (ret) 738 break; 739 } 740 741 out_unlock: 742 spu_release(ctx); 743 out: 744 return count; 745 } 746 747 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait) 748 { 749 struct spu_context *ctx = file->private_data; 750 __poll_t mask; 751 752 poll_wait(file, &ctx->ibox_wq, wait); 753 754 /* 755 * For now keep this uninterruptible and also ignore the rule 756 * that poll should not sleep. Will be fixed later. 757 */ 758 mutex_lock(&ctx->state_mutex); 759 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM); 760 spu_release(ctx); 761 762 return mask; 763 } 764 765 static const struct file_operations spufs_ibox_fops = { 766 .open = spufs_pipe_open, 767 .read = spufs_ibox_read, 768 .poll = spufs_ibox_poll, 769 }; 770 771 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, 772 size_t len, loff_t *pos) 773 { 774 struct spu_context *ctx = file->private_data; 775 ssize_t ret; 776 u32 ibox_stat; 777 778 if (len < 4) 779 return -EINVAL; 780 781 ret = spu_acquire(ctx); 782 if (ret) 783 return ret; 784 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; 785 spu_release(ctx); 786 787 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) 788 return -EFAULT; 789 790 return 4; 791 } 792 793 static const struct file_operations spufs_ibox_stat_fops = { 794 .open = spufs_pipe_open, 795 .read = spufs_ibox_stat_read, 796 }; 797 798 /* low-level mailbox write */ 799 size_t spu_wbox_write(struct spu_context *ctx, u32 data) 800 { 801 return ctx->ops->wbox_write(ctx, data); 802 } 803 804 /* interrupt-level wbox callback function. */ 805 void spufs_wbox_callback(struct spu *spu) 806 { 807 struct spu_context *ctx = spu->ctx; 808 809 if (ctx) 810 wake_up_all(&ctx->wbox_wq); 811 } 812 813 /* 814 * Write as many bytes to the interrupt mailbox as possible, until 815 * one of the conditions becomes true: 816 * 817 * - the mailbox is full 818 * - end of the user provided buffer 819 * - end of the mapped area 820 * 821 * If the file is opened without O_NONBLOCK, we wait here until 822 * space is available, but return when we have been able to 823 * write something. 824 */ 825 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, 826 size_t len, loff_t *pos) 827 { 828 struct spu_context *ctx = file->private_data; 829 u32 wbox_data, __user *udata = (void __user *)buf; 830 ssize_t count; 831 832 if (len < 4) 833 return -EINVAL; 834 835 if (get_user(wbox_data, udata)) 836 return -EFAULT; 837 838 count = spu_acquire(ctx); 839 if (count) 840 goto out; 841 842 /* 843 * make sure we can at least write one element, by waiting 844 * in case of !O_NONBLOCK 845 */ 846 count = 0; 847 if (file->f_flags & O_NONBLOCK) { 848 if (!spu_wbox_write(ctx, wbox_data)) { 849 count = -EAGAIN; 850 goto out_unlock; 851 } 852 } else { 853 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); 854 if (count) 855 goto out; 856 } 857 858 859 /* write as much as possible */ 860 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 861 int ret; 862 ret = get_user(wbox_data, udata); 863 if (ret) 864 break; 865 866 ret = spu_wbox_write(ctx, wbox_data); 867 if (ret == 0) 868 break; 869 } 870 871 out_unlock: 872 spu_release(ctx); 873 out: 874 return count; 875 } 876 877 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait) 878 { 879 struct spu_context *ctx = file->private_data; 880 __poll_t mask; 881 882 poll_wait(file, &ctx->wbox_wq, wait); 883 884 /* 885 * For now keep this uninterruptible and also ignore the rule 886 * that poll should not sleep. Will be fixed later. 887 */ 888 mutex_lock(&ctx->state_mutex); 889 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM); 890 spu_release(ctx); 891 892 return mask; 893 } 894 895 static const struct file_operations spufs_wbox_fops = { 896 .open = spufs_pipe_open, 897 .write = spufs_wbox_write, 898 .poll = spufs_wbox_poll, 899 }; 900 901 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, 902 size_t len, loff_t *pos) 903 { 904 struct spu_context *ctx = file->private_data; 905 ssize_t ret; 906 u32 wbox_stat; 907 908 if (len < 4) 909 return -EINVAL; 910 911 ret = spu_acquire(ctx); 912 if (ret) 913 return ret; 914 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; 915 spu_release(ctx); 916 917 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) 918 return -EFAULT; 919 920 return 4; 921 } 922 923 static const struct file_operations spufs_wbox_stat_fops = { 924 .open = spufs_pipe_open, 925 .read = spufs_wbox_stat_read, 926 }; 927 928 static int spufs_signal1_open(struct inode *inode, struct file *file) 929 { 930 struct spufs_inode_info *i = SPUFS_I(inode); 931 struct spu_context *ctx = i->i_ctx; 932 933 mutex_lock(&ctx->mapping_lock); 934 file->private_data = ctx; 935 if (!i->i_openers++) 936 ctx->signal1 = inode->i_mapping; 937 mutex_unlock(&ctx->mapping_lock); 938 return nonseekable_open(inode, file); 939 } 940 941 static int 942 spufs_signal1_release(struct inode *inode, struct file *file) 943 { 944 struct spufs_inode_info *i = SPUFS_I(inode); 945 struct spu_context *ctx = i->i_ctx; 946 947 mutex_lock(&ctx->mapping_lock); 948 if (!--i->i_openers) 949 ctx->signal1 = NULL; 950 mutex_unlock(&ctx->mapping_lock); 951 return 0; 952 } 953 954 static ssize_t spufs_signal1_dump(struct spu_context *ctx, 955 struct coredump_params *cprm) 956 { 957 if (!ctx->csa.spu_chnlcnt_RW[3]) 958 return 0; 959 return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3], 960 sizeof(ctx->csa.spu_chnldata_RW[3])); 961 } 962 963 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf, 964 size_t len) 965 { 966 if (len < sizeof(ctx->csa.spu_chnldata_RW[3])) 967 return -EINVAL; 968 if (!ctx->csa.spu_chnlcnt_RW[3]) 969 return 0; 970 if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3], 971 sizeof(ctx->csa.spu_chnldata_RW[3]))) 972 return -EFAULT; 973 return sizeof(ctx->csa.spu_chnldata_RW[3]); 974 } 975 976 static ssize_t spufs_signal1_read(struct file *file, char __user *buf, 977 size_t len, loff_t *pos) 978 { 979 int ret; 980 struct spu_context *ctx = file->private_data; 981 982 ret = spu_acquire_saved(ctx); 983 if (ret) 984 return ret; 985 ret = __spufs_signal1_read(ctx, buf, len); 986 spu_release_saved(ctx); 987 988 return ret; 989 } 990 991 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, 992 size_t len, loff_t *pos) 993 { 994 struct spu_context *ctx; 995 ssize_t ret; 996 u32 data; 997 998 ctx = file->private_data; 999 1000 if (len < 4) 1001 return -EINVAL; 1002 1003 if (copy_from_user(&data, buf, 4)) 1004 return -EFAULT; 1005 1006 ret = spu_acquire(ctx); 1007 if (ret) 1008 return ret; 1009 ctx->ops->signal1_write(ctx, data); 1010 spu_release(ctx); 1011 1012 return 4; 1013 } 1014 1015 static vm_fault_t 1016 spufs_signal1_mmap_fault(struct vm_fault *vmf) 1017 { 1018 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1019 return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE); 1020 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1021 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1022 * signal 1 and 2 area 1023 */ 1024 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1025 #else 1026 #error unsupported page size 1027 #endif 1028 } 1029 1030 static const struct vm_operations_struct spufs_signal1_mmap_vmops = { 1031 .fault = spufs_signal1_mmap_fault, 1032 }; 1033 1034 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) 1035 { 1036 if (!(vma->vm_flags & VM_SHARED)) 1037 return -EINVAL; 1038 1039 vm_flags_set(vma, VM_IO | VM_PFNMAP); 1040 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1041 1042 vma->vm_ops = &spufs_signal1_mmap_vmops; 1043 return 0; 1044 } 1045 1046 static const struct file_operations spufs_signal1_fops = { 1047 .open = spufs_signal1_open, 1048 .release = spufs_signal1_release, 1049 .read = spufs_signal1_read, 1050 .write = spufs_signal1_write, 1051 .mmap = spufs_signal1_mmap, 1052 }; 1053 1054 static const struct file_operations spufs_signal1_nosched_fops = { 1055 .open = spufs_signal1_open, 1056 .release = spufs_signal1_release, 1057 .write = spufs_signal1_write, 1058 .mmap = spufs_signal1_mmap, 1059 }; 1060 1061 static int spufs_signal2_open(struct inode *inode, struct file *file) 1062 { 1063 struct spufs_inode_info *i = SPUFS_I(inode); 1064 struct spu_context *ctx = i->i_ctx; 1065 1066 mutex_lock(&ctx->mapping_lock); 1067 file->private_data = ctx; 1068 if (!i->i_openers++) 1069 ctx->signal2 = inode->i_mapping; 1070 mutex_unlock(&ctx->mapping_lock); 1071 return nonseekable_open(inode, file); 1072 } 1073 1074 static int 1075 spufs_signal2_release(struct inode *inode, struct file *file) 1076 { 1077 struct spufs_inode_info *i = SPUFS_I(inode); 1078 struct spu_context *ctx = i->i_ctx; 1079 1080 mutex_lock(&ctx->mapping_lock); 1081 if (!--i->i_openers) 1082 ctx->signal2 = NULL; 1083 mutex_unlock(&ctx->mapping_lock); 1084 return 0; 1085 } 1086 1087 static ssize_t spufs_signal2_dump(struct spu_context *ctx, 1088 struct coredump_params *cprm) 1089 { 1090 if (!ctx->csa.spu_chnlcnt_RW[4]) 1091 return 0; 1092 return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4], 1093 sizeof(ctx->csa.spu_chnldata_RW[4])); 1094 } 1095 1096 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf, 1097 size_t len) 1098 { 1099 if (len < sizeof(ctx->csa.spu_chnldata_RW[4])) 1100 return -EINVAL; 1101 if (!ctx->csa.spu_chnlcnt_RW[4]) 1102 return 0; 1103 if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4], 1104 sizeof(ctx->csa.spu_chnldata_RW[4]))) 1105 return -EFAULT; 1106 return sizeof(ctx->csa.spu_chnldata_RW[4]); 1107 } 1108 1109 static ssize_t spufs_signal2_read(struct file *file, char __user *buf, 1110 size_t len, loff_t *pos) 1111 { 1112 struct spu_context *ctx = file->private_data; 1113 int ret; 1114 1115 ret = spu_acquire_saved(ctx); 1116 if (ret) 1117 return ret; 1118 ret = __spufs_signal2_read(ctx, buf, len); 1119 spu_release_saved(ctx); 1120 1121 return ret; 1122 } 1123 1124 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, 1125 size_t len, loff_t *pos) 1126 { 1127 struct spu_context *ctx; 1128 ssize_t ret; 1129 u32 data; 1130 1131 ctx = file->private_data; 1132 1133 if (len < 4) 1134 return -EINVAL; 1135 1136 if (copy_from_user(&data, buf, 4)) 1137 return -EFAULT; 1138 1139 ret = spu_acquire(ctx); 1140 if (ret) 1141 return ret; 1142 ctx->ops->signal2_write(ctx, data); 1143 spu_release(ctx); 1144 1145 return 4; 1146 } 1147 1148 #if SPUFS_MMAP_4K 1149 static vm_fault_t 1150 spufs_signal2_mmap_fault(struct vm_fault *vmf) 1151 { 1152 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000 1153 return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE); 1154 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000 1155 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1156 * signal 1 and 2 area 1157 */ 1158 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE); 1159 #else 1160 #error unsupported page size 1161 #endif 1162 } 1163 1164 static const struct vm_operations_struct spufs_signal2_mmap_vmops = { 1165 .fault = spufs_signal2_mmap_fault, 1166 }; 1167 1168 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) 1169 { 1170 if (!(vma->vm_flags & VM_SHARED)) 1171 return -EINVAL; 1172 1173 vm_flags_set(vma, VM_IO | VM_PFNMAP); 1174 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1175 1176 vma->vm_ops = &spufs_signal2_mmap_vmops; 1177 return 0; 1178 } 1179 #else /* SPUFS_MMAP_4K */ 1180 #define spufs_signal2_mmap NULL 1181 #endif /* !SPUFS_MMAP_4K */ 1182 1183 static const struct file_operations spufs_signal2_fops = { 1184 .open = spufs_signal2_open, 1185 .release = spufs_signal2_release, 1186 .read = spufs_signal2_read, 1187 .write = spufs_signal2_write, 1188 .mmap = spufs_signal2_mmap, 1189 }; 1190 1191 static const struct file_operations spufs_signal2_nosched_fops = { 1192 .open = spufs_signal2_open, 1193 .release = spufs_signal2_release, 1194 .write = spufs_signal2_write, 1195 .mmap = spufs_signal2_mmap, 1196 }; 1197 1198 /* 1199 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the 1200 * work of acquiring (or not) the SPU context before calling through 1201 * to the actual get routine. The set routine is called directly. 1202 */ 1203 #define SPU_ATTR_NOACQUIRE 0 1204 #define SPU_ATTR_ACQUIRE 1 1205 #define SPU_ATTR_ACQUIRE_SAVED 2 1206 1207 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \ 1208 static int __##__get(void *data, u64 *val) \ 1209 { \ 1210 struct spu_context *ctx = data; \ 1211 int ret = 0; \ 1212 \ 1213 if (__acquire == SPU_ATTR_ACQUIRE) { \ 1214 ret = spu_acquire(ctx); \ 1215 if (ret) \ 1216 return ret; \ 1217 *val = __get(ctx); \ 1218 spu_release(ctx); \ 1219 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \ 1220 ret = spu_acquire_saved(ctx); \ 1221 if (ret) \ 1222 return ret; \ 1223 *val = __get(ctx); \ 1224 spu_release_saved(ctx); \ 1225 } else \ 1226 *val = __get(ctx); \ 1227 \ 1228 return 0; \ 1229 } \ 1230 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt); 1231 1232 static int spufs_signal1_type_set(void *data, u64 val) 1233 { 1234 struct spu_context *ctx = data; 1235 int ret; 1236 1237 ret = spu_acquire(ctx); 1238 if (ret) 1239 return ret; 1240 ctx->ops->signal1_type_set(ctx, val); 1241 spu_release(ctx); 1242 1243 return 0; 1244 } 1245 1246 static u64 spufs_signal1_type_get(struct spu_context *ctx) 1247 { 1248 return ctx->ops->signal1_type_get(ctx); 1249 } 1250 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, 1251 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1252 1253 1254 static int spufs_signal2_type_set(void *data, u64 val) 1255 { 1256 struct spu_context *ctx = data; 1257 int ret; 1258 1259 ret = spu_acquire(ctx); 1260 if (ret) 1261 return ret; 1262 ctx->ops->signal2_type_set(ctx, val); 1263 spu_release(ctx); 1264 1265 return 0; 1266 } 1267 1268 static u64 spufs_signal2_type_get(struct spu_context *ctx) 1269 { 1270 return ctx->ops->signal2_type_get(ctx); 1271 } 1272 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, 1273 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE); 1274 1275 #if SPUFS_MMAP_4K 1276 static vm_fault_t 1277 spufs_mss_mmap_fault(struct vm_fault *vmf) 1278 { 1279 return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE); 1280 } 1281 1282 static const struct vm_operations_struct spufs_mss_mmap_vmops = { 1283 .fault = spufs_mss_mmap_fault, 1284 }; 1285 1286 /* 1287 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1288 */ 1289 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) 1290 { 1291 if (!(vma->vm_flags & VM_SHARED)) 1292 return -EINVAL; 1293 1294 vm_flags_set(vma, VM_IO | VM_PFNMAP); 1295 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1296 1297 vma->vm_ops = &spufs_mss_mmap_vmops; 1298 return 0; 1299 } 1300 #else /* SPUFS_MMAP_4K */ 1301 #define spufs_mss_mmap NULL 1302 #endif /* !SPUFS_MMAP_4K */ 1303 1304 static int spufs_mss_open(struct inode *inode, struct file *file) 1305 { 1306 struct spufs_inode_info *i = SPUFS_I(inode); 1307 struct spu_context *ctx = i->i_ctx; 1308 1309 file->private_data = i->i_ctx; 1310 1311 mutex_lock(&ctx->mapping_lock); 1312 if (!i->i_openers++) 1313 ctx->mss = inode->i_mapping; 1314 mutex_unlock(&ctx->mapping_lock); 1315 return nonseekable_open(inode, file); 1316 } 1317 1318 static int 1319 spufs_mss_release(struct inode *inode, struct file *file) 1320 { 1321 struct spufs_inode_info *i = SPUFS_I(inode); 1322 struct spu_context *ctx = i->i_ctx; 1323 1324 mutex_lock(&ctx->mapping_lock); 1325 if (!--i->i_openers) 1326 ctx->mss = NULL; 1327 mutex_unlock(&ctx->mapping_lock); 1328 return 0; 1329 } 1330 1331 static const struct file_operations spufs_mss_fops = { 1332 .open = spufs_mss_open, 1333 .release = spufs_mss_release, 1334 .mmap = spufs_mss_mmap, 1335 }; 1336 1337 static vm_fault_t 1338 spufs_psmap_mmap_fault(struct vm_fault *vmf) 1339 { 1340 return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE); 1341 } 1342 1343 static const struct vm_operations_struct spufs_psmap_mmap_vmops = { 1344 .fault = spufs_psmap_mmap_fault, 1345 }; 1346 1347 /* 1348 * mmap support for full problem state area [0x00000 - 0x1ffff]. 1349 */ 1350 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) 1351 { 1352 if (!(vma->vm_flags & VM_SHARED)) 1353 return -EINVAL; 1354 1355 vm_flags_set(vma, VM_IO | VM_PFNMAP); 1356 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1357 1358 vma->vm_ops = &spufs_psmap_mmap_vmops; 1359 return 0; 1360 } 1361 1362 static int spufs_psmap_open(struct inode *inode, struct file *file) 1363 { 1364 struct spufs_inode_info *i = SPUFS_I(inode); 1365 struct spu_context *ctx = i->i_ctx; 1366 1367 mutex_lock(&ctx->mapping_lock); 1368 file->private_data = i->i_ctx; 1369 if (!i->i_openers++) 1370 ctx->psmap = inode->i_mapping; 1371 mutex_unlock(&ctx->mapping_lock); 1372 return nonseekable_open(inode, file); 1373 } 1374 1375 static int 1376 spufs_psmap_release(struct inode *inode, struct file *file) 1377 { 1378 struct spufs_inode_info *i = SPUFS_I(inode); 1379 struct spu_context *ctx = i->i_ctx; 1380 1381 mutex_lock(&ctx->mapping_lock); 1382 if (!--i->i_openers) 1383 ctx->psmap = NULL; 1384 mutex_unlock(&ctx->mapping_lock); 1385 return 0; 1386 } 1387 1388 static const struct file_operations spufs_psmap_fops = { 1389 .open = spufs_psmap_open, 1390 .release = spufs_psmap_release, 1391 .mmap = spufs_psmap_mmap, 1392 }; 1393 1394 1395 #if SPUFS_MMAP_4K 1396 static vm_fault_t 1397 spufs_mfc_mmap_fault(struct vm_fault *vmf) 1398 { 1399 return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE); 1400 } 1401 1402 static const struct vm_operations_struct spufs_mfc_mmap_vmops = { 1403 .fault = spufs_mfc_mmap_fault, 1404 }; 1405 1406 /* 1407 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1408 */ 1409 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) 1410 { 1411 if (!(vma->vm_flags & VM_SHARED)) 1412 return -EINVAL; 1413 1414 vm_flags_set(vma, VM_IO | VM_PFNMAP); 1415 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1416 1417 vma->vm_ops = &spufs_mfc_mmap_vmops; 1418 return 0; 1419 } 1420 #else /* SPUFS_MMAP_4K */ 1421 #define spufs_mfc_mmap NULL 1422 #endif /* !SPUFS_MMAP_4K */ 1423 1424 static int spufs_mfc_open(struct inode *inode, struct file *file) 1425 { 1426 struct spufs_inode_info *i = SPUFS_I(inode); 1427 struct spu_context *ctx = i->i_ctx; 1428 1429 /* we don't want to deal with DMA into other processes */ 1430 if (ctx->owner != current->mm) 1431 return -EINVAL; 1432 1433 if (atomic_read(&inode->i_count) != 1) 1434 return -EBUSY; 1435 1436 mutex_lock(&ctx->mapping_lock); 1437 file->private_data = ctx; 1438 if (!i->i_openers++) 1439 ctx->mfc = inode->i_mapping; 1440 mutex_unlock(&ctx->mapping_lock); 1441 return nonseekable_open(inode, file); 1442 } 1443 1444 static int 1445 spufs_mfc_release(struct inode *inode, struct file *file) 1446 { 1447 struct spufs_inode_info *i = SPUFS_I(inode); 1448 struct spu_context *ctx = i->i_ctx; 1449 1450 mutex_lock(&ctx->mapping_lock); 1451 if (!--i->i_openers) 1452 ctx->mfc = NULL; 1453 mutex_unlock(&ctx->mapping_lock); 1454 return 0; 1455 } 1456 1457 /* interrupt-level mfc callback function. */ 1458 void spufs_mfc_callback(struct spu *spu) 1459 { 1460 struct spu_context *ctx = spu->ctx; 1461 1462 if (ctx) 1463 wake_up_all(&ctx->mfc_wq); 1464 } 1465 1466 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) 1467 { 1468 /* See if there is one tag group is complete */ 1469 /* FIXME we need locking around tagwait */ 1470 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; 1471 ctx->tagwait &= ~*status; 1472 if (*status) 1473 return 1; 1474 1475 /* enable interrupt waiting for any tag group, 1476 may silently fail if interrupts are already enabled */ 1477 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1478 return 0; 1479 } 1480 1481 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, 1482 size_t size, loff_t *pos) 1483 { 1484 struct spu_context *ctx = file->private_data; 1485 int ret = -EINVAL; 1486 u32 status; 1487 1488 if (size != 4) 1489 goto out; 1490 1491 ret = spu_acquire(ctx); 1492 if (ret) 1493 return ret; 1494 1495 ret = -EINVAL; 1496 if (file->f_flags & O_NONBLOCK) { 1497 status = ctx->ops->read_mfc_tagstatus(ctx); 1498 if (!(status & ctx->tagwait)) 1499 ret = -EAGAIN; 1500 else 1501 /* XXX(hch): shouldn't we clear ret here? */ 1502 ctx->tagwait &= ~status; 1503 } else { 1504 ret = spufs_wait(ctx->mfc_wq, 1505 spufs_read_mfc_tagstatus(ctx, &status)); 1506 if (ret) 1507 goto out; 1508 } 1509 spu_release(ctx); 1510 1511 ret = 4; 1512 if (copy_to_user(buffer, &status, 4)) 1513 ret = -EFAULT; 1514 1515 out: 1516 return ret; 1517 } 1518 1519 static int spufs_check_valid_dma(struct mfc_dma_command *cmd) 1520 { 1521 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa, 1522 cmd->ea, cmd->size, cmd->tag, cmd->cmd); 1523 1524 switch (cmd->cmd) { 1525 case MFC_PUT_CMD: 1526 case MFC_PUTF_CMD: 1527 case MFC_PUTB_CMD: 1528 case MFC_GET_CMD: 1529 case MFC_GETF_CMD: 1530 case MFC_GETB_CMD: 1531 break; 1532 default: 1533 pr_debug("invalid DMA opcode %x\n", cmd->cmd); 1534 return -EIO; 1535 } 1536 1537 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { 1538 pr_debug("invalid DMA alignment, ea %llx lsa %x\n", 1539 cmd->ea, cmd->lsa); 1540 return -EIO; 1541 } 1542 1543 switch (cmd->size & 0xf) { 1544 case 1: 1545 break; 1546 case 2: 1547 if (cmd->lsa & 1) 1548 goto error; 1549 break; 1550 case 4: 1551 if (cmd->lsa & 3) 1552 goto error; 1553 break; 1554 case 8: 1555 if (cmd->lsa & 7) 1556 goto error; 1557 break; 1558 case 0: 1559 if (cmd->lsa & 15) 1560 goto error; 1561 break; 1562 error: 1563 default: 1564 pr_debug("invalid DMA alignment %x for size %x\n", 1565 cmd->lsa & 0xf, cmd->size); 1566 return -EIO; 1567 } 1568 1569 if (cmd->size > 16 * 1024) { 1570 pr_debug("invalid DMA size %x\n", cmd->size); 1571 return -EIO; 1572 } 1573 1574 if (cmd->tag & 0xfff0) { 1575 /* we reserve the higher tag numbers for kernel use */ 1576 pr_debug("invalid DMA tag\n"); 1577 return -EIO; 1578 } 1579 1580 if (cmd->class) { 1581 /* not supported in this version */ 1582 pr_debug("invalid DMA class\n"); 1583 return -EIO; 1584 } 1585 1586 return 0; 1587 } 1588 1589 static int spu_send_mfc_command(struct spu_context *ctx, 1590 struct mfc_dma_command cmd, 1591 int *error) 1592 { 1593 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1594 if (*error == -EAGAIN) { 1595 /* wait for any tag group to complete 1596 so we have space for the new command */ 1597 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1598 /* try again, because the queue might be 1599 empty again */ 1600 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1601 if (*error == -EAGAIN) 1602 return 0; 1603 } 1604 return 1; 1605 } 1606 1607 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, 1608 size_t size, loff_t *pos) 1609 { 1610 struct spu_context *ctx = file->private_data; 1611 struct mfc_dma_command cmd; 1612 int ret = -EINVAL; 1613 1614 if (size != sizeof cmd) 1615 goto out; 1616 1617 ret = -EFAULT; 1618 if (copy_from_user(&cmd, buffer, sizeof cmd)) 1619 goto out; 1620 1621 ret = spufs_check_valid_dma(&cmd); 1622 if (ret) 1623 goto out; 1624 1625 ret = spu_acquire(ctx); 1626 if (ret) 1627 goto out; 1628 1629 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE); 1630 if (ret) 1631 goto out; 1632 1633 if (file->f_flags & O_NONBLOCK) { 1634 ret = ctx->ops->send_mfc_command(ctx, &cmd); 1635 } else { 1636 int status; 1637 ret = spufs_wait(ctx->mfc_wq, 1638 spu_send_mfc_command(ctx, cmd, &status)); 1639 if (ret) 1640 goto out; 1641 if (status) 1642 ret = status; 1643 } 1644 1645 if (ret) 1646 goto out_unlock; 1647 1648 ctx->tagwait |= 1 << cmd.tag; 1649 ret = size; 1650 1651 out_unlock: 1652 spu_release(ctx); 1653 out: 1654 return ret; 1655 } 1656 1657 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait) 1658 { 1659 struct spu_context *ctx = file->private_data; 1660 u32 free_elements, tagstatus; 1661 __poll_t mask; 1662 1663 poll_wait(file, &ctx->mfc_wq, wait); 1664 1665 /* 1666 * For now keep this uninterruptible and also ignore the rule 1667 * that poll should not sleep. Will be fixed later. 1668 */ 1669 mutex_lock(&ctx->state_mutex); 1670 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); 1671 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1672 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1673 spu_release(ctx); 1674 1675 mask = 0; 1676 if (free_elements & 0xffff) 1677 mask |= EPOLLOUT | EPOLLWRNORM; 1678 if (tagstatus & ctx->tagwait) 1679 mask |= EPOLLIN | EPOLLRDNORM; 1680 1681 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__, 1682 free_elements, tagstatus, ctx->tagwait); 1683 1684 return mask; 1685 } 1686 1687 static int spufs_mfc_flush(struct file *file, fl_owner_t id) 1688 { 1689 struct spu_context *ctx = file->private_data; 1690 int ret; 1691 1692 ret = spu_acquire(ctx); 1693 if (ret) 1694 return ret; 1695 1696 spu_release(ctx); 1697 1698 return 0; 1699 } 1700 1701 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1702 { 1703 struct inode *inode = file_inode(file); 1704 int err = file_write_and_wait_range(file, start, end); 1705 if (!err) { 1706 inode_lock(inode); 1707 err = spufs_mfc_flush(file, NULL); 1708 inode_unlock(inode); 1709 } 1710 return err; 1711 } 1712 1713 static const struct file_operations spufs_mfc_fops = { 1714 .open = spufs_mfc_open, 1715 .release = spufs_mfc_release, 1716 .read = spufs_mfc_read, 1717 .write = spufs_mfc_write, 1718 .poll = spufs_mfc_poll, 1719 .flush = spufs_mfc_flush, 1720 .fsync = spufs_mfc_fsync, 1721 .mmap = spufs_mfc_mmap, 1722 }; 1723 1724 static int spufs_npc_set(void *data, u64 val) 1725 { 1726 struct spu_context *ctx = data; 1727 int ret; 1728 1729 ret = spu_acquire(ctx); 1730 if (ret) 1731 return ret; 1732 ctx->ops->npc_write(ctx, val); 1733 spu_release(ctx); 1734 1735 return 0; 1736 } 1737 1738 static u64 spufs_npc_get(struct spu_context *ctx) 1739 { 1740 return ctx->ops->npc_read(ctx); 1741 } 1742 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, 1743 "0x%llx\n", SPU_ATTR_ACQUIRE); 1744 1745 static int spufs_decr_set(void *data, u64 val) 1746 { 1747 struct spu_context *ctx = data; 1748 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1749 int ret; 1750 1751 ret = spu_acquire_saved(ctx); 1752 if (ret) 1753 return ret; 1754 lscsa->decr.slot[0] = (u32) val; 1755 spu_release_saved(ctx); 1756 1757 return 0; 1758 } 1759 1760 static u64 spufs_decr_get(struct spu_context *ctx) 1761 { 1762 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1763 return lscsa->decr.slot[0]; 1764 } 1765 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, 1766 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); 1767 1768 static int spufs_decr_status_set(void *data, u64 val) 1769 { 1770 struct spu_context *ctx = data; 1771 int ret; 1772 1773 ret = spu_acquire_saved(ctx); 1774 if (ret) 1775 return ret; 1776 if (val) 1777 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING; 1778 else 1779 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING; 1780 spu_release_saved(ctx); 1781 1782 return 0; 1783 } 1784 1785 static u64 spufs_decr_status_get(struct spu_context *ctx) 1786 { 1787 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) 1788 return SPU_DECR_STATUS_RUNNING; 1789 else 1790 return 0; 1791 } 1792 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, 1793 spufs_decr_status_set, "0x%llx\n", 1794 SPU_ATTR_ACQUIRE_SAVED); 1795 1796 static int spufs_event_mask_set(void *data, u64 val) 1797 { 1798 struct spu_context *ctx = data; 1799 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1800 int ret; 1801 1802 ret = spu_acquire_saved(ctx); 1803 if (ret) 1804 return ret; 1805 lscsa->event_mask.slot[0] = (u32) val; 1806 spu_release_saved(ctx); 1807 1808 return 0; 1809 } 1810 1811 static u64 spufs_event_mask_get(struct spu_context *ctx) 1812 { 1813 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1814 return lscsa->event_mask.slot[0]; 1815 } 1816 1817 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, 1818 spufs_event_mask_set, "0x%llx\n", 1819 SPU_ATTR_ACQUIRE_SAVED); 1820 1821 static u64 spufs_event_status_get(struct spu_context *ctx) 1822 { 1823 struct spu_state *state = &ctx->csa; 1824 u64 stat; 1825 stat = state->spu_chnlcnt_RW[0]; 1826 if (stat) 1827 return state->spu_chnldata_RW[0]; 1828 return 0; 1829 } 1830 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get, 1831 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1832 1833 static int spufs_srr0_set(void *data, u64 val) 1834 { 1835 struct spu_context *ctx = data; 1836 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1837 int ret; 1838 1839 ret = spu_acquire_saved(ctx); 1840 if (ret) 1841 return ret; 1842 lscsa->srr0.slot[0] = (u32) val; 1843 spu_release_saved(ctx); 1844 1845 return 0; 1846 } 1847 1848 static u64 spufs_srr0_get(struct spu_context *ctx) 1849 { 1850 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1851 return lscsa->srr0.slot[0]; 1852 } 1853 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, 1854 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1855 1856 static u64 spufs_id_get(struct spu_context *ctx) 1857 { 1858 u64 num; 1859 1860 if (ctx->state == SPU_STATE_RUNNABLE) 1861 num = ctx->spu->number; 1862 else 1863 num = (unsigned int)-1; 1864 1865 return num; 1866 } 1867 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n", 1868 SPU_ATTR_ACQUIRE) 1869 1870 static u64 spufs_object_id_get(struct spu_context *ctx) 1871 { 1872 /* FIXME: Should there really be no locking here? */ 1873 return ctx->object_id; 1874 } 1875 1876 static int spufs_object_id_set(void *data, u64 id) 1877 { 1878 struct spu_context *ctx = data; 1879 ctx->object_id = id; 1880 1881 return 0; 1882 } 1883 1884 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, 1885 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE); 1886 1887 static u64 spufs_lslr_get(struct spu_context *ctx) 1888 { 1889 return ctx->csa.priv2.spu_lslr_RW; 1890 } 1891 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n", 1892 SPU_ATTR_ACQUIRE_SAVED); 1893 1894 static int spufs_info_open(struct inode *inode, struct file *file) 1895 { 1896 struct spufs_inode_info *i = SPUFS_I(inode); 1897 struct spu_context *ctx = i->i_ctx; 1898 file->private_data = ctx; 1899 return 0; 1900 } 1901 1902 static int spufs_caps_show(struct seq_file *s, void *private) 1903 { 1904 struct spu_context *ctx = s->private; 1905 1906 if (!(ctx->flags & SPU_CREATE_NOSCHED)) 1907 seq_puts(s, "sched\n"); 1908 if (!(ctx->flags & SPU_CREATE_ISOLATE)) 1909 seq_puts(s, "step\n"); 1910 return 0; 1911 } 1912 1913 static int spufs_caps_open(struct inode *inode, struct file *file) 1914 { 1915 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx); 1916 } 1917 1918 static const struct file_operations spufs_caps_fops = { 1919 .open = spufs_caps_open, 1920 .read = seq_read, 1921 .llseek = seq_lseek, 1922 .release = single_release, 1923 }; 1924 1925 static ssize_t spufs_mbox_info_dump(struct spu_context *ctx, 1926 struct coredump_params *cprm) 1927 { 1928 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff)) 1929 return 0; 1930 return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R, 1931 sizeof(ctx->csa.prob.pu_mb_R)); 1932 } 1933 1934 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf, 1935 size_t len, loff_t *pos) 1936 { 1937 struct spu_context *ctx = file->private_data; 1938 u32 stat, data; 1939 int ret; 1940 1941 ret = spu_acquire_saved(ctx); 1942 if (ret) 1943 return ret; 1944 spin_lock(&ctx->csa.register_lock); 1945 stat = ctx->csa.prob.mb_stat_R; 1946 data = ctx->csa.prob.pu_mb_R; 1947 spin_unlock(&ctx->csa.register_lock); 1948 spu_release_saved(ctx); 1949 1950 /* EOF if there's no entry in the mbox */ 1951 if (!(stat & 0x0000ff)) 1952 return 0; 1953 1954 return simple_read_from_buffer(buf, len, pos, &data, sizeof(data)); 1955 } 1956 1957 static const struct file_operations spufs_mbox_info_fops = { 1958 .open = spufs_info_open, 1959 .read = spufs_mbox_info_read, 1960 .llseek = generic_file_llseek, 1961 }; 1962 1963 static ssize_t spufs_ibox_info_dump(struct spu_context *ctx, 1964 struct coredump_params *cprm) 1965 { 1966 if (!(ctx->csa.prob.mb_stat_R & 0xff0000)) 1967 return 0; 1968 return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R, 1969 sizeof(ctx->csa.priv2.puint_mb_R)); 1970 } 1971 1972 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf, 1973 size_t len, loff_t *pos) 1974 { 1975 struct spu_context *ctx = file->private_data; 1976 u32 stat, data; 1977 int ret; 1978 1979 ret = spu_acquire_saved(ctx); 1980 if (ret) 1981 return ret; 1982 spin_lock(&ctx->csa.register_lock); 1983 stat = ctx->csa.prob.mb_stat_R; 1984 data = ctx->csa.priv2.puint_mb_R; 1985 spin_unlock(&ctx->csa.register_lock); 1986 spu_release_saved(ctx); 1987 1988 /* EOF if there's no entry in the ibox */ 1989 if (!(stat & 0xff0000)) 1990 return 0; 1991 1992 return simple_read_from_buffer(buf, len, pos, &data, sizeof(data)); 1993 } 1994 1995 static const struct file_operations spufs_ibox_info_fops = { 1996 .open = spufs_info_open, 1997 .read = spufs_ibox_info_read, 1998 .llseek = generic_file_llseek, 1999 }; 2000 2001 static size_t spufs_wbox_info_cnt(struct spu_context *ctx) 2002 { 2003 return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32); 2004 } 2005 2006 static ssize_t spufs_wbox_info_dump(struct spu_context *ctx, 2007 struct coredump_params *cprm) 2008 { 2009 return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data, 2010 spufs_wbox_info_cnt(ctx)); 2011 } 2012 2013 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf, 2014 size_t len, loff_t *pos) 2015 { 2016 struct spu_context *ctx = file->private_data; 2017 u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)]; 2018 int ret, count; 2019 2020 ret = spu_acquire_saved(ctx); 2021 if (ret) 2022 return ret; 2023 spin_lock(&ctx->csa.register_lock); 2024 count = spufs_wbox_info_cnt(ctx); 2025 memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data)); 2026 spin_unlock(&ctx->csa.register_lock); 2027 spu_release_saved(ctx); 2028 2029 return simple_read_from_buffer(buf, len, pos, &data, 2030 count * sizeof(u32)); 2031 } 2032 2033 static const struct file_operations spufs_wbox_info_fops = { 2034 .open = spufs_info_open, 2035 .read = spufs_wbox_info_read, 2036 .llseek = generic_file_llseek, 2037 }; 2038 2039 static void spufs_get_dma_info(struct spu_context *ctx, 2040 struct spu_dma_info *info) 2041 { 2042 int i; 2043 2044 info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW; 2045 info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0]; 2046 info->dma_info_status = ctx->csa.spu_chnldata_RW[24]; 2047 info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25]; 2048 info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27]; 2049 for (i = 0; i < 16; i++) { 2050 struct mfc_cq_sr *qp = &info->dma_info_command_data[i]; 2051 struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i]; 2052 2053 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW; 2054 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW; 2055 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW; 2056 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW; 2057 } 2058 } 2059 2060 static ssize_t spufs_dma_info_dump(struct spu_context *ctx, 2061 struct coredump_params *cprm) 2062 { 2063 struct spu_dma_info info; 2064 2065 spufs_get_dma_info(ctx, &info); 2066 return spufs_dump_emit(cprm, &info, sizeof(info)); 2067 } 2068 2069 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf, 2070 size_t len, loff_t *pos) 2071 { 2072 struct spu_context *ctx = file->private_data; 2073 struct spu_dma_info info; 2074 int ret; 2075 2076 ret = spu_acquire_saved(ctx); 2077 if (ret) 2078 return ret; 2079 spin_lock(&ctx->csa.register_lock); 2080 spufs_get_dma_info(ctx, &info); 2081 spin_unlock(&ctx->csa.register_lock); 2082 spu_release_saved(ctx); 2083 2084 return simple_read_from_buffer(buf, len, pos, &info, 2085 sizeof(info)); 2086 } 2087 2088 static const struct file_operations spufs_dma_info_fops = { 2089 .open = spufs_info_open, 2090 .read = spufs_dma_info_read, 2091 }; 2092 2093 static void spufs_get_proxydma_info(struct spu_context *ctx, 2094 struct spu_proxydma_info *info) 2095 { 2096 int i; 2097 2098 info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW; 2099 info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW; 2100 info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R; 2101 2102 for (i = 0; i < 8; i++) { 2103 struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i]; 2104 struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i]; 2105 2106 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW; 2107 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW; 2108 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW; 2109 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW; 2110 } 2111 } 2112 2113 static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx, 2114 struct coredump_params *cprm) 2115 { 2116 struct spu_proxydma_info info; 2117 2118 spufs_get_proxydma_info(ctx, &info); 2119 return spufs_dump_emit(cprm, &info, sizeof(info)); 2120 } 2121 2122 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf, 2123 size_t len, loff_t *pos) 2124 { 2125 struct spu_context *ctx = file->private_data; 2126 struct spu_proxydma_info info; 2127 int ret; 2128 2129 if (len < sizeof(info)) 2130 return -EINVAL; 2131 2132 ret = spu_acquire_saved(ctx); 2133 if (ret) 2134 return ret; 2135 spin_lock(&ctx->csa.register_lock); 2136 spufs_get_proxydma_info(ctx, &info); 2137 spin_unlock(&ctx->csa.register_lock); 2138 spu_release_saved(ctx); 2139 2140 return simple_read_from_buffer(buf, len, pos, &info, 2141 sizeof(info)); 2142 } 2143 2144 static const struct file_operations spufs_proxydma_info_fops = { 2145 .open = spufs_info_open, 2146 .read = spufs_proxydma_info_read, 2147 }; 2148 2149 static int spufs_show_tid(struct seq_file *s, void *private) 2150 { 2151 struct spu_context *ctx = s->private; 2152 2153 seq_printf(s, "%d\n", ctx->tid); 2154 return 0; 2155 } 2156 2157 static int spufs_tid_open(struct inode *inode, struct file *file) 2158 { 2159 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx); 2160 } 2161 2162 static const struct file_operations spufs_tid_fops = { 2163 .open = spufs_tid_open, 2164 .read = seq_read, 2165 .llseek = seq_lseek, 2166 .release = single_release, 2167 }; 2168 2169 static const char *ctx_state_names[] = { 2170 "user", "system", "iowait", "loaded" 2171 }; 2172 2173 static unsigned long long spufs_acct_time(struct spu_context *ctx, 2174 enum spu_utilization_state state) 2175 { 2176 unsigned long long time = ctx->stats.times[state]; 2177 2178 /* 2179 * In general, utilization statistics are updated by the controlling 2180 * thread as the spu context moves through various well defined 2181 * state transitions, but if the context is lazily loaded its 2182 * utilization statistics are not updated as the controlling thread 2183 * is not tightly coupled with the execution of the spu context. We 2184 * calculate and apply the time delta from the last recorded state 2185 * of the spu context. 2186 */ 2187 if (ctx->spu && ctx->stats.util_state == state) { 2188 time += ktime_get_ns() - ctx->stats.tstamp; 2189 } 2190 2191 return time / NSEC_PER_MSEC; 2192 } 2193 2194 static unsigned long long spufs_slb_flts(struct spu_context *ctx) 2195 { 2196 unsigned long long slb_flts = ctx->stats.slb_flt; 2197 2198 if (ctx->state == SPU_STATE_RUNNABLE) { 2199 slb_flts += (ctx->spu->stats.slb_flt - 2200 ctx->stats.slb_flt_base); 2201 } 2202 2203 return slb_flts; 2204 } 2205 2206 static unsigned long long spufs_class2_intrs(struct spu_context *ctx) 2207 { 2208 unsigned long long class2_intrs = ctx->stats.class2_intr; 2209 2210 if (ctx->state == SPU_STATE_RUNNABLE) { 2211 class2_intrs += (ctx->spu->stats.class2_intr - 2212 ctx->stats.class2_intr_base); 2213 } 2214 2215 return class2_intrs; 2216 } 2217 2218 2219 static int spufs_show_stat(struct seq_file *s, void *private) 2220 { 2221 struct spu_context *ctx = s->private; 2222 int ret; 2223 2224 ret = spu_acquire(ctx); 2225 if (ret) 2226 return ret; 2227 2228 seq_printf(s, "%s %llu %llu %llu %llu " 2229 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 2230 ctx_state_names[ctx->stats.util_state], 2231 spufs_acct_time(ctx, SPU_UTIL_USER), 2232 spufs_acct_time(ctx, SPU_UTIL_SYSTEM), 2233 spufs_acct_time(ctx, SPU_UTIL_IOWAIT), 2234 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED), 2235 ctx->stats.vol_ctx_switch, 2236 ctx->stats.invol_ctx_switch, 2237 spufs_slb_flts(ctx), 2238 ctx->stats.hash_flt, 2239 ctx->stats.min_flt, 2240 ctx->stats.maj_flt, 2241 spufs_class2_intrs(ctx), 2242 ctx->stats.libassist); 2243 spu_release(ctx); 2244 return 0; 2245 } 2246 2247 static int spufs_stat_open(struct inode *inode, struct file *file) 2248 { 2249 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx); 2250 } 2251 2252 static const struct file_operations spufs_stat_fops = { 2253 .open = spufs_stat_open, 2254 .read = seq_read, 2255 .llseek = seq_lseek, 2256 .release = single_release, 2257 }; 2258 2259 static inline int spufs_switch_log_used(struct spu_context *ctx) 2260 { 2261 return (ctx->switch_log->head - ctx->switch_log->tail) % 2262 SWITCH_LOG_BUFSIZE; 2263 } 2264 2265 static inline int spufs_switch_log_avail(struct spu_context *ctx) 2266 { 2267 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx); 2268 } 2269 2270 static int spufs_switch_log_open(struct inode *inode, struct file *file) 2271 { 2272 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2273 int rc; 2274 2275 rc = spu_acquire(ctx); 2276 if (rc) 2277 return rc; 2278 2279 if (ctx->switch_log) { 2280 rc = -EBUSY; 2281 goto out; 2282 } 2283 2284 ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log, 2285 SWITCH_LOG_BUFSIZE), GFP_KERNEL); 2286 2287 if (!ctx->switch_log) { 2288 rc = -ENOMEM; 2289 goto out; 2290 } 2291 2292 ctx->switch_log->head = ctx->switch_log->tail = 0; 2293 init_waitqueue_head(&ctx->switch_log->wait); 2294 rc = 0; 2295 2296 out: 2297 spu_release(ctx); 2298 return rc; 2299 } 2300 2301 static int spufs_switch_log_release(struct inode *inode, struct file *file) 2302 { 2303 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2304 int rc; 2305 2306 rc = spu_acquire(ctx); 2307 if (rc) 2308 return rc; 2309 2310 kfree(ctx->switch_log); 2311 ctx->switch_log = NULL; 2312 spu_release(ctx); 2313 2314 return 0; 2315 } 2316 2317 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n) 2318 { 2319 struct switch_log_entry *p; 2320 2321 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE; 2322 2323 return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n", 2324 (unsigned long long) p->tstamp.tv_sec, 2325 (unsigned int) p->tstamp.tv_nsec, 2326 p->spu_id, 2327 (unsigned int) p->type, 2328 (unsigned int) p->val, 2329 (unsigned long long) p->timebase); 2330 } 2331 2332 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf, 2333 size_t len, loff_t *ppos) 2334 { 2335 struct inode *inode = file_inode(file); 2336 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2337 int error = 0, cnt = 0; 2338 2339 if (!buf) 2340 return -EINVAL; 2341 2342 error = spu_acquire(ctx); 2343 if (error) 2344 return error; 2345 2346 while (cnt < len) { 2347 char tbuf[128]; 2348 int width; 2349 2350 if (spufs_switch_log_used(ctx) == 0) { 2351 if (cnt > 0) { 2352 /* If there's data ready to go, we can 2353 * just return straight away */ 2354 break; 2355 2356 } else if (file->f_flags & O_NONBLOCK) { 2357 error = -EAGAIN; 2358 break; 2359 2360 } else { 2361 /* spufs_wait will drop the mutex and 2362 * re-acquire, but since we're in read(), the 2363 * file cannot be _released (and so 2364 * ctx->switch_log is stable). 2365 */ 2366 error = spufs_wait(ctx->switch_log->wait, 2367 spufs_switch_log_used(ctx) > 0); 2368 2369 /* On error, spufs_wait returns without the 2370 * state mutex held */ 2371 if (error) 2372 return error; 2373 2374 /* We may have had entries read from underneath 2375 * us while we dropped the mutex in spufs_wait, 2376 * so re-check */ 2377 if (spufs_switch_log_used(ctx) == 0) 2378 continue; 2379 } 2380 } 2381 2382 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf)); 2383 if (width < len) 2384 ctx->switch_log->tail = 2385 (ctx->switch_log->tail + 1) % 2386 SWITCH_LOG_BUFSIZE; 2387 else 2388 /* If the record is greater than space available return 2389 * partial buffer (so far) */ 2390 break; 2391 2392 error = copy_to_user(buf + cnt, tbuf, width); 2393 if (error) 2394 break; 2395 cnt += width; 2396 } 2397 2398 spu_release(ctx); 2399 2400 return cnt == 0 ? error : cnt; 2401 } 2402 2403 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait) 2404 { 2405 struct inode *inode = file_inode(file); 2406 struct spu_context *ctx = SPUFS_I(inode)->i_ctx; 2407 __poll_t mask = 0; 2408 int rc; 2409 2410 poll_wait(file, &ctx->switch_log->wait, wait); 2411 2412 rc = spu_acquire(ctx); 2413 if (rc) 2414 return rc; 2415 2416 if (spufs_switch_log_used(ctx) > 0) 2417 mask |= EPOLLIN; 2418 2419 spu_release(ctx); 2420 2421 return mask; 2422 } 2423 2424 static const struct file_operations spufs_switch_log_fops = { 2425 .open = spufs_switch_log_open, 2426 .read = spufs_switch_log_read, 2427 .poll = spufs_switch_log_poll, 2428 .release = spufs_switch_log_release, 2429 }; 2430 2431 /** 2432 * Log a context switch event to a switch log reader. 2433 * 2434 * Must be called with ctx->state_mutex held. 2435 */ 2436 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx, 2437 u32 type, u32 val) 2438 { 2439 if (!ctx->switch_log) 2440 return; 2441 2442 if (spufs_switch_log_avail(ctx) > 1) { 2443 struct switch_log_entry *p; 2444 2445 p = ctx->switch_log->log + ctx->switch_log->head; 2446 ktime_get_ts64(&p->tstamp); 2447 p->timebase = get_tb(); 2448 p->spu_id = spu ? spu->number : -1; 2449 p->type = type; 2450 p->val = val; 2451 2452 ctx->switch_log->head = 2453 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE; 2454 } 2455 2456 wake_up(&ctx->switch_log->wait); 2457 } 2458 2459 static int spufs_show_ctx(struct seq_file *s, void *private) 2460 { 2461 struct spu_context *ctx = s->private; 2462 u64 mfc_control_RW; 2463 2464 mutex_lock(&ctx->state_mutex); 2465 if (ctx->spu) { 2466 struct spu *spu = ctx->spu; 2467 struct spu_priv2 __iomem *priv2 = spu->priv2; 2468 2469 spin_lock_irq(&spu->register_lock); 2470 mfc_control_RW = in_be64(&priv2->mfc_control_RW); 2471 spin_unlock_irq(&spu->register_lock); 2472 } else { 2473 struct spu_state *csa = &ctx->csa; 2474 2475 mfc_control_RW = csa->priv2.mfc_control_RW; 2476 } 2477 2478 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)" 2479 " %c %llx %llx %llx %llx %x %x\n", 2480 ctx->state == SPU_STATE_SAVED ? 'S' : 'R', 2481 ctx->flags, 2482 ctx->sched_flags, 2483 ctx->prio, 2484 ctx->time_slice, 2485 ctx->spu ? ctx->spu->number : -1, 2486 !list_empty(&ctx->rq) ? 'q' : ' ', 2487 ctx->csa.class_0_pending, 2488 ctx->csa.class_0_dar, 2489 ctx->csa.class_1_dsisr, 2490 mfc_control_RW, 2491 ctx->ops->runcntl_read(ctx), 2492 ctx->ops->status_read(ctx)); 2493 2494 mutex_unlock(&ctx->state_mutex); 2495 2496 return 0; 2497 } 2498 2499 static int spufs_ctx_open(struct inode *inode, struct file *file) 2500 { 2501 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx); 2502 } 2503 2504 static const struct file_operations spufs_ctx_fops = { 2505 .open = spufs_ctx_open, 2506 .read = seq_read, 2507 .llseek = seq_lseek, 2508 .release = single_release, 2509 }; 2510 2511 const struct spufs_tree_descr spufs_dir_contents[] = { 2512 { "capabilities", &spufs_caps_fops, 0444, }, 2513 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2514 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), }, 2515 { "mbox", &spufs_mbox_fops, 0444, }, 2516 { "ibox", &spufs_ibox_fops, 0444, }, 2517 { "wbox", &spufs_wbox_fops, 0222, }, 2518 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2519 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2520 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2521 { "signal1", &spufs_signal1_fops, 0666, }, 2522 { "signal2", &spufs_signal2_fops, 0666, }, 2523 { "signal1_type", &spufs_signal1_type, 0666, }, 2524 { "signal2_type", &spufs_signal2_type, 0666, }, 2525 { "cntl", &spufs_cntl_fops, 0666, }, 2526 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), }, 2527 { "lslr", &spufs_lslr_ops, 0444, }, 2528 { "mfc", &spufs_mfc_fops, 0666, }, 2529 { "mss", &spufs_mss_fops, 0666, }, 2530 { "npc", &spufs_npc_ops, 0666, }, 2531 { "srr0", &spufs_srr0_ops, 0666, }, 2532 { "decr", &spufs_decr_ops, 0666, }, 2533 { "decr_status", &spufs_decr_status_ops, 0666, }, 2534 { "event_mask", &spufs_event_mask_ops, 0666, }, 2535 { "event_status", &spufs_event_status_ops, 0444, }, 2536 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2537 { "phys-id", &spufs_id_ops, 0666, }, 2538 { "object-id", &spufs_object_id_ops, 0666, }, 2539 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), }, 2540 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), }, 2541 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), }, 2542 { "dma_info", &spufs_dma_info_fops, 0444, 2543 sizeof(struct spu_dma_info), }, 2544 { "proxydma_info", &spufs_proxydma_info_fops, 0444, 2545 sizeof(struct spu_proxydma_info)}, 2546 { "tid", &spufs_tid_fops, 0444, }, 2547 { "stat", &spufs_stat_fops, 0444, }, 2548 { "switch_log", &spufs_switch_log_fops, 0444 }, 2549 {}, 2550 }; 2551 2552 const struct spufs_tree_descr spufs_dir_nosched_contents[] = { 2553 { "capabilities", &spufs_caps_fops, 0444, }, 2554 { "mem", &spufs_mem_fops, 0666, LS_SIZE, }, 2555 { "mbox", &spufs_mbox_fops, 0444, }, 2556 { "ibox", &spufs_ibox_fops, 0444, }, 2557 { "wbox", &spufs_wbox_fops, 0222, }, 2558 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), }, 2559 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), }, 2560 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), }, 2561 { "signal1", &spufs_signal1_nosched_fops, 0222, }, 2562 { "signal2", &spufs_signal2_nosched_fops, 0222, }, 2563 { "signal1_type", &spufs_signal1_type, 0666, }, 2564 { "signal2_type", &spufs_signal2_type, 0666, }, 2565 { "mss", &spufs_mss_fops, 0666, }, 2566 { "mfc", &spufs_mfc_fops, 0666, }, 2567 { "cntl", &spufs_cntl_fops, 0666, }, 2568 { "npc", &spufs_npc_ops, 0666, }, 2569 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, }, 2570 { "phys-id", &spufs_id_ops, 0666, }, 2571 { "object-id", &spufs_object_id_ops, 0666, }, 2572 { "tid", &spufs_tid_fops, 0444, }, 2573 { "stat", &spufs_stat_fops, 0444, }, 2574 {}, 2575 }; 2576 2577 const struct spufs_tree_descr spufs_dir_debug_contents[] = { 2578 { ".ctx", &spufs_ctx_fops, 0444, }, 2579 {}, 2580 }; 2581 2582 const struct spufs_coredump_reader spufs_coredump_read[] = { 2583 { "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])}, 2584 { "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) }, 2585 { "lslr", NULL, spufs_lslr_get, 19 }, 2586 { "decr", NULL, spufs_decr_get, 19 }, 2587 { "decr_status", NULL, spufs_decr_status_get, 19 }, 2588 { "mem", spufs_mem_dump, NULL, LS_SIZE, }, 2589 { "signal1", spufs_signal1_dump, NULL, sizeof(u32) }, 2590 { "signal1_type", NULL, spufs_signal1_type_get, 19 }, 2591 { "signal2", spufs_signal2_dump, NULL, sizeof(u32) }, 2592 { "signal2_type", NULL, spufs_signal2_type_get, 19 }, 2593 { "event_mask", NULL, spufs_event_mask_get, 19 }, 2594 { "event_status", NULL, spufs_event_status_get, 19 }, 2595 { "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) }, 2596 { "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) }, 2597 { "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)}, 2598 { "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)}, 2599 { "proxydma_info", spufs_proxydma_info_dump, 2600 NULL, sizeof(struct spu_proxydma_info)}, 2601 { "object-id", NULL, spufs_object_id_get, 19 }, 2602 { "npc", NULL, spufs_npc_get, 19 }, 2603 { NULL }, 2604 }; 2605