xref: /linux/arch/powerpc/platforms/cell/spufs/file.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39 
40 #include "spufs.h"
41 #include "sputrace.h"
42 
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 
45 /* Simple attribute files */
46 struct spufs_attr {
47 	int (*get)(void *, u64 *);
48 	int (*set)(void *, u64);
49 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
50 	char set_buf[24];
51 	void *data;
52 	const char *fmt;        /* format for read operation */
53 	struct mutex mutex;     /* protects access to these buffers */
54 };
55 
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 		int (*get)(void *, u64 *), int (*set)(void *, u64),
58 		const char *fmt)
59 {
60 	struct spufs_attr *attr;
61 
62 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 	if (!attr)
64 		return -ENOMEM;
65 
66 	attr->get = get;
67 	attr->set = set;
68 	attr->data = inode->i_private;
69 	attr->fmt = fmt;
70 	mutex_init(&attr->mutex);
71 	file->private_data = attr;
72 
73 	return nonseekable_open(inode, file);
74 }
75 
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79 	return 0;
80 }
81 
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 		size_t len, loff_t *ppos)
84 {
85 	struct spufs_attr *attr;
86 	size_t size;
87 	ssize_t ret;
88 
89 	attr = file->private_data;
90 	if (!attr->get)
91 		return -EACCES;
92 
93 	ret = mutex_lock_interruptible(&attr->mutex);
94 	if (ret)
95 		return ret;
96 
97 	if (*ppos) {		/* continued read */
98 		size = strlen(attr->get_buf);
99 	} else {		/* first read */
100 		u64 val;
101 		ret = attr->get(attr->data, &val);
102 		if (ret)
103 			goto out;
104 
105 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 				 attr->fmt, (unsigned long long)val);
107 	}
108 
109 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 	mutex_unlock(&attr->mutex);
112 	return ret;
113 }
114 
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 		size_t len, loff_t *ppos)
117 {
118 	struct spufs_attr *attr;
119 	u64 val;
120 	size_t size;
121 	ssize_t ret;
122 
123 	attr = file->private_data;
124 	if (!attr->set)
125 		return -EACCES;
126 
127 	ret = mutex_lock_interruptible(&attr->mutex);
128 	if (ret)
129 		return ret;
130 
131 	ret = -EFAULT;
132 	size = min(sizeof(attr->set_buf) - 1, len);
133 	if (copy_from_user(attr->set_buf, buf, size))
134 		goto out;
135 
136 	ret = len; /* claim we got the whole input */
137 	attr->set_buf[size] = '\0';
138 	val = simple_strtol(attr->set_buf, NULL, 0);
139 	attr->set(attr->data, val);
140 out:
141 	mutex_unlock(&attr->mutex);
142 	return ret;
143 }
144 
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
146 static int __fops ## _open(struct inode *inode, struct file *file)	\
147 {									\
148 	__simple_attr_check_format(__fmt, 0ull);			\
149 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
150 }									\
151 static const struct file_operations __fops = {				\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 	.llseek  = generic_file_llseek,					\
157 };
158 
159 
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 	struct spufs_inode_info *i = SPUFS_I(inode);
164 	struct spu_context *ctx = i->i_ctx;
165 
166 	mutex_lock(&ctx->mapping_lock);
167 	file->private_data = ctx;
168 	if (!i->i_openers++)
169 		ctx->local_store = inode->i_mapping;
170 	mutex_unlock(&ctx->mapping_lock);
171 	return 0;
172 }
173 
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 	struct spufs_inode_info *i = SPUFS_I(inode);
178 	struct spu_context *ctx = i->i_ctx;
179 
180 	mutex_lock(&ctx->mapping_lock);
181 	if (!--i->i_openers)
182 		ctx->local_store = NULL;
183 	mutex_unlock(&ctx->mapping_lock);
184 	return 0;
185 }
186 
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 			size_t size, loff_t *pos)
190 {
191 	char *local_store = ctx->ops->get_ls(ctx);
192 	return simple_read_from_buffer(buffer, size, pos, local_store,
193 					LS_SIZE);
194 }
195 
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198 				size_t size, loff_t *pos)
199 {
200 	struct spu_context *ctx = file->private_data;
201 	ssize_t ret;
202 
203 	ret = spu_acquire(ctx);
204 	if (ret)
205 		return ret;
206 	ret = __spufs_mem_read(ctx, buffer, size, pos);
207 	spu_release(ctx);
208 
209 	return ret;
210 }
211 
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214 					size_t size, loff_t *ppos)
215 {
216 	struct spu_context *ctx = file->private_data;
217 	char *local_store;
218 	loff_t pos = *ppos;
219 	int ret;
220 
221 	if (pos > LS_SIZE)
222 		return -EFBIG;
223 
224 	ret = spu_acquire(ctx);
225 	if (ret)
226 		return ret;
227 
228 	local_store = ctx->ops->get_ls(ctx);
229 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230 	spu_release(ctx);
231 
232 	return size;
233 }
234 
235 static int
236 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
237 {
238 	struct spu_context *ctx	= vma->vm_file->private_data;
239 	unsigned long address = (unsigned long)vmf->virtual_address;
240 	unsigned long pfn, offset;
241 
242 #ifdef CONFIG_SPU_FS_64K_LS
243 	struct spu_state *csa = &ctx->csa;
244 	int psize;
245 
246 	/* Check what page size we are using */
247 	psize = get_slice_psize(vma->vm_mm, address);
248 
249 	/* Some sanity checking */
250 	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
251 
252 	/* Wow, 64K, cool, we need to align the address though */
253 	if (csa->use_big_pages) {
254 		BUG_ON(vma->vm_start & 0xffff);
255 		address &= ~0xfffful;
256 	}
257 #endif /* CONFIG_SPU_FS_64K_LS */
258 
259 	offset = vmf->pgoff << PAGE_SHIFT;
260 	if (offset >= LS_SIZE)
261 		return VM_FAULT_SIGBUS;
262 
263 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
264 			address, offset);
265 
266 	if (spu_acquire(ctx))
267 		return VM_FAULT_NOPAGE;
268 
269 	if (ctx->state == SPU_STATE_SAVED) {
270 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
271 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
272 	} else {
273 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
274 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
275 	}
276 	vm_insert_pfn(vma, address, pfn);
277 
278 	spu_release(ctx);
279 
280 	return VM_FAULT_NOPAGE;
281 }
282 
283 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
284 				unsigned long address,
285 				void *buf, int len, int write)
286 {
287 	struct spu_context *ctx = vma->vm_file->private_data;
288 	unsigned long offset = address - vma->vm_start;
289 	char *local_store;
290 
291 	if (write && !(vma->vm_flags & VM_WRITE))
292 		return -EACCES;
293 	if (spu_acquire(ctx))
294 		return -EINTR;
295 	if ((offset + len) > vma->vm_end)
296 		len = vma->vm_end - offset;
297 	local_store = ctx->ops->get_ls(ctx);
298 	if (write)
299 		memcpy_toio(local_store + offset, buf, len);
300 	else
301 		memcpy_fromio(buf, local_store + offset, len);
302 	spu_release(ctx);
303 	return len;
304 }
305 
306 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
307 	.fault = spufs_mem_mmap_fault,
308 	.access = spufs_mem_mmap_access,
309 };
310 
311 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
312 {
313 #ifdef CONFIG_SPU_FS_64K_LS
314 	struct spu_context	*ctx = file->private_data;
315 	struct spu_state	*csa = &ctx->csa;
316 
317 	/* Sanity check VMA alignment */
318 	if (csa->use_big_pages) {
319 		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
320 			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
321 			 vma->vm_pgoff);
322 		if (vma->vm_start & 0xffff)
323 			return -EINVAL;
324 		if (vma->vm_pgoff & 0xf)
325 			return -EINVAL;
326 	}
327 #endif /* CONFIG_SPU_FS_64K_LS */
328 
329 	if (!(vma->vm_flags & VM_SHARED))
330 		return -EINVAL;
331 
332 	vma->vm_flags |= VM_IO | VM_PFNMAP;
333 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
334 
335 	vma->vm_ops = &spufs_mem_mmap_vmops;
336 	return 0;
337 }
338 
339 #ifdef CONFIG_SPU_FS_64K_LS
340 static unsigned long spufs_get_unmapped_area(struct file *file,
341 		unsigned long addr, unsigned long len, unsigned long pgoff,
342 		unsigned long flags)
343 {
344 	struct spu_context	*ctx = file->private_data;
345 	struct spu_state	*csa = &ctx->csa;
346 
347 	/* If not using big pages, fallback to normal MM g_u_a */
348 	if (!csa->use_big_pages)
349 		return current->mm->get_unmapped_area(file, addr, len,
350 						      pgoff, flags);
351 
352 	/* Else, try to obtain a 64K pages slice */
353 	return slice_get_unmapped_area(addr, len, flags,
354 				       MMU_PAGE_64K, 1);
355 }
356 #endif /* CONFIG_SPU_FS_64K_LS */
357 
358 static const struct file_operations spufs_mem_fops = {
359 	.open			= spufs_mem_open,
360 	.release		= spufs_mem_release,
361 	.read			= spufs_mem_read,
362 	.write			= spufs_mem_write,
363 	.llseek			= generic_file_llseek,
364 	.mmap			= spufs_mem_mmap,
365 #ifdef CONFIG_SPU_FS_64K_LS
366 	.get_unmapped_area	= spufs_get_unmapped_area,
367 #endif
368 };
369 
370 static int spufs_ps_fault(struct vm_area_struct *vma,
371 				    struct vm_fault *vmf,
372 				    unsigned long ps_offs,
373 				    unsigned long ps_size)
374 {
375 	struct spu_context *ctx = vma->vm_file->private_data;
376 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
377 	int ret = 0;
378 
379 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
380 
381 	if (offset >= ps_size)
382 		return VM_FAULT_SIGBUS;
383 
384 	if (fatal_signal_pending(current))
385 		return VM_FAULT_SIGBUS;
386 
387 	/*
388 	 * Because we release the mmap_sem, the context may be destroyed while
389 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
390 	 * in the meantime.
391 	 */
392 	get_spu_context(ctx);
393 
394 	/*
395 	 * We have to wait for context to be loaded before we have
396 	 * pages to hand out to the user, but we don't want to wait
397 	 * with the mmap_sem held.
398 	 * It is possible to drop the mmap_sem here, but then we need
399 	 * to return VM_FAULT_NOPAGE because the mappings may have
400 	 * hanged.
401 	 */
402 	if (spu_acquire(ctx))
403 		goto refault;
404 
405 	if (ctx->state == SPU_STATE_SAVED) {
406 		up_read(&current->mm->mmap_sem);
407 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
408 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
409 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
410 		down_read(&current->mm->mmap_sem);
411 	} else {
412 		area = ctx->spu->problem_phys + ps_offs;
413 		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
414 					(area + offset) >> PAGE_SHIFT);
415 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
416 	}
417 
418 	if (!ret)
419 		spu_release(ctx);
420 
421 refault:
422 	put_spu_context(ctx);
423 	return VM_FAULT_NOPAGE;
424 }
425 
426 #if SPUFS_MMAP_4K
427 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
428 					   struct vm_fault *vmf)
429 {
430 	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
431 }
432 
433 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
434 	.fault = spufs_cntl_mmap_fault,
435 };
436 
437 /*
438  * mmap support for problem state control area [0x4000 - 0x4fff].
439  */
440 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
441 {
442 	if (!(vma->vm_flags & VM_SHARED))
443 		return -EINVAL;
444 
445 	vma->vm_flags |= VM_IO | VM_PFNMAP;
446 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
447 
448 	vma->vm_ops = &spufs_cntl_mmap_vmops;
449 	return 0;
450 }
451 #else /* SPUFS_MMAP_4K */
452 #define spufs_cntl_mmap NULL
453 #endif /* !SPUFS_MMAP_4K */
454 
455 static int spufs_cntl_get(void *data, u64 *val)
456 {
457 	struct spu_context *ctx = data;
458 	int ret;
459 
460 	ret = spu_acquire(ctx);
461 	if (ret)
462 		return ret;
463 	*val = ctx->ops->status_read(ctx);
464 	spu_release(ctx);
465 
466 	return 0;
467 }
468 
469 static int spufs_cntl_set(void *data, u64 val)
470 {
471 	struct spu_context *ctx = data;
472 	int ret;
473 
474 	ret = spu_acquire(ctx);
475 	if (ret)
476 		return ret;
477 	ctx->ops->runcntl_write(ctx, val);
478 	spu_release(ctx);
479 
480 	return 0;
481 }
482 
483 static int spufs_cntl_open(struct inode *inode, struct file *file)
484 {
485 	struct spufs_inode_info *i = SPUFS_I(inode);
486 	struct spu_context *ctx = i->i_ctx;
487 
488 	mutex_lock(&ctx->mapping_lock);
489 	file->private_data = ctx;
490 	if (!i->i_openers++)
491 		ctx->cntl = inode->i_mapping;
492 	mutex_unlock(&ctx->mapping_lock);
493 	return simple_attr_open(inode, file, spufs_cntl_get,
494 					spufs_cntl_set, "0x%08lx");
495 }
496 
497 static int
498 spufs_cntl_release(struct inode *inode, struct file *file)
499 {
500 	struct spufs_inode_info *i = SPUFS_I(inode);
501 	struct spu_context *ctx = i->i_ctx;
502 
503 	simple_attr_release(inode, file);
504 
505 	mutex_lock(&ctx->mapping_lock);
506 	if (!--i->i_openers)
507 		ctx->cntl = NULL;
508 	mutex_unlock(&ctx->mapping_lock);
509 	return 0;
510 }
511 
512 static const struct file_operations spufs_cntl_fops = {
513 	.open = spufs_cntl_open,
514 	.release = spufs_cntl_release,
515 	.read = simple_attr_read,
516 	.write = simple_attr_write,
517 	.llseek	= generic_file_llseek,
518 	.mmap = spufs_cntl_mmap,
519 };
520 
521 static int
522 spufs_regs_open(struct inode *inode, struct file *file)
523 {
524 	struct spufs_inode_info *i = SPUFS_I(inode);
525 	file->private_data = i->i_ctx;
526 	return 0;
527 }
528 
529 static ssize_t
530 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
531 			size_t size, loff_t *pos)
532 {
533 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
534 	return simple_read_from_buffer(buffer, size, pos,
535 				      lscsa->gprs, sizeof lscsa->gprs);
536 }
537 
538 static ssize_t
539 spufs_regs_read(struct file *file, char __user *buffer,
540 		size_t size, loff_t *pos)
541 {
542 	int ret;
543 	struct spu_context *ctx = file->private_data;
544 
545 	/* pre-check for file position: if we'd return EOF, there's no point
546 	 * causing a deschedule */
547 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
548 		return 0;
549 
550 	ret = spu_acquire_saved(ctx);
551 	if (ret)
552 		return ret;
553 	ret = __spufs_regs_read(ctx, buffer, size, pos);
554 	spu_release_saved(ctx);
555 	return ret;
556 }
557 
558 static ssize_t
559 spufs_regs_write(struct file *file, const char __user *buffer,
560 		 size_t size, loff_t *pos)
561 {
562 	struct spu_context *ctx = file->private_data;
563 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
564 	int ret;
565 
566 	if (*pos >= sizeof(lscsa->gprs))
567 		return -EFBIG;
568 
569 	ret = spu_acquire_saved(ctx);
570 	if (ret)
571 		return ret;
572 
573 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
574 					buffer, size);
575 
576 	spu_release_saved(ctx);
577 	return size;
578 }
579 
580 static const struct file_operations spufs_regs_fops = {
581 	.open	 = spufs_regs_open,
582 	.read    = spufs_regs_read,
583 	.write   = spufs_regs_write,
584 	.llseek  = generic_file_llseek,
585 };
586 
587 static ssize_t
588 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
589 			size_t size, loff_t * pos)
590 {
591 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
592 	return simple_read_from_buffer(buffer, size, pos,
593 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
594 }
595 
596 static ssize_t
597 spufs_fpcr_read(struct file *file, char __user * buffer,
598 		size_t size, loff_t * pos)
599 {
600 	int ret;
601 	struct spu_context *ctx = file->private_data;
602 
603 	ret = spu_acquire_saved(ctx);
604 	if (ret)
605 		return ret;
606 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
607 	spu_release_saved(ctx);
608 	return ret;
609 }
610 
611 static ssize_t
612 spufs_fpcr_write(struct file *file, const char __user * buffer,
613 		 size_t size, loff_t * pos)
614 {
615 	struct spu_context *ctx = file->private_data;
616 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
617 	int ret;
618 
619 	if (*pos >= sizeof(lscsa->fpcr))
620 		return -EFBIG;
621 
622 	ret = spu_acquire_saved(ctx);
623 	if (ret)
624 		return ret;
625 
626 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
627 					buffer, size);
628 
629 	spu_release_saved(ctx);
630 	return size;
631 }
632 
633 static const struct file_operations spufs_fpcr_fops = {
634 	.open = spufs_regs_open,
635 	.read = spufs_fpcr_read,
636 	.write = spufs_fpcr_write,
637 	.llseek = generic_file_llseek,
638 };
639 
640 /* generic open function for all pipe-like files */
641 static int spufs_pipe_open(struct inode *inode, struct file *file)
642 {
643 	struct spufs_inode_info *i = SPUFS_I(inode);
644 	file->private_data = i->i_ctx;
645 
646 	return nonseekable_open(inode, file);
647 }
648 
649 /*
650  * Read as many bytes from the mailbox as possible, until
651  * one of the conditions becomes true:
652  *
653  * - no more data available in the mailbox
654  * - end of the user provided buffer
655  * - end of the mapped area
656  */
657 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
658 			size_t len, loff_t *pos)
659 {
660 	struct spu_context *ctx = file->private_data;
661 	u32 mbox_data, __user *udata;
662 	ssize_t count;
663 
664 	if (len < 4)
665 		return -EINVAL;
666 
667 	if (!access_ok(VERIFY_WRITE, buf, len))
668 		return -EFAULT;
669 
670 	udata = (void __user *)buf;
671 
672 	count = spu_acquire(ctx);
673 	if (count)
674 		return count;
675 
676 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
677 		int ret;
678 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
679 		if (ret == 0)
680 			break;
681 
682 		/*
683 		 * at the end of the mapped area, we can fault
684 		 * but still need to return the data we have
685 		 * read successfully so far.
686 		 */
687 		ret = __put_user(mbox_data, udata);
688 		if (ret) {
689 			if (!count)
690 				count = -EFAULT;
691 			break;
692 		}
693 	}
694 	spu_release(ctx);
695 
696 	if (!count)
697 		count = -EAGAIN;
698 
699 	return count;
700 }
701 
702 static const struct file_operations spufs_mbox_fops = {
703 	.open	= spufs_pipe_open,
704 	.read	= spufs_mbox_read,
705 	.llseek	= no_llseek,
706 };
707 
708 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
709 			size_t len, loff_t *pos)
710 {
711 	struct spu_context *ctx = file->private_data;
712 	ssize_t ret;
713 	u32 mbox_stat;
714 
715 	if (len < 4)
716 		return -EINVAL;
717 
718 	ret = spu_acquire(ctx);
719 	if (ret)
720 		return ret;
721 
722 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
723 
724 	spu_release(ctx);
725 
726 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
727 		return -EFAULT;
728 
729 	return 4;
730 }
731 
732 static const struct file_operations spufs_mbox_stat_fops = {
733 	.open	= spufs_pipe_open,
734 	.read	= spufs_mbox_stat_read,
735 	.llseek = no_llseek,
736 };
737 
738 /* low-level ibox access function */
739 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
740 {
741 	return ctx->ops->ibox_read(ctx, data);
742 }
743 
744 static int spufs_ibox_fasync(int fd, struct file *file, int on)
745 {
746 	struct spu_context *ctx = file->private_data;
747 
748 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
749 }
750 
751 /* interrupt-level ibox callback function. */
752 void spufs_ibox_callback(struct spu *spu)
753 {
754 	struct spu_context *ctx = spu->ctx;
755 
756 	if (!ctx)
757 		return;
758 
759 	wake_up_all(&ctx->ibox_wq);
760 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
761 }
762 
763 /*
764  * Read as many bytes from the interrupt mailbox as possible, until
765  * one of the conditions becomes true:
766  *
767  * - no more data available in the mailbox
768  * - end of the user provided buffer
769  * - end of the mapped area
770  *
771  * If the file is opened without O_NONBLOCK, we wait here until
772  * any data is available, but return when we have been able to
773  * read something.
774  */
775 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
776 			size_t len, loff_t *pos)
777 {
778 	struct spu_context *ctx = file->private_data;
779 	u32 ibox_data, __user *udata;
780 	ssize_t count;
781 
782 	if (len < 4)
783 		return -EINVAL;
784 
785 	if (!access_ok(VERIFY_WRITE, buf, len))
786 		return -EFAULT;
787 
788 	udata = (void __user *)buf;
789 
790 	count = spu_acquire(ctx);
791 	if (count)
792 		goto out;
793 
794 	/* wait only for the first element */
795 	count = 0;
796 	if (file->f_flags & O_NONBLOCK) {
797 		if (!spu_ibox_read(ctx, &ibox_data)) {
798 			count = -EAGAIN;
799 			goto out_unlock;
800 		}
801 	} else {
802 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
803 		if (count)
804 			goto out;
805 	}
806 
807 	/* if we can't write at all, return -EFAULT */
808 	count = __put_user(ibox_data, udata);
809 	if (count)
810 		goto out_unlock;
811 
812 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
813 		int ret;
814 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
815 		if (ret == 0)
816 			break;
817 		/*
818 		 * at the end of the mapped area, we can fault
819 		 * but still need to return the data we have
820 		 * read successfully so far.
821 		 */
822 		ret = __put_user(ibox_data, udata);
823 		if (ret)
824 			break;
825 	}
826 
827 out_unlock:
828 	spu_release(ctx);
829 out:
830 	return count;
831 }
832 
833 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
834 {
835 	struct spu_context *ctx = file->private_data;
836 	unsigned int mask;
837 
838 	poll_wait(file, &ctx->ibox_wq, wait);
839 
840 	/*
841 	 * For now keep this uninterruptible and also ignore the rule
842 	 * that poll should not sleep.  Will be fixed later.
843 	 */
844 	mutex_lock(&ctx->state_mutex);
845 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
846 	spu_release(ctx);
847 
848 	return mask;
849 }
850 
851 static const struct file_operations spufs_ibox_fops = {
852 	.open	= spufs_pipe_open,
853 	.read	= spufs_ibox_read,
854 	.poll	= spufs_ibox_poll,
855 	.fasync	= spufs_ibox_fasync,
856 	.llseek = no_llseek,
857 };
858 
859 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
860 			size_t len, loff_t *pos)
861 {
862 	struct spu_context *ctx = file->private_data;
863 	ssize_t ret;
864 	u32 ibox_stat;
865 
866 	if (len < 4)
867 		return -EINVAL;
868 
869 	ret = spu_acquire(ctx);
870 	if (ret)
871 		return ret;
872 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
873 	spu_release(ctx);
874 
875 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
876 		return -EFAULT;
877 
878 	return 4;
879 }
880 
881 static const struct file_operations spufs_ibox_stat_fops = {
882 	.open	= spufs_pipe_open,
883 	.read	= spufs_ibox_stat_read,
884 	.llseek = no_llseek,
885 };
886 
887 /* low-level mailbox write */
888 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
889 {
890 	return ctx->ops->wbox_write(ctx, data);
891 }
892 
893 static int spufs_wbox_fasync(int fd, struct file *file, int on)
894 {
895 	struct spu_context *ctx = file->private_data;
896 	int ret;
897 
898 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
899 
900 	return ret;
901 }
902 
903 /* interrupt-level wbox callback function. */
904 void spufs_wbox_callback(struct spu *spu)
905 {
906 	struct spu_context *ctx = spu->ctx;
907 
908 	if (!ctx)
909 		return;
910 
911 	wake_up_all(&ctx->wbox_wq);
912 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
913 }
914 
915 /*
916  * Write as many bytes to the interrupt mailbox as possible, until
917  * one of the conditions becomes true:
918  *
919  * - the mailbox is full
920  * - end of the user provided buffer
921  * - end of the mapped area
922  *
923  * If the file is opened without O_NONBLOCK, we wait here until
924  * space is availabyl, but return when we have been able to
925  * write something.
926  */
927 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
928 			size_t len, loff_t *pos)
929 {
930 	struct spu_context *ctx = file->private_data;
931 	u32 wbox_data, __user *udata;
932 	ssize_t count;
933 
934 	if (len < 4)
935 		return -EINVAL;
936 
937 	udata = (void __user *)buf;
938 	if (!access_ok(VERIFY_READ, buf, len))
939 		return -EFAULT;
940 
941 	if (__get_user(wbox_data, udata))
942 		return -EFAULT;
943 
944 	count = spu_acquire(ctx);
945 	if (count)
946 		goto out;
947 
948 	/*
949 	 * make sure we can at least write one element, by waiting
950 	 * in case of !O_NONBLOCK
951 	 */
952 	count = 0;
953 	if (file->f_flags & O_NONBLOCK) {
954 		if (!spu_wbox_write(ctx, wbox_data)) {
955 			count = -EAGAIN;
956 			goto out_unlock;
957 		}
958 	} else {
959 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
960 		if (count)
961 			goto out;
962 	}
963 
964 
965 	/* write as much as possible */
966 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
967 		int ret;
968 		ret = __get_user(wbox_data, udata);
969 		if (ret)
970 			break;
971 
972 		ret = spu_wbox_write(ctx, wbox_data);
973 		if (ret == 0)
974 			break;
975 	}
976 
977 out_unlock:
978 	spu_release(ctx);
979 out:
980 	return count;
981 }
982 
983 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
984 {
985 	struct spu_context *ctx = file->private_data;
986 	unsigned int mask;
987 
988 	poll_wait(file, &ctx->wbox_wq, wait);
989 
990 	/*
991 	 * For now keep this uninterruptible and also ignore the rule
992 	 * that poll should not sleep.  Will be fixed later.
993 	 */
994 	mutex_lock(&ctx->state_mutex);
995 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
996 	spu_release(ctx);
997 
998 	return mask;
999 }
1000 
1001 static const struct file_operations spufs_wbox_fops = {
1002 	.open	= spufs_pipe_open,
1003 	.write	= spufs_wbox_write,
1004 	.poll	= spufs_wbox_poll,
1005 	.fasync	= spufs_wbox_fasync,
1006 	.llseek = no_llseek,
1007 };
1008 
1009 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1010 			size_t len, loff_t *pos)
1011 {
1012 	struct spu_context *ctx = file->private_data;
1013 	ssize_t ret;
1014 	u32 wbox_stat;
1015 
1016 	if (len < 4)
1017 		return -EINVAL;
1018 
1019 	ret = spu_acquire(ctx);
1020 	if (ret)
1021 		return ret;
1022 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1023 	spu_release(ctx);
1024 
1025 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1026 		return -EFAULT;
1027 
1028 	return 4;
1029 }
1030 
1031 static const struct file_operations spufs_wbox_stat_fops = {
1032 	.open	= spufs_pipe_open,
1033 	.read	= spufs_wbox_stat_read,
1034 	.llseek = no_llseek,
1035 };
1036 
1037 static int spufs_signal1_open(struct inode *inode, struct file *file)
1038 {
1039 	struct spufs_inode_info *i = SPUFS_I(inode);
1040 	struct spu_context *ctx = i->i_ctx;
1041 
1042 	mutex_lock(&ctx->mapping_lock);
1043 	file->private_data = ctx;
1044 	if (!i->i_openers++)
1045 		ctx->signal1 = inode->i_mapping;
1046 	mutex_unlock(&ctx->mapping_lock);
1047 	return nonseekable_open(inode, file);
1048 }
1049 
1050 static int
1051 spufs_signal1_release(struct inode *inode, struct file *file)
1052 {
1053 	struct spufs_inode_info *i = SPUFS_I(inode);
1054 	struct spu_context *ctx = i->i_ctx;
1055 
1056 	mutex_lock(&ctx->mapping_lock);
1057 	if (!--i->i_openers)
1058 		ctx->signal1 = NULL;
1059 	mutex_unlock(&ctx->mapping_lock);
1060 	return 0;
1061 }
1062 
1063 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1064 			size_t len, loff_t *pos)
1065 {
1066 	int ret = 0;
1067 	u32 data;
1068 
1069 	if (len < 4)
1070 		return -EINVAL;
1071 
1072 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1073 		data = ctx->csa.spu_chnldata_RW[3];
1074 		ret = 4;
1075 	}
1076 
1077 	if (!ret)
1078 		goto out;
1079 
1080 	if (copy_to_user(buf, &data, 4))
1081 		return -EFAULT;
1082 
1083 out:
1084 	return ret;
1085 }
1086 
1087 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1088 			size_t len, loff_t *pos)
1089 {
1090 	int ret;
1091 	struct spu_context *ctx = file->private_data;
1092 
1093 	ret = spu_acquire_saved(ctx);
1094 	if (ret)
1095 		return ret;
1096 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1097 	spu_release_saved(ctx);
1098 
1099 	return ret;
1100 }
1101 
1102 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1103 			size_t len, loff_t *pos)
1104 {
1105 	struct spu_context *ctx;
1106 	ssize_t ret;
1107 	u32 data;
1108 
1109 	ctx = file->private_data;
1110 
1111 	if (len < 4)
1112 		return -EINVAL;
1113 
1114 	if (copy_from_user(&data, buf, 4))
1115 		return -EFAULT;
1116 
1117 	ret = spu_acquire(ctx);
1118 	if (ret)
1119 		return ret;
1120 	ctx->ops->signal1_write(ctx, data);
1121 	spu_release(ctx);
1122 
1123 	return 4;
1124 }
1125 
1126 static int
1127 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1128 {
1129 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1130 	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1131 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1132 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1133 	 * signal 1 and 2 area
1134 	 */
1135 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1136 #else
1137 #error unsupported page size
1138 #endif
1139 }
1140 
1141 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1142 	.fault = spufs_signal1_mmap_fault,
1143 };
1144 
1145 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1146 {
1147 	if (!(vma->vm_flags & VM_SHARED))
1148 		return -EINVAL;
1149 
1150 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1151 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1152 
1153 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1154 	return 0;
1155 }
1156 
1157 static const struct file_operations spufs_signal1_fops = {
1158 	.open = spufs_signal1_open,
1159 	.release = spufs_signal1_release,
1160 	.read = spufs_signal1_read,
1161 	.write = spufs_signal1_write,
1162 	.mmap = spufs_signal1_mmap,
1163 	.llseek = no_llseek,
1164 };
1165 
1166 static const struct file_operations spufs_signal1_nosched_fops = {
1167 	.open = spufs_signal1_open,
1168 	.release = spufs_signal1_release,
1169 	.write = spufs_signal1_write,
1170 	.mmap = spufs_signal1_mmap,
1171 	.llseek = no_llseek,
1172 };
1173 
1174 static int spufs_signal2_open(struct inode *inode, struct file *file)
1175 {
1176 	struct spufs_inode_info *i = SPUFS_I(inode);
1177 	struct spu_context *ctx = i->i_ctx;
1178 
1179 	mutex_lock(&ctx->mapping_lock);
1180 	file->private_data = ctx;
1181 	if (!i->i_openers++)
1182 		ctx->signal2 = inode->i_mapping;
1183 	mutex_unlock(&ctx->mapping_lock);
1184 	return nonseekable_open(inode, file);
1185 }
1186 
1187 static int
1188 spufs_signal2_release(struct inode *inode, struct file *file)
1189 {
1190 	struct spufs_inode_info *i = SPUFS_I(inode);
1191 	struct spu_context *ctx = i->i_ctx;
1192 
1193 	mutex_lock(&ctx->mapping_lock);
1194 	if (!--i->i_openers)
1195 		ctx->signal2 = NULL;
1196 	mutex_unlock(&ctx->mapping_lock);
1197 	return 0;
1198 }
1199 
1200 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1201 			size_t len, loff_t *pos)
1202 {
1203 	int ret = 0;
1204 	u32 data;
1205 
1206 	if (len < 4)
1207 		return -EINVAL;
1208 
1209 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1210 		data =  ctx->csa.spu_chnldata_RW[4];
1211 		ret = 4;
1212 	}
1213 
1214 	if (!ret)
1215 		goto out;
1216 
1217 	if (copy_to_user(buf, &data, 4))
1218 		return -EFAULT;
1219 
1220 out:
1221 	return ret;
1222 }
1223 
1224 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1225 			size_t len, loff_t *pos)
1226 {
1227 	struct spu_context *ctx = file->private_data;
1228 	int ret;
1229 
1230 	ret = spu_acquire_saved(ctx);
1231 	if (ret)
1232 		return ret;
1233 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1234 	spu_release_saved(ctx);
1235 
1236 	return ret;
1237 }
1238 
1239 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1240 			size_t len, loff_t *pos)
1241 {
1242 	struct spu_context *ctx;
1243 	ssize_t ret;
1244 	u32 data;
1245 
1246 	ctx = file->private_data;
1247 
1248 	if (len < 4)
1249 		return -EINVAL;
1250 
1251 	if (copy_from_user(&data, buf, 4))
1252 		return -EFAULT;
1253 
1254 	ret = spu_acquire(ctx);
1255 	if (ret)
1256 		return ret;
1257 	ctx->ops->signal2_write(ctx, data);
1258 	spu_release(ctx);
1259 
1260 	return 4;
1261 }
1262 
1263 #if SPUFS_MMAP_4K
1264 static int
1265 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1266 {
1267 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1268 	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1269 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1270 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1271 	 * signal 1 and 2 area
1272 	 */
1273 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1274 #else
1275 #error unsupported page size
1276 #endif
1277 }
1278 
1279 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1280 	.fault = spufs_signal2_mmap_fault,
1281 };
1282 
1283 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1284 {
1285 	if (!(vma->vm_flags & VM_SHARED))
1286 		return -EINVAL;
1287 
1288 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1289 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1290 
1291 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1292 	return 0;
1293 }
1294 #else /* SPUFS_MMAP_4K */
1295 #define spufs_signal2_mmap NULL
1296 #endif /* !SPUFS_MMAP_4K */
1297 
1298 static const struct file_operations spufs_signal2_fops = {
1299 	.open = spufs_signal2_open,
1300 	.release = spufs_signal2_release,
1301 	.read = spufs_signal2_read,
1302 	.write = spufs_signal2_write,
1303 	.mmap = spufs_signal2_mmap,
1304 	.llseek = no_llseek,
1305 };
1306 
1307 static const struct file_operations spufs_signal2_nosched_fops = {
1308 	.open = spufs_signal2_open,
1309 	.release = spufs_signal2_release,
1310 	.write = spufs_signal2_write,
1311 	.mmap = spufs_signal2_mmap,
1312 	.llseek = no_llseek,
1313 };
1314 
1315 /*
1316  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1317  * work of acquiring (or not) the SPU context before calling through
1318  * to the actual get routine. The set routine is called directly.
1319  */
1320 #define SPU_ATTR_NOACQUIRE	0
1321 #define SPU_ATTR_ACQUIRE	1
1322 #define SPU_ATTR_ACQUIRE_SAVED	2
1323 
1324 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1325 static int __##__get(void *data, u64 *val)				\
1326 {									\
1327 	struct spu_context *ctx = data;					\
1328 	int ret = 0;							\
1329 									\
1330 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1331 		ret = spu_acquire(ctx);					\
1332 		if (ret)						\
1333 			return ret;					\
1334 		*val = __get(ctx);					\
1335 		spu_release(ctx);					\
1336 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1337 		ret = spu_acquire_saved(ctx);				\
1338 		if (ret)						\
1339 			return ret;					\
1340 		*val = __get(ctx);					\
1341 		spu_release_saved(ctx);					\
1342 	} else								\
1343 		*val = __get(ctx);					\
1344 									\
1345 	return 0;							\
1346 }									\
1347 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1348 
1349 static int spufs_signal1_type_set(void *data, u64 val)
1350 {
1351 	struct spu_context *ctx = data;
1352 	int ret;
1353 
1354 	ret = spu_acquire(ctx);
1355 	if (ret)
1356 		return ret;
1357 	ctx->ops->signal1_type_set(ctx, val);
1358 	spu_release(ctx);
1359 
1360 	return 0;
1361 }
1362 
1363 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1364 {
1365 	return ctx->ops->signal1_type_get(ctx);
1366 }
1367 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1368 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1369 
1370 
1371 static int spufs_signal2_type_set(void *data, u64 val)
1372 {
1373 	struct spu_context *ctx = data;
1374 	int ret;
1375 
1376 	ret = spu_acquire(ctx);
1377 	if (ret)
1378 		return ret;
1379 	ctx->ops->signal2_type_set(ctx, val);
1380 	spu_release(ctx);
1381 
1382 	return 0;
1383 }
1384 
1385 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1386 {
1387 	return ctx->ops->signal2_type_get(ctx);
1388 }
1389 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1390 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1391 
1392 #if SPUFS_MMAP_4K
1393 static int
1394 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 {
1396 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1397 }
1398 
1399 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1400 	.fault = spufs_mss_mmap_fault,
1401 };
1402 
1403 /*
1404  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1405  */
1406 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1407 {
1408 	if (!(vma->vm_flags & VM_SHARED))
1409 		return -EINVAL;
1410 
1411 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1412 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1413 
1414 	vma->vm_ops = &spufs_mss_mmap_vmops;
1415 	return 0;
1416 }
1417 #else /* SPUFS_MMAP_4K */
1418 #define spufs_mss_mmap NULL
1419 #endif /* !SPUFS_MMAP_4K */
1420 
1421 static int spufs_mss_open(struct inode *inode, struct file *file)
1422 {
1423 	struct spufs_inode_info *i = SPUFS_I(inode);
1424 	struct spu_context *ctx = i->i_ctx;
1425 
1426 	file->private_data = i->i_ctx;
1427 
1428 	mutex_lock(&ctx->mapping_lock);
1429 	if (!i->i_openers++)
1430 		ctx->mss = inode->i_mapping;
1431 	mutex_unlock(&ctx->mapping_lock);
1432 	return nonseekable_open(inode, file);
1433 }
1434 
1435 static int
1436 spufs_mss_release(struct inode *inode, struct file *file)
1437 {
1438 	struct spufs_inode_info *i = SPUFS_I(inode);
1439 	struct spu_context *ctx = i->i_ctx;
1440 
1441 	mutex_lock(&ctx->mapping_lock);
1442 	if (!--i->i_openers)
1443 		ctx->mss = NULL;
1444 	mutex_unlock(&ctx->mapping_lock);
1445 	return 0;
1446 }
1447 
1448 static const struct file_operations spufs_mss_fops = {
1449 	.open	 = spufs_mss_open,
1450 	.release = spufs_mss_release,
1451 	.mmap	 = spufs_mss_mmap,
1452 	.llseek  = no_llseek,
1453 };
1454 
1455 static int
1456 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1457 {
1458 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1459 }
1460 
1461 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1462 	.fault = spufs_psmap_mmap_fault,
1463 };
1464 
1465 /*
1466  * mmap support for full problem state area [0x00000 - 0x1ffff].
1467  */
1468 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1469 {
1470 	if (!(vma->vm_flags & VM_SHARED))
1471 		return -EINVAL;
1472 
1473 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1474 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1475 
1476 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1477 	return 0;
1478 }
1479 
1480 static int spufs_psmap_open(struct inode *inode, struct file *file)
1481 {
1482 	struct spufs_inode_info *i = SPUFS_I(inode);
1483 	struct spu_context *ctx = i->i_ctx;
1484 
1485 	mutex_lock(&ctx->mapping_lock);
1486 	file->private_data = i->i_ctx;
1487 	if (!i->i_openers++)
1488 		ctx->psmap = inode->i_mapping;
1489 	mutex_unlock(&ctx->mapping_lock);
1490 	return nonseekable_open(inode, file);
1491 }
1492 
1493 static int
1494 spufs_psmap_release(struct inode *inode, struct file *file)
1495 {
1496 	struct spufs_inode_info *i = SPUFS_I(inode);
1497 	struct spu_context *ctx = i->i_ctx;
1498 
1499 	mutex_lock(&ctx->mapping_lock);
1500 	if (!--i->i_openers)
1501 		ctx->psmap = NULL;
1502 	mutex_unlock(&ctx->mapping_lock);
1503 	return 0;
1504 }
1505 
1506 static const struct file_operations spufs_psmap_fops = {
1507 	.open	 = spufs_psmap_open,
1508 	.release = spufs_psmap_release,
1509 	.mmap	 = spufs_psmap_mmap,
1510 	.llseek  = no_llseek,
1511 };
1512 
1513 
1514 #if SPUFS_MMAP_4K
1515 static int
1516 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1517 {
1518 	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1519 }
1520 
1521 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1522 	.fault = spufs_mfc_mmap_fault,
1523 };
1524 
1525 /*
1526  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1527  */
1528 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1529 {
1530 	if (!(vma->vm_flags & VM_SHARED))
1531 		return -EINVAL;
1532 
1533 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1534 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1535 
1536 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1537 	return 0;
1538 }
1539 #else /* SPUFS_MMAP_4K */
1540 #define spufs_mfc_mmap NULL
1541 #endif /* !SPUFS_MMAP_4K */
1542 
1543 static int spufs_mfc_open(struct inode *inode, struct file *file)
1544 {
1545 	struct spufs_inode_info *i = SPUFS_I(inode);
1546 	struct spu_context *ctx = i->i_ctx;
1547 
1548 	/* we don't want to deal with DMA into other processes */
1549 	if (ctx->owner != current->mm)
1550 		return -EINVAL;
1551 
1552 	if (atomic_read(&inode->i_count) != 1)
1553 		return -EBUSY;
1554 
1555 	mutex_lock(&ctx->mapping_lock);
1556 	file->private_data = ctx;
1557 	if (!i->i_openers++)
1558 		ctx->mfc = inode->i_mapping;
1559 	mutex_unlock(&ctx->mapping_lock);
1560 	return nonseekable_open(inode, file);
1561 }
1562 
1563 static int
1564 spufs_mfc_release(struct inode *inode, struct file *file)
1565 {
1566 	struct spufs_inode_info *i = SPUFS_I(inode);
1567 	struct spu_context *ctx = i->i_ctx;
1568 
1569 	mutex_lock(&ctx->mapping_lock);
1570 	if (!--i->i_openers)
1571 		ctx->mfc = NULL;
1572 	mutex_unlock(&ctx->mapping_lock);
1573 	return 0;
1574 }
1575 
1576 /* interrupt-level mfc callback function. */
1577 void spufs_mfc_callback(struct spu *spu)
1578 {
1579 	struct spu_context *ctx = spu->ctx;
1580 
1581 	if (!ctx)
1582 		return;
1583 
1584 	wake_up_all(&ctx->mfc_wq);
1585 
1586 	pr_debug("%s %s\n", __func__, spu->name);
1587 	if (ctx->mfc_fasync) {
1588 		u32 free_elements, tagstatus;
1589 		unsigned int mask;
1590 
1591 		/* no need for spu_acquire in interrupt context */
1592 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1593 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1594 
1595 		mask = 0;
1596 		if (free_elements & 0xffff)
1597 			mask |= POLLOUT;
1598 		if (tagstatus & ctx->tagwait)
1599 			mask |= POLLIN;
1600 
1601 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1602 	}
1603 }
1604 
1605 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1606 {
1607 	/* See if there is one tag group is complete */
1608 	/* FIXME we need locking around tagwait */
1609 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1610 	ctx->tagwait &= ~*status;
1611 	if (*status)
1612 		return 1;
1613 
1614 	/* enable interrupt waiting for any tag group,
1615 	   may silently fail if interrupts are already enabled */
1616 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1617 	return 0;
1618 }
1619 
1620 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1621 			size_t size, loff_t *pos)
1622 {
1623 	struct spu_context *ctx = file->private_data;
1624 	int ret = -EINVAL;
1625 	u32 status;
1626 
1627 	if (size != 4)
1628 		goto out;
1629 
1630 	ret = spu_acquire(ctx);
1631 	if (ret)
1632 		return ret;
1633 
1634 	ret = -EINVAL;
1635 	if (file->f_flags & O_NONBLOCK) {
1636 		status = ctx->ops->read_mfc_tagstatus(ctx);
1637 		if (!(status & ctx->tagwait))
1638 			ret = -EAGAIN;
1639 		else
1640 			/* XXX(hch): shouldn't we clear ret here? */
1641 			ctx->tagwait &= ~status;
1642 	} else {
1643 		ret = spufs_wait(ctx->mfc_wq,
1644 			   spufs_read_mfc_tagstatus(ctx, &status));
1645 		if (ret)
1646 			goto out;
1647 	}
1648 	spu_release(ctx);
1649 
1650 	ret = 4;
1651 	if (copy_to_user(buffer, &status, 4))
1652 		ret = -EFAULT;
1653 
1654 out:
1655 	return ret;
1656 }
1657 
1658 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1659 {
1660 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1661 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1662 
1663 	switch (cmd->cmd) {
1664 	case MFC_PUT_CMD:
1665 	case MFC_PUTF_CMD:
1666 	case MFC_PUTB_CMD:
1667 	case MFC_GET_CMD:
1668 	case MFC_GETF_CMD:
1669 	case MFC_GETB_CMD:
1670 		break;
1671 	default:
1672 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1673 		return -EIO;
1674 	}
1675 
1676 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1677 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1678 				cmd->ea, cmd->lsa);
1679 		return -EIO;
1680 	}
1681 
1682 	switch (cmd->size & 0xf) {
1683 	case 1:
1684 		break;
1685 	case 2:
1686 		if (cmd->lsa & 1)
1687 			goto error;
1688 		break;
1689 	case 4:
1690 		if (cmd->lsa & 3)
1691 			goto error;
1692 		break;
1693 	case 8:
1694 		if (cmd->lsa & 7)
1695 			goto error;
1696 		break;
1697 	case 0:
1698 		if (cmd->lsa & 15)
1699 			goto error;
1700 		break;
1701 	error:
1702 	default:
1703 		pr_debug("invalid DMA alignment %x for size %x\n",
1704 			cmd->lsa & 0xf, cmd->size);
1705 		return -EIO;
1706 	}
1707 
1708 	if (cmd->size > 16 * 1024) {
1709 		pr_debug("invalid DMA size %x\n", cmd->size);
1710 		return -EIO;
1711 	}
1712 
1713 	if (cmd->tag & 0xfff0) {
1714 		/* we reserve the higher tag numbers for kernel use */
1715 		pr_debug("invalid DMA tag\n");
1716 		return -EIO;
1717 	}
1718 
1719 	if (cmd->class) {
1720 		/* not supported in this version */
1721 		pr_debug("invalid DMA class\n");
1722 		return -EIO;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static int spu_send_mfc_command(struct spu_context *ctx,
1729 				struct mfc_dma_command cmd,
1730 				int *error)
1731 {
1732 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1733 	if (*error == -EAGAIN) {
1734 		/* wait for any tag group to complete
1735 		   so we have space for the new command */
1736 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1737 		/* try again, because the queue might be
1738 		   empty again */
1739 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1740 		if (*error == -EAGAIN)
1741 			return 0;
1742 	}
1743 	return 1;
1744 }
1745 
1746 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1747 			size_t size, loff_t *pos)
1748 {
1749 	struct spu_context *ctx = file->private_data;
1750 	struct mfc_dma_command cmd;
1751 	int ret = -EINVAL;
1752 
1753 	if (size != sizeof cmd)
1754 		goto out;
1755 
1756 	ret = -EFAULT;
1757 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1758 		goto out;
1759 
1760 	ret = spufs_check_valid_dma(&cmd);
1761 	if (ret)
1762 		goto out;
1763 
1764 	ret = spu_acquire(ctx);
1765 	if (ret)
1766 		goto out;
1767 
1768 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1769 	if (ret)
1770 		goto out;
1771 
1772 	if (file->f_flags & O_NONBLOCK) {
1773 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1774 	} else {
1775 		int status;
1776 		ret = spufs_wait(ctx->mfc_wq,
1777 				 spu_send_mfc_command(ctx, cmd, &status));
1778 		if (ret)
1779 			goto out;
1780 		if (status)
1781 			ret = status;
1782 	}
1783 
1784 	if (ret)
1785 		goto out_unlock;
1786 
1787 	ctx->tagwait |= 1 << cmd.tag;
1788 	ret = size;
1789 
1790 out_unlock:
1791 	spu_release(ctx);
1792 out:
1793 	return ret;
1794 }
1795 
1796 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1797 {
1798 	struct spu_context *ctx = file->private_data;
1799 	u32 free_elements, tagstatus;
1800 	unsigned int mask;
1801 
1802 	poll_wait(file, &ctx->mfc_wq, wait);
1803 
1804 	/*
1805 	 * For now keep this uninterruptible and also ignore the rule
1806 	 * that poll should not sleep.  Will be fixed later.
1807 	 */
1808 	mutex_lock(&ctx->state_mutex);
1809 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1810 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1811 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1812 	spu_release(ctx);
1813 
1814 	mask = 0;
1815 	if (free_elements & 0xffff)
1816 		mask |= POLLOUT | POLLWRNORM;
1817 	if (tagstatus & ctx->tagwait)
1818 		mask |= POLLIN | POLLRDNORM;
1819 
1820 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1821 		free_elements, tagstatus, ctx->tagwait);
1822 
1823 	return mask;
1824 }
1825 
1826 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1827 {
1828 	struct spu_context *ctx = file->private_data;
1829 	int ret;
1830 
1831 	ret = spu_acquire(ctx);
1832 	if (ret)
1833 		goto out;
1834 #if 0
1835 /* this currently hangs */
1836 	ret = spufs_wait(ctx->mfc_wq,
1837 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1838 	if (ret)
1839 		goto out;
1840 	ret = spufs_wait(ctx->mfc_wq,
1841 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1842 	if (ret)
1843 		goto out;
1844 #else
1845 	ret = 0;
1846 #endif
1847 	spu_release(ctx);
1848 out:
1849 	return ret;
1850 }
1851 
1852 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1853 {
1854 	struct inode *inode = file_inode(file);
1855 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1856 	if (!err) {
1857 		mutex_lock(&inode->i_mutex);
1858 		err = spufs_mfc_flush(file, NULL);
1859 		mutex_unlock(&inode->i_mutex);
1860 	}
1861 	return err;
1862 }
1863 
1864 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1865 {
1866 	struct spu_context *ctx = file->private_data;
1867 
1868 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1869 }
1870 
1871 static const struct file_operations spufs_mfc_fops = {
1872 	.open	 = spufs_mfc_open,
1873 	.release = spufs_mfc_release,
1874 	.read	 = spufs_mfc_read,
1875 	.write	 = spufs_mfc_write,
1876 	.poll	 = spufs_mfc_poll,
1877 	.flush	 = spufs_mfc_flush,
1878 	.fsync	 = spufs_mfc_fsync,
1879 	.fasync	 = spufs_mfc_fasync,
1880 	.mmap	 = spufs_mfc_mmap,
1881 	.llseek  = no_llseek,
1882 };
1883 
1884 static int spufs_npc_set(void *data, u64 val)
1885 {
1886 	struct spu_context *ctx = data;
1887 	int ret;
1888 
1889 	ret = spu_acquire(ctx);
1890 	if (ret)
1891 		return ret;
1892 	ctx->ops->npc_write(ctx, val);
1893 	spu_release(ctx);
1894 
1895 	return 0;
1896 }
1897 
1898 static u64 spufs_npc_get(struct spu_context *ctx)
1899 {
1900 	return ctx->ops->npc_read(ctx);
1901 }
1902 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1903 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1904 
1905 static int spufs_decr_set(void *data, u64 val)
1906 {
1907 	struct spu_context *ctx = data;
1908 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1909 	int ret;
1910 
1911 	ret = spu_acquire_saved(ctx);
1912 	if (ret)
1913 		return ret;
1914 	lscsa->decr.slot[0] = (u32) val;
1915 	spu_release_saved(ctx);
1916 
1917 	return 0;
1918 }
1919 
1920 static u64 spufs_decr_get(struct spu_context *ctx)
1921 {
1922 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1923 	return lscsa->decr.slot[0];
1924 }
1925 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1926 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1927 
1928 static int spufs_decr_status_set(void *data, u64 val)
1929 {
1930 	struct spu_context *ctx = data;
1931 	int ret;
1932 
1933 	ret = spu_acquire_saved(ctx);
1934 	if (ret)
1935 		return ret;
1936 	if (val)
1937 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1938 	else
1939 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1940 	spu_release_saved(ctx);
1941 
1942 	return 0;
1943 }
1944 
1945 static u64 spufs_decr_status_get(struct spu_context *ctx)
1946 {
1947 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1948 		return SPU_DECR_STATUS_RUNNING;
1949 	else
1950 		return 0;
1951 }
1952 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1953 		       spufs_decr_status_set, "0x%llx\n",
1954 		       SPU_ATTR_ACQUIRE_SAVED);
1955 
1956 static int spufs_event_mask_set(void *data, u64 val)
1957 {
1958 	struct spu_context *ctx = data;
1959 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1960 	int ret;
1961 
1962 	ret = spu_acquire_saved(ctx);
1963 	if (ret)
1964 		return ret;
1965 	lscsa->event_mask.slot[0] = (u32) val;
1966 	spu_release_saved(ctx);
1967 
1968 	return 0;
1969 }
1970 
1971 static u64 spufs_event_mask_get(struct spu_context *ctx)
1972 {
1973 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1974 	return lscsa->event_mask.slot[0];
1975 }
1976 
1977 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1978 		       spufs_event_mask_set, "0x%llx\n",
1979 		       SPU_ATTR_ACQUIRE_SAVED);
1980 
1981 static u64 spufs_event_status_get(struct spu_context *ctx)
1982 {
1983 	struct spu_state *state = &ctx->csa;
1984 	u64 stat;
1985 	stat = state->spu_chnlcnt_RW[0];
1986 	if (stat)
1987 		return state->spu_chnldata_RW[0];
1988 	return 0;
1989 }
1990 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1991 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1992 
1993 static int spufs_srr0_set(void *data, u64 val)
1994 {
1995 	struct spu_context *ctx = data;
1996 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1997 	int ret;
1998 
1999 	ret = spu_acquire_saved(ctx);
2000 	if (ret)
2001 		return ret;
2002 	lscsa->srr0.slot[0] = (u32) val;
2003 	spu_release_saved(ctx);
2004 
2005 	return 0;
2006 }
2007 
2008 static u64 spufs_srr0_get(struct spu_context *ctx)
2009 {
2010 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2011 	return lscsa->srr0.slot[0];
2012 }
2013 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2014 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2015 
2016 static u64 spufs_id_get(struct spu_context *ctx)
2017 {
2018 	u64 num;
2019 
2020 	if (ctx->state == SPU_STATE_RUNNABLE)
2021 		num = ctx->spu->number;
2022 	else
2023 		num = (unsigned int)-1;
2024 
2025 	return num;
2026 }
2027 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2028 		       SPU_ATTR_ACQUIRE)
2029 
2030 static u64 spufs_object_id_get(struct spu_context *ctx)
2031 {
2032 	/* FIXME: Should there really be no locking here? */
2033 	return ctx->object_id;
2034 }
2035 
2036 static int spufs_object_id_set(void *data, u64 id)
2037 {
2038 	struct spu_context *ctx = data;
2039 	ctx->object_id = id;
2040 
2041 	return 0;
2042 }
2043 
2044 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2045 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2046 
2047 static u64 spufs_lslr_get(struct spu_context *ctx)
2048 {
2049 	return ctx->csa.priv2.spu_lslr_RW;
2050 }
2051 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2052 		       SPU_ATTR_ACQUIRE_SAVED);
2053 
2054 static int spufs_info_open(struct inode *inode, struct file *file)
2055 {
2056 	struct spufs_inode_info *i = SPUFS_I(inode);
2057 	struct spu_context *ctx = i->i_ctx;
2058 	file->private_data = ctx;
2059 	return 0;
2060 }
2061 
2062 static int spufs_caps_show(struct seq_file *s, void *private)
2063 {
2064 	struct spu_context *ctx = s->private;
2065 
2066 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2067 		seq_puts(s, "sched\n");
2068 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2069 		seq_puts(s, "step\n");
2070 	return 0;
2071 }
2072 
2073 static int spufs_caps_open(struct inode *inode, struct file *file)
2074 {
2075 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2076 }
2077 
2078 static const struct file_operations spufs_caps_fops = {
2079 	.open		= spufs_caps_open,
2080 	.read		= seq_read,
2081 	.llseek		= seq_lseek,
2082 	.release	= single_release,
2083 };
2084 
2085 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2086 			char __user *buf, size_t len, loff_t *pos)
2087 {
2088 	u32 data;
2089 
2090 	/* EOF if there's no entry in the mbox */
2091 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2092 		return 0;
2093 
2094 	data = ctx->csa.prob.pu_mb_R;
2095 
2096 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2097 }
2098 
2099 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2100 				   size_t len, loff_t *pos)
2101 {
2102 	int ret;
2103 	struct spu_context *ctx = file->private_data;
2104 
2105 	if (!access_ok(VERIFY_WRITE, buf, len))
2106 		return -EFAULT;
2107 
2108 	ret = spu_acquire_saved(ctx);
2109 	if (ret)
2110 		return ret;
2111 	spin_lock(&ctx->csa.register_lock);
2112 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2113 	spin_unlock(&ctx->csa.register_lock);
2114 	spu_release_saved(ctx);
2115 
2116 	return ret;
2117 }
2118 
2119 static const struct file_operations spufs_mbox_info_fops = {
2120 	.open = spufs_info_open,
2121 	.read = spufs_mbox_info_read,
2122 	.llseek  = generic_file_llseek,
2123 };
2124 
2125 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2126 				char __user *buf, size_t len, loff_t *pos)
2127 {
2128 	u32 data;
2129 
2130 	/* EOF if there's no entry in the ibox */
2131 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2132 		return 0;
2133 
2134 	data = ctx->csa.priv2.puint_mb_R;
2135 
2136 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2137 }
2138 
2139 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2140 				   size_t len, loff_t *pos)
2141 {
2142 	struct spu_context *ctx = file->private_data;
2143 	int ret;
2144 
2145 	if (!access_ok(VERIFY_WRITE, buf, len))
2146 		return -EFAULT;
2147 
2148 	ret = spu_acquire_saved(ctx);
2149 	if (ret)
2150 		return ret;
2151 	spin_lock(&ctx->csa.register_lock);
2152 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2153 	spin_unlock(&ctx->csa.register_lock);
2154 	spu_release_saved(ctx);
2155 
2156 	return ret;
2157 }
2158 
2159 static const struct file_operations spufs_ibox_info_fops = {
2160 	.open = spufs_info_open,
2161 	.read = spufs_ibox_info_read,
2162 	.llseek  = generic_file_llseek,
2163 };
2164 
2165 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2166 			char __user *buf, size_t len, loff_t *pos)
2167 {
2168 	int i, cnt;
2169 	u32 data[4];
2170 	u32 wbox_stat;
2171 
2172 	wbox_stat = ctx->csa.prob.mb_stat_R;
2173 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2174 	for (i = 0; i < cnt; i++) {
2175 		data[i] = ctx->csa.spu_mailbox_data[i];
2176 	}
2177 
2178 	return simple_read_from_buffer(buf, len, pos, &data,
2179 				cnt * sizeof(u32));
2180 }
2181 
2182 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2183 				   size_t len, loff_t *pos)
2184 {
2185 	struct spu_context *ctx = file->private_data;
2186 	int ret;
2187 
2188 	if (!access_ok(VERIFY_WRITE, buf, len))
2189 		return -EFAULT;
2190 
2191 	ret = spu_acquire_saved(ctx);
2192 	if (ret)
2193 		return ret;
2194 	spin_lock(&ctx->csa.register_lock);
2195 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2196 	spin_unlock(&ctx->csa.register_lock);
2197 	spu_release_saved(ctx);
2198 
2199 	return ret;
2200 }
2201 
2202 static const struct file_operations spufs_wbox_info_fops = {
2203 	.open = spufs_info_open,
2204 	.read = spufs_wbox_info_read,
2205 	.llseek  = generic_file_llseek,
2206 };
2207 
2208 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2209 			char __user *buf, size_t len, loff_t *pos)
2210 {
2211 	struct spu_dma_info info;
2212 	struct mfc_cq_sr *qp, *spuqp;
2213 	int i;
2214 
2215 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2216 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2217 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2218 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2219 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2220 	for (i = 0; i < 16; i++) {
2221 		qp = &info.dma_info_command_data[i];
2222 		spuqp = &ctx->csa.priv2.spuq[i];
2223 
2224 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2225 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2226 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2227 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2228 	}
2229 
2230 	return simple_read_from_buffer(buf, len, pos, &info,
2231 				sizeof info);
2232 }
2233 
2234 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2235 			      size_t len, loff_t *pos)
2236 {
2237 	struct spu_context *ctx = file->private_data;
2238 	int ret;
2239 
2240 	if (!access_ok(VERIFY_WRITE, buf, len))
2241 		return -EFAULT;
2242 
2243 	ret = spu_acquire_saved(ctx);
2244 	if (ret)
2245 		return ret;
2246 	spin_lock(&ctx->csa.register_lock);
2247 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2248 	spin_unlock(&ctx->csa.register_lock);
2249 	spu_release_saved(ctx);
2250 
2251 	return ret;
2252 }
2253 
2254 static const struct file_operations spufs_dma_info_fops = {
2255 	.open = spufs_info_open,
2256 	.read = spufs_dma_info_read,
2257 	.llseek = no_llseek,
2258 };
2259 
2260 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2261 			char __user *buf, size_t len, loff_t *pos)
2262 {
2263 	struct spu_proxydma_info info;
2264 	struct mfc_cq_sr *qp, *puqp;
2265 	int ret = sizeof info;
2266 	int i;
2267 
2268 	if (len < ret)
2269 		return -EINVAL;
2270 
2271 	if (!access_ok(VERIFY_WRITE, buf, len))
2272 		return -EFAULT;
2273 
2274 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2275 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2276 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2277 	for (i = 0; i < 8; i++) {
2278 		qp = &info.proxydma_info_command_data[i];
2279 		puqp = &ctx->csa.priv2.puq[i];
2280 
2281 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2282 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2283 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2284 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2285 	}
2286 
2287 	return simple_read_from_buffer(buf, len, pos, &info,
2288 				sizeof info);
2289 }
2290 
2291 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2292 				   size_t len, loff_t *pos)
2293 {
2294 	struct spu_context *ctx = file->private_data;
2295 	int ret;
2296 
2297 	ret = spu_acquire_saved(ctx);
2298 	if (ret)
2299 		return ret;
2300 	spin_lock(&ctx->csa.register_lock);
2301 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2302 	spin_unlock(&ctx->csa.register_lock);
2303 	spu_release_saved(ctx);
2304 
2305 	return ret;
2306 }
2307 
2308 static const struct file_operations spufs_proxydma_info_fops = {
2309 	.open = spufs_info_open,
2310 	.read = spufs_proxydma_info_read,
2311 	.llseek = no_llseek,
2312 };
2313 
2314 static int spufs_show_tid(struct seq_file *s, void *private)
2315 {
2316 	struct spu_context *ctx = s->private;
2317 
2318 	seq_printf(s, "%d\n", ctx->tid);
2319 	return 0;
2320 }
2321 
2322 static int spufs_tid_open(struct inode *inode, struct file *file)
2323 {
2324 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2325 }
2326 
2327 static const struct file_operations spufs_tid_fops = {
2328 	.open		= spufs_tid_open,
2329 	.read		= seq_read,
2330 	.llseek		= seq_lseek,
2331 	.release	= single_release,
2332 };
2333 
2334 static const char *ctx_state_names[] = {
2335 	"user", "system", "iowait", "loaded"
2336 };
2337 
2338 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2339 		enum spu_utilization_state state)
2340 {
2341 	struct timespec ts;
2342 	unsigned long long time = ctx->stats.times[state];
2343 
2344 	/*
2345 	 * In general, utilization statistics are updated by the controlling
2346 	 * thread as the spu context moves through various well defined
2347 	 * state transitions, but if the context is lazily loaded its
2348 	 * utilization statistics are not updated as the controlling thread
2349 	 * is not tightly coupled with the execution of the spu context.  We
2350 	 * calculate and apply the time delta from the last recorded state
2351 	 * of the spu context.
2352 	 */
2353 	if (ctx->spu && ctx->stats.util_state == state) {
2354 		ktime_get_ts(&ts);
2355 		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2356 	}
2357 
2358 	return time / NSEC_PER_MSEC;
2359 }
2360 
2361 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2362 {
2363 	unsigned long long slb_flts = ctx->stats.slb_flt;
2364 
2365 	if (ctx->state == SPU_STATE_RUNNABLE) {
2366 		slb_flts += (ctx->spu->stats.slb_flt -
2367 			     ctx->stats.slb_flt_base);
2368 	}
2369 
2370 	return slb_flts;
2371 }
2372 
2373 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2374 {
2375 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2376 
2377 	if (ctx->state == SPU_STATE_RUNNABLE) {
2378 		class2_intrs += (ctx->spu->stats.class2_intr -
2379 				 ctx->stats.class2_intr_base);
2380 	}
2381 
2382 	return class2_intrs;
2383 }
2384 
2385 
2386 static int spufs_show_stat(struct seq_file *s, void *private)
2387 {
2388 	struct spu_context *ctx = s->private;
2389 	int ret;
2390 
2391 	ret = spu_acquire(ctx);
2392 	if (ret)
2393 		return ret;
2394 
2395 	seq_printf(s, "%s %llu %llu %llu %llu "
2396 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2397 		ctx_state_names[ctx->stats.util_state],
2398 		spufs_acct_time(ctx, SPU_UTIL_USER),
2399 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2400 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2401 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2402 		ctx->stats.vol_ctx_switch,
2403 		ctx->stats.invol_ctx_switch,
2404 		spufs_slb_flts(ctx),
2405 		ctx->stats.hash_flt,
2406 		ctx->stats.min_flt,
2407 		ctx->stats.maj_flt,
2408 		spufs_class2_intrs(ctx),
2409 		ctx->stats.libassist);
2410 	spu_release(ctx);
2411 	return 0;
2412 }
2413 
2414 static int spufs_stat_open(struct inode *inode, struct file *file)
2415 {
2416 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2417 }
2418 
2419 static const struct file_operations spufs_stat_fops = {
2420 	.open		= spufs_stat_open,
2421 	.read		= seq_read,
2422 	.llseek		= seq_lseek,
2423 	.release	= single_release,
2424 };
2425 
2426 static inline int spufs_switch_log_used(struct spu_context *ctx)
2427 {
2428 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2429 		SWITCH_LOG_BUFSIZE;
2430 }
2431 
2432 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2433 {
2434 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2435 }
2436 
2437 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2438 {
2439 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2440 	int rc;
2441 
2442 	rc = spu_acquire(ctx);
2443 	if (rc)
2444 		return rc;
2445 
2446 	if (ctx->switch_log) {
2447 		rc = -EBUSY;
2448 		goto out;
2449 	}
2450 
2451 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2452 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2453 		GFP_KERNEL);
2454 
2455 	if (!ctx->switch_log) {
2456 		rc = -ENOMEM;
2457 		goto out;
2458 	}
2459 
2460 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2461 	init_waitqueue_head(&ctx->switch_log->wait);
2462 	rc = 0;
2463 
2464 out:
2465 	spu_release(ctx);
2466 	return rc;
2467 }
2468 
2469 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2470 {
2471 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2472 	int rc;
2473 
2474 	rc = spu_acquire(ctx);
2475 	if (rc)
2476 		return rc;
2477 
2478 	kfree(ctx->switch_log);
2479 	ctx->switch_log = NULL;
2480 	spu_release(ctx);
2481 
2482 	return 0;
2483 }
2484 
2485 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2486 {
2487 	struct switch_log_entry *p;
2488 
2489 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2490 
2491 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2492 			(unsigned int) p->tstamp.tv_sec,
2493 			(unsigned int) p->tstamp.tv_nsec,
2494 			p->spu_id,
2495 			(unsigned int) p->type,
2496 			(unsigned int) p->val,
2497 			(unsigned long long) p->timebase);
2498 }
2499 
2500 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2501 			     size_t len, loff_t *ppos)
2502 {
2503 	struct inode *inode = file_inode(file);
2504 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2505 	int error = 0, cnt = 0;
2506 
2507 	if (!buf)
2508 		return -EINVAL;
2509 
2510 	error = spu_acquire(ctx);
2511 	if (error)
2512 		return error;
2513 
2514 	while (cnt < len) {
2515 		char tbuf[128];
2516 		int width;
2517 
2518 		if (spufs_switch_log_used(ctx) == 0) {
2519 			if (cnt > 0) {
2520 				/* If there's data ready to go, we can
2521 				 * just return straight away */
2522 				break;
2523 
2524 			} else if (file->f_flags & O_NONBLOCK) {
2525 				error = -EAGAIN;
2526 				break;
2527 
2528 			} else {
2529 				/* spufs_wait will drop the mutex and
2530 				 * re-acquire, but since we're in read(), the
2531 				 * file cannot be _released (and so
2532 				 * ctx->switch_log is stable).
2533 				 */
2534 				error = spufs_wait(ctx->switch_log->wait,
2535 						spufs_switch_log_used(ctx) > 0);
2536 
2537 				/* On error, spufs_wait returns without the
2538 				 * state mutex held */
2539 				if (error)
2540 					return error;
2541 
2542 				/* We may have had entries read from underneath
2543 				 * us while we dropped the mutex in spufs_wait,
2544 				 * so re-check */
2545 				if (spufs_switch_log_used(ctx) == 0)
2546 					continue;
2547 			}
2548 		}
2549 
2550 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2551 		if (width < len)
2552 			ctx->switch_log->tail =
2553 				(ctx->switch_log->tail + 1) %
2554 				 SWITCH_LOG_BUFSIZE;
2555 		else
2556 			/* If the record is greater than space available return
2557 			 * partial buffer (so far) */
2558 			break;
2559 
2560 		error = copy_to_user(buf + cnt, tbuf, width);
2561 		if (error)
2562 			break;
2563 		cnt += width;
2564 	}
2565 
2566 	spu_release(ctx);
2567 
2568 	return cnt == 0 ? error : cnt;
2569 }
2570 
2571 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2572 {
2573 	struct inode *inode = file_inode(file);
2574 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2575 	unsigned int mask = 0;
2576 	int rc;
2577 
2578 	poll_wait(file, &ctx->switch_log->wait, wait);
2579 
2580 	rc = spu_acquire(ctx);
2581 	if (rc)
2582 		return rc;
2583 
2584 	if (spufs_switch_log_used(ctx) > 0)
2585 		mask |= POLLIN;
2586 
2587 	spu_release(ctx);
2588 
2589 	return mask;
2590 }
2591 
2592 static const struct file_operations spufs_switch_log_fops = {
2593 	.open		= spufs_switch_log_open,
2594 	.read		= spufs_switch_log_read,
2595 	.poll		= spufs_switch_log_poll,
2596 	.release	= spufs_switch_log_release,
2597 	.llseek		= no_llseek,
2598 };
2599 
2600 /**
2601  * Log a context switch event to a switch log reader.
2602  *
2603  * Must be called with ctx->state_mutex held.
2604  */
2605 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2606 		u32 type, u32 val)
2607 {
2608 	if (!ctx->switch_log)
2609 		return;
2610 
2611 	if (spufs_switch_log_avail(ctx) > 1) {
2612 		struct switch_log_entry *p;
2613 
2614 		p = ctx->switch_log->log + ctx->switch_log->head;
2615 		ktime_get_ts(&p->tstamp);
2616 		p->timebase = get_tb();
2617 		p->spu_id = spu ? spu->number : -1;
2618 		p->type = type;
2619 		p->val = val;
2620 
2621 		ctx->switch_log->head =
2622 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2623 	}
2624 
2625 	wake_up(&ctx->switch_log->wait);
2626 }
2627 
2628 static int spufs_show_ctx(struct seq_file *s, void *private)
2629 {
2630 	struct spu_context *ctx = s->private;
2631 	u64 mfc_control_RW;
2632 
2633 	mutex_lock(&ctx->state_mutex);
2634 	if (ctx->spu) {
2635 		struct spu *spu = ctx->spu;
2636 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2637 
2638 		spin_lock_irq(&spu->register_lock);
2639 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2640 		spin_unlock_irq(&spu->register_lock);
2641 	} else {
2642 		struct spu_state *csa = &ctx->csa;
2643 
2644 		mfc_control_RW = csa->priv2.mfc_control_RW;
2645 	}
2646 
2647 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2648 		" %c %llx %llx %llx %llx %x %x\n",
2649 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2650 		ctx->flags,
2651 		ctx->sched_flags,
2652 		ctx->prio,
2653 		ctx->time_slice,
2654 		ctx->spu ? ctx->spu->number : -1,
2655 		!list_empty(&ctx->rq) ? 'q' : ' ',
2656 		ctx->csa.class_0_pending,
2657 		ctx->csa.class_0_dar,
2658 		ctx->csa.class_1_dsisr,
2659 		mfc_control_RW,
2660 		ctx->ops->runcntl_read(ctx),
2661 		ctx->ops->status_read(ctx));
2662 
2663 	mutex_unlock(&ctx->state_mutex);
2664 
2665 	return 0;
2666 }
2667 
2668 static int spufs_ctx_open(struct inode *inode, struct file *file)
2669 {
2670 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2671 }
2672 
2673 static const struct file_operations spufs_ctx_fops = {
2674 	.open           = spufs_ctx_open,
2675 	.read           = seq_read,
2676 	.llseek         = seq_lseek,
2677 	.release        = single_release,
2678 };
2679 
2680 const struct spufs_tree_descr spufs_dir_contents[] = {
2681 	{ "capabilities", &spufs_caps_fops, 0444, },
2682 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2683 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2684 	{ "mbox", &spufs_mbox_fops, 0444, },
2685 	{ "ibox", &spufs_ibox_fops, 0444, },
2686 	{ "wbox", &spufs_wbox_fops, 0222, },
2687 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2688 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2689 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2690 	{ "signal1", &spufs_signal1_fops, 0666, },
2691 	{ "signal2", &spufs_signal2_fops, 0666, },
2692 	{ "signal1_type", &spufs_signal1_type, 0666, },
2693 	{ "signal2_type", &spufs_signal2_type, 0666, },
2694 	{ "cntl", &spufs_cntl_fops,  0666, },
2695 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2696 	{ "lslr", &spufs_lslr_ops, 0444, },
2697 	{ "mfc", &spufs_mfc_fops, 0666, },
2698 	{ "mss", &spufs_mss_fops, 0666, },
2699 	{ "npc", &spufs_npc_ops, 0666, },
2700 	{ "srr0", &spufs_srr0_ops, 0666, },
2701 	{ "decr", &spufs_decr_ops, 0666, },
2702 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2703 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2704 	{ "event_status", &spufs_event_status_ops, 0444, },
2705 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2706 	{ "phys-id", &spufs_id_ops, 0666, },
2707 	{ "object-id", &spufs_object_id_ops, 0666, },
2708 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2709 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2710 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2711 	{ "dma_info", &spufs_dma_info_fops, 0444,
2712 		sizeof(struct spu_dma_info), },
2713 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2714 		sizeof(struct spu_proxydma_info)},
2715 	{ "tid", &spufs_tid_fops, 0444, },
2716 	{ "stat", &spufs_stat_fops, 0444, },
2717 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2718 	{},
2719 };
2720 
2721 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2722 	{ "capabilities", &spufs_caps_fops, 0444, },
2723 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2724 	{ "mbox", &spufs_mbox_fops, 0444, },
2725 	{ "ibox", &spufs_ibox_fops, 0444, },
2726 	{ "wbox", &spufs_wbox_fops, 0222, },
2727 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2728 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2729 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2730 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2731 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2732 	{ "signal1_type", &spufs_signal1_type, 0666, },
2733 	{ "signal2_type", &spufs_signal2_type, 0666, },
2734 	{ "mss", &spufs_mss_fops, 0666, },
2735 	{ "mfc", &spufs_mfc_fops, 0666, },
2736 	{ "cntl", &spufs_cntl_fops,  0666, },
2737 	{ "npc", &spufs_npc_ops, 0666, },
2738 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2739 	{ "phys-id", &spufs_id_ops, 0666, },
2740 	{ "object-id", &spufs_object_id_ops, 0666, },
2741 	{ "tid", &spufs_tid_fops, 0444, },
2742 	{ "stat", &spufs_stat_fops, 0444, },
2743 	{},
2744 };
2745 
2746 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2747 	{ ".ctx", &spufs_ctx_fops, 0444, },
2748 	{},
2749 };
2750 
2751 const struct spufs_coredump_reader spufs_coredump_read[] = {
2752 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2753 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2754 	{ "lslr", NULL, spufs_lslr_get, 19 },
2755 	{ "decr", NULL, spufs_decr_get, 19 },
2756 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2757 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2758 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2759 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2760 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2761 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2762 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2763 	{ "event_status", NULL, spufs_event_status_get, 19 },
2764 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2765 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2766 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2767 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2768 	{ "proxydma_info", __spufs_proxydma_info_read,
2769 			   NULL, sizeof(struct spu_proxydma_info)},
2770 	{ "object-id", NULL, spufs_object_id_get, 19 },
2771 	{ "npc", NULL, spufs_npc_get, 19 },
2772 	{ NULL },
2773 };
2774