xref: /linux/arch/powerpc/platforms/cell/spufs/file.c (revision 5a4332062e9e71de8e78dc1b389d21e0dd44848b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SPU file system -- file contents
4  *
5  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6  *
7  * Author: Arnd Bergmann <arndb@de.ibm.com>
8  */
9 
10 #undef DEBUG
11 
12 #include <linux/coredump.h>
13 #include <linux/fs.h>
14 #include <linux/ioctl.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/poll.h>
18 #include <linux/ptrace.h>
19 #include <linux/seq_file.h>
20 #include <linux/slab.h>
21 
22 #include <asm/io.h>
23 #include <asm/time.h>
24 #include <asm/spu.h>
25 #include <asm/spu_info.h>
26 #include <linux/uaccess.h>
27 
28 #include "spufs.h"
29 #include "sputrace.h"
30 
31 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
32 
33 /* Simple attribute files */
34 struct spufs_attr {
35 	int (*get)(void *, u64 *);
36 	int (*set)(void *, u64);
37 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
38 	char set_buf[24];
39 	void *data;
40 	const char *fmt;        /* format for read operation */
41 	struct mutex mutex;     /* protects access to these buffers */
42 };
43 
44 static int spufs_attr_open(struct inode *inode, struct file *file,
45 		int (*get)(void *, u64 *), int (*set)(void *, u64),
46 		const char *fmt)
47 {
48 	struct spufs_attr *attr;
49 
50 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
51 	if (!attr)
52 		return -ENOMEM;
53 
54 	attr->get = get;
55 	attr->set = set;
56 	attr->data = inode->i_private;
57 	attr->fmt = fmt;
58 	mutex_init(&attr->mutex);
59 	file->private_data = attr;
60 
61 	return nonseekable_open(inode, file);
62 }
63 
64 static int spufs_attr_release(struct inode *inode, struct file *file)
65 {
66        kfree(file->private_data);
67 	return 0;
68 }
69 
70 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
71 		size_t len, loff_t *ppos)
72 {
73 	struct spufs_attr *attr;
74 	size_t size;
75 	ssize_t ret;
76 
77 	attr = file->private_data;
78 	if (!attr->get)
79 		return -EACCES;
80 
81 	ret = mutex_lock_interruptible(&attr->mutex);
82 	if (ret)
83 		return ret;
84 
85 	if (*ppos) {		/* continued read */
86 		size = strlen(attr->get_buf);
87 	} else {		/* first read */
88 		u64 val;
89 		ret = attr->get(attr->data, &val);
90 		if (ret)
91 			goto out;
92 
93 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
94 				 attr->fmt, (unsigned long long)val);
95 	}
96 
97 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
98 out:
99 	mutex_unlock(&attr->mutex);
100 	return ret;
101 }
102 
103 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
104 		size_t len, loff_t *ppos)
105 {
106 	struct spufs_attr *attr;
107 	u64 val;
108 	size_t size;
109 	ssize_t ret;
110 
111 	attr = file->private_data;
112 	if (!attr->set)
113 		return -EACCES;
114 
115 	ret = mutex_lock_interruptible(&attr->mutex);
116 	if (ret)
117 		return ret;
118 
119 	ret = -EFAULT;
120 	size = min(sizeof(attr->set_buf) - 1, len);
121 	if (copy_from_user(attr->set_buf, buf, size))
122 		goto out;
123 
124 	ret = len; /* claim we got the whole input */
125 	attr->set_buf[size] = '\0';
126 	val = simple_strtol(attr->set_buf, NULL, 0);
127 	attr->set(attr->data, val);
128 out:
129 	mutex_unlock(&attr->mutex);
130 	return ret;
131 }
132 
133 static ssize_t spufs_dump_emit(struct coredump_params *cprm, void *buf,
134 		size_t size)
135 {
136 	if (!dump_emit(cprm, buf, size))
137 		return -EIO;
138 	return size;
139 }
140 
141 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
142 static int __fops ## _open(struct inode *inode, struct file *file)	\
143 {									\
144 	__simple_attr_check_format(__fmt, 0ull);			\
145 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
146 }									\
147 static const struct file_operations __fops = {				\
148 	.open	 = __fops ## _open,					\
149 	.release = spufs_attr_release,					\
150 	.read	 = spufs_attr_read,					\
151 	.write	 = spufs_attr_write,					\
152 	.llseek  = generic_file_llseek,					\
153 };
154 
155 
156 static int
157 spufs_mem_open(struct inode *inode, struct file *file)
158 {
159 	struct spufs_inode_info *i = SPUFS_I(inode);
160 	struct spu_context *ctx = i->i_ctx;
161 
162 	mutex_lock(&ctx->mapping_lock);
163 	file->private_data = ctx;
164 	if (!i->i_openers++)
165 		ctx->local_store = inode->i_mapping;
166 	mutex_unlock(&ctx->mapping_lock);
167 	return 0;
168 }
169 
170 static int
171 spufs_mem_release(struct inode *inode, struct file *file)
172 {
173 	struct spufs_inode_info *i = SPUFS_I(inode);
174 	struct spu_context *ctx = i->i_ctx;
175 
176 	mutex_lock(&ctx->mapping_lock);
177 	if (!--i->i_openers)
178 		ctx->local_store = NULL;
179 	mutex_unlock(&ctx->mapping_lock);
180 	return 0;
181 }
182 
183 static ssize_t
184 spufs_mem_dump(struct spu_context *ctx, struct coredump_params *cprm)
185 {
186 	return spufs_dump_emit(cprm, ctx->ops->get_ls(ctx), LS_SIZE);
187 }
188 
189 static ssize_t
190 spufs_mem_read(struct file *file, char __user *buffer,
191 				size_t size, loff_t *pos)
192 {
193 	struct spu_context *ctx = file->private_data;
194 	ssize_t ret;
195 
196 	ret = spu_acquire(ctx);
197 	if (ret)
198 		return ret;
199 	ret = simple_read_from_buffer(buffer, size, pos, ctx->ops->get_ls(ctx),
200 				      LS_SIZE);
201 	spu_release(ctx);
202 
203 	return ret;
204 }
205 
206 static ssize_t
207 spufs_mem_write(struct file *file, const char __user *buffer,
208 					size_t size, loff_t *ppos)
209 {
210 	struct spu_context *ctx = file->private_data;
211 	char *local_store;
212 	loff_t pos = *ppos;
213 	int ret;
214 
215 	if (pos > LS_SIZE)
216 		return -EFBIG;
217 
218 	ret = spu_acquire(ctx);
219 	if (ret)
220 		return ret;
221 
222 	local_store = ctx->ops->get_ls(ctx);
223 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
224 	spu_release(ctx);
225 
226 	return size;
227 }
228 
229 static vm_fault_t
230 spufs_mem_mmap_fault(struct vm_fault *vmf)
231 {
232 	struct vm_area_struct *vma = vmf->vma;
233 	struct spu_context *ctx	= vma->vm_file->private_data;
234 	unsigned long pfn, offset;
235 	vm_fault_t ret;
236 
237 	offset = vmf->pgoff << PAGE_SHIFT;
238 	if (offset >= LS_SIZE)
239 		return VM_FAULT_SIGBUS;
240 
241 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
242 			vmf->address, offset);
243 
244 	if (spu_acquire(ctx))
245 		return VM_FAULT_NOPAGE;
246 
247 	if (ctx->state == SPU_STATE_SAVED) {
248 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
249 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
250 	} else {
251 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
252 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
253 	}
254 	ret = vmf_insert_pfn(vma, vmf->address, pfn);
255 
256 	spu_release(ctx);
257 
258 	return ret;
259 }
260 
261 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
262 				unsigned long address,
263 				void *buf, int len, int write)
264 {
265 	struct spu_context *ctx = vma->vm_file->private_data;
266 	unsigned long offset = address - vma->vm_start;
267 	char *local_store;
268 
269 	if (write && !(vma->vm_flags & VM_WRITE))
270 		return -EACCES;
271 	if (spu_acquire(ctx))
272 		return -EINTR;
273 	if ((offset + len) > vma->vm_end)
274 		len = vma->vm_end - offset;
275 	local_store = ctx->ops->get_ls(ctx);
276 	if (write)
277 		memcpy_toio(local_store + offset, buf, len);
278 	else
279 		memcpy_fromio(buf, local_store + offset, len);
280 	spu_release(ctx);
281 	return len;
282 }
283 
284 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
285 	.fault = spufs_mem_mmap_fault,
286 	.access = spufs_mem_mmap_access,
287 };
288 
289 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
290 {
291 	if (!(vma->vm_flags & VM_SHARED))
292 		return -EINVAL;
293 
294 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
295 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
296 
297 	vma->vm_ops = &spufs_mem_mmap_vmops;
298 	return 0;
299 }
300 
301 static const struct file_operations spufs_mem_fops = {
302 	.open			= spufs_mem_open,
303 	.release		= spufs_mem_release,
304 	.read			= spufs_mem_read,
305 	.write			= spufs_mem_write,
306 	.llseek			= generic_file_llseek,
307 	.mmap			= spufs_mem_mmap,
308 };
309 
310 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
311 				    unsigned long ps_offs,
312 				    unsigned long ps_size)
313 {
314 	struct spu_context *ctx = vmf->vma->vm_file->private_data;
315 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
316 	int err = 0;
317 	vm_fault_t ret = VM_FAULT_NOPAGE;
318 
319 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
320 
321 	if (offset >= ps_size)
322 		return VM_FAULT_SIGBUS;
323 
324 	if (fatal_signal_pending(current))
325 		return VM_FAULT_SIGBUS;
326 
327 	/*
328 	 * Because we release the mmap_lock, the context may be destroyed while
329 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
330 	 * in the meantime.
331 	 */
332 	get_spu_context(ctx);
333 
334 	/*
335 	 * We have to wait for context to be loaded before we have
336 	 * pages to hand out to the user, but we don't want to wait
337 	 * with the mmap_lock held.
338 	 * It is possible to drop the mmap_lock here, but then we need
339 	 * to return VM_FAULT_NOPAGE because the mappings may have
340 	 * hanged.
341 	 */
342 	if (spu_acquire(ctx))
343 		goto refault;
344 
345 	if (ctx->state == SPU_STATE_SAVED) {
346 		mmap_read_unlock(current->mm);
347 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
348 		err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
349 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
350 		mmap_read_lock(current->mm);
351 	} else {
352 		area = ctx->spu->problem_phys + ps_offs;
353 		ret = vmf_insert_pfn(vmf->vma, vmf->address,
354 				(area + offset) >> PAGE_SHIFT);
355 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
356 	}
357 
358 	if (!err)
359 		spu_release(ctx);
360 
361 refault:
362 	put_spu_context(ctx);
363 	return ret;
364 }
365 
366 #if SPUFS_MMAP_4K
367 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
368 {
369 	return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
370 }
371 
372 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
373 	.fault = spufs_cntl_mmap_fault,
374 };
375 
376 /*
377  * mmap support for problem state control area [0x4000 - 0x4fff].
378  */
379 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
380 {
381 	if (!(vma->vm_flags & VM_SHARED))
382 		return -EINVAL;
383 
384 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
385 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
386 
387 	vma->vm_ops = &spufs_cntl_mmap_vmops;
388 	return 0;
389 }
390 #else /* SPUFS_MMAP_4K */
391 #define spufs_cntl_mmap NULL
392 #endif /* !SPUFS_MMAP_4K */
393 
394 static int spufs_cntl_get(void *data, u64 *val)
395 {
396 	struct spu_context *ctx = data;
397 	int ret;
398 
399 	ret = spu_acquire(ctx);
400 	if (ret)
401 		return ret;
402 	*val = ctx->ops->status_read(ctx);
403 	spu_release(ctx);
404 
405 	return 0;
406 }
407 
408 static int spufs_cntl_set(void *data, u64 val)
409 {
410 	struct spu_context *ctx = data;
411 	int ret;
412 
413 	ret = spu_acquire(ctx);
414 	if (ret)
415 		return ret;
416 	ctx->ops->runcntl_write(ctx, val);
417 	spu_release(ctx);
418 
419 	return 0;
420 }
421 
422 static int spufs_cntl_open(struct inode *inode, struct file *file)
423 {
424 	struct spufs_inode_info *i = SPUFS_I(inode);
425 	struct spu_context *ctx = i->i_ctx;
426 
427 	mutex_lock(&ctx->mapping_lock);
428 	file->private_data = ctx;
429 	if (!i->i_openers++)
430 		ctx->cntl = inode->i_mapping;
431 	mutex_unlock(&ctx->mapping_lock);
432 	return simple_attr_open(inode, file, spufs_cntl_get,
433 					spufs_cntl_set, "0x%08lx");
434 }
435 
436 static int
437 spufs_cntl_release(struct inode *inode, struct file *file)
438 {
439 	struct spufs_inode_info *i = SPUFS_I(inode);
440 	struct spu_context *ctx = i->i_ctx;
441 
442 	simple_attr_release(inode, file);
443 
444 	mutex_lock(&ctx->mapping_lock);
445 	if (!--i->i_openers)
446 		ctx->cntl = NULL;
447 	mutex_unlock(&ctx->mapping_lock);
448 	return 0;
449 }
450 
451 static const struct file_operations spufs_cntl_fops = {
452 	.open = spufs_cntl_open,
453 	.release = spufs_cntl_release,
454 	.read = simple_attr_read,
455 	.write = simple_attr_write,
456 	.mmap = spufs_cntl_mmap,
457 };
458 
459 static int
460 spufs_regs_open(struct inode *inode, struct file *file)
461 {
462 	struct spufs_inode_info *i = SPUFS_I(inode);
463 	file->private_data = i->i_ctx;
464 	return 0;
465 }
466 
467 static ssize_t
468 spufs_regs_dump(struct spu_context *ctx, struct coredump_params *cprm)
469 {
470 	return spufs_dump_emit(cprm, ctx->csa.lscsa->gprs,
471 			       sizeof(ctx->csa.lscsa->gprs));
472 }
473 
474 static ssize_t
475 spufs_regs_read(struct file *file, char __user *buffer,
476 		size_t size, loff_t *pos)
477 {
478 	int ret;
479 	struct spu_context *ctx = file->private_data;
480 
481 	/* pre-check for file position: if we'd return EOF, there's no point
482 	 * causing a deschedule */
483 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
484 		return 0;
485 
486 	ret = spu_acquire_saved(ctx);
487 	if (ret)
488 		return ret;
489 	ret = simple_read_from_buffer(buffer, size, pos, ctx->csa.lscsa->gprs,
490 				      sizeof(ctx->csa.lscsa->gprs));
491 	spu_release_saved(ctx);
492 	return ret;
493 }
494 
495 static ssize_t
496 spufs_regs_write(struct file *file, const char __user *buffer,
497 		 size_t size, loff_t *pos)
498 {
499 	struct spu_context *ctx = file->private_data;
500 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
501 	int ret;
502 
503 	if (*pos >= sizeof(lscsa->gprs))
504 		return -EFBIG;
505 
506 	ret = spu_acquire_saved(ctx);
507 	if (ret)
508 		return ret;
509 
510 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
511 					buffer, size);
512 
513 	spu_release_saved(ctx);
514 	return size;
515 }
516 
517 static const struct file_operations spufs_regs_fops = {
518 	.open	 = spufs_regs_open,
519 	.read    = spufs_regs_read,
520 	.write   = spufs_regs_write,
521 	.llseek  = generic_file_llseek,
522 };
523 
524 static ssize_t
525 spufs_fpcr_dump(struct spu_context *ctx, struct coredump_params *cprm)
526 {
527 	return spufs_dump_emit(cprm, &ctx->csa.lscsa->fpcr,
528 			       sizeof(ctx->csa.lscsa->fpcr));
529 }
530 
531 static ssize_t
532 spufs_fpcr_read(struct file *file, char __user * buffer,
533 		size_t size, loff_t * pos)
534 {
535 	int ret;
536 	struct spu_context *ctx = file->private_data;
537 
538 	ret = spu_acquire_saved(ctx);
539 	if (ret)
540 		return ret;
541 	ret = simple_read_from_buffer(buffer, size, pos, &ctx->csa.lscsa->fpcr,
542 				      sizeof(ctx->csa.lscsa->fpcr));
543 	spu_release_saved(ctx);
544 	return ret;
545 }
546 
547 static ssize_t
548 spufs_fpcr_write(struct file *file, const char __user * buffer,
549 		 size_t size, loff_t * pos)
550 {
551 	struct spu_context *ctx = file->private_data;
552 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
553 	int ret;
554 
555 	if (*pos >= sizeof(lscsa->fpcr))
556 		return -EFBIG;
557 
558 	ret = spu_acquire_saved(ctx);
559 	if (ret)
560 		return ret;
561 
562 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
563 					buffer, size);
564 
565 	spu_release_saved(ctx);
566 	return size;
567 }
568 
569 static const struct file_operations spufs_fpcr_fops = {
570 	.open = spufs_regs_open,
571 	.read = spufs_fpcr_read,
572 	.write = spufs_fpcr_write,
573 	.llseek = generic_file_llseek,
574 };
575 
576 /* generic open function for all pipe-like files */
577 static int spufs_pipe_open(struct inode *inode, struct file *file)
578 {
579 	struct spufs_inode_info *i = SPUFS_I(inode);
580 	file->private_data = i->i_ctx;
581 
582 	return stream_open(inode, file);
583 }
584 
585 /*
586  * Read as many bytes from the mailbox as possible, until
587  * one of the conditions becomes true:
588  *
589  * - no more data available in the mailbox
590  * - end of the user provided buffer
591  * - end of the mapped area
592  */
593 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
594 			size_t len, loff_t *pos)
595 {
596 	struct spu_context *ctx = file->private_data;
597 	u32 mbox_data, __user *udata = (void __user *)buf;
598 	ssize_t count;
599 
600 	if (len < 4)
601 		return -EINVAL;
602 
603 	count = spu_acquire(ctx);
604 	if (count)
605 		return count;
606 
607 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
608 		int ret;
609 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
610 		if (ret == 0)
611 			break;
612 
613 		/*
614 		 * at the end of the mapped area, we can fault
615 		 * but still need to return the data we have
616 		 * read successfully so far.
617 		 */
618 		ret = put_user(mbox_data, udata);
619 		if (ret) {
620 			if (!count)
621 				count = -EFAULT;
622 			break;
623 		}
624 	}
625 	spu_release(ctx);
626 
627 	if (!count)
628 		count = -EAGAIN;
629 
630 	return count;
631 }
632 
633 static const struct file_operations spufs_mbox_fops = {
634 	.open	= spufs_pipe_open,
635 	.read	= spufs_mbox_read,
636 };
637 
638 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
639 			size_t len, loff_t *pos)
640 {
641 	struct spu_context *ctx = file->private_data;
642 	ssize_t ret;
643 	u32 mbox_stat;
644 
645 	if (len < 4)
646 		return -EINVAL;
647 
648 	ret = spu_acquire(ctx);
649 	if (ret)
650 		return ret;
651 
652 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
653 
654 	spu_release(ctx);
655 
656 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
657 		return -EFAULT;
658 
659 	return 4;
660 }
661 
662 static const struct file_operations spufs_mbox_stat_fops = {
663 	.open	= spufs_pipe_open,
664 	.read	= spufs_mbox_stat_read,
665 };
666 
667 /* low-level ibox access function */
668 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
669 {
670 	return ctx->ops->ibox_read(ctx, data);
671 }
672 
673 /* interrupt-level ibox callback function. */
674 void spufs_ibox_callback(struct spu *spu)
675 {
676 	struct spu_context *ctx = spu->ctx;
677 
678 	if (ctx)
679 		wake_up_all(&ctx->ibox_wq);
680 }
681 
682 /*
683  * Read as many bytes from the interrupt mailbox as possible, until
684  * one of the conditions becomes true:
685  *
686  * - no more data available in the mailbox
687  * - end of the user provided buffer
688  * - end of the mapped area
689  *
690  * If the file is opened without O_NONBLOCK, we wait here until
691  * any data is available, but return when we have been able to
692  * read something.
693  */
694 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
695 			size_t len, loff_t *pos)
696 {
697 	struct spu_context *ctx = file->private_data;
698 	u32 ibox_data, __user *udata = (void __user *)buf;
699 	ssize_t count;
700 
701 	if (len < 4)
702 		return -EINVAL;
703 
704 	count = spu_acquire(ctx);
705 	if (count)
706 		goto out;
707 
708 	/* wait only for the first element */
709 	count = 0;
710 	if (file->f_flags & O_NONBLOCK) {
711 		if (!spu_ibox_read(ctx, &ibox_data)) {
712 			count = -EAGAIN;
713 			goto out_unlock;
714 		}
715 	} else {
716 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
717 		if (count)
718 			goto out;
719 	}
720 
721 	/* if we can't write at all, return -EFAULT */
722 	count = put_user(ibox_data, udata);
723 	if (count)
724 		goto out_unlock;
725 
726 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
727 		int ret;
728 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
729 		if (ret == 0)
730 			break;
731 		/*
732 		 * at the end of the mapped area, we can fault
733 		 * but still need to return the data we have
734 		 * read successfully so far.
735 		 */
736 		ret = put_user(ibox_data, udata);
737 		if (ret)
738 			break;
739 	}
740 
741 out_unlock:
742 	spu_release(ctx);
743 out:
744 	return count;
745 }
746 
747 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
748 {
749 	struct spu_context *ctx = file->private_data;
750 	__poll_t mask;
751 
752 	poll_wait(file, &ctx->ibox_wq, wait);
753 
754 	/*
755 	 * For now keep this uninterruptible and also ignore the rule
756 	 * that poll should not sleep.  Will be fixed later.
757 	 */
758 	mutex_lock(&ctx->state_mutex);
759 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
760 	spu_release(ctx);
761 
762 	return mask;
763 }
764 
765 static const struct file_operations spufs_ibox_fops = {
766 	.open	= spufs_pipe_open,
767 	.read	= spufs_ibox_read,
768 	.poll	= spufs_ibox_poll,
769 };
770 
771 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
772 			size_t len, loff_t *pos)
773 {
774 	struct spu_context *ctx = file->private_data;
775 	ssize_t ret;
776 	u32 ibox_stat;
777 
778 	if (len < 4)
779 		return -EINVAL;
780 
781 	ret = spu_acquire(ctx);
782 	if (ret)
783 		return ret;
784 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
785 	spu_release(ctx);
786 
787 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
788 		return -EFAULT;
789 
790 	return 4;
791 }
792 
793 static const struct file_operations spufs_ibox_stat_fops = {
794 	.open	= spufs_pipe_open,
795 	.read	= spufs_ibox_stat_read,
796 };
797 
798 /* low-level mailbox write */
799 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
800 {
801 	return ctx->ops->wbox_write(ctx, data);
802 }
803 
804 /* interrupt-level wbox callback function. */
805 void spufs_wbox_callback(struct spu *spu)
806 {
807 	struct spu_context *ctx = spu->ctx;
808 
809 	if (ctx)
810 		wake_up_all(&ctx->wbox_wq);
811 }
812 
813 /*
814  * Write as many bytes to the interrupt mailbox as possible, until
815  * one of the conditions becomes true:
816  *
817  * - the mailbox is full
818  * - end of the user provided buffer
819  * - end of the mapped area
820  *
821  * If the file is opened without O_NONBLOCK, we wait here until
822  * space is available, but return when we have been able to
823  * write something.
824  */
825 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
826 			size_t len, loff_t *pos)
827 {
828 	struct spu_context *ctx = file->private_data;
829 	u32 wbox_data, __user *udata = (void __user *)buf;
830 	ssize_t count;
831 
832 	if (len < 4)
833 		return -EINVAL;
834 
835 	if (get_user(wbox_data, udata))
836 		return -EFAULT;
837 
838 	count = spu_acquire(ctx);
839 	if (count)
840 		goto out;
841 
842 	/*
843 	 * make sure we can at least write one element, by waiting
844 	 * in case of !O_NONBLOCK
845 	 */
846 	count = 0;
847 	if (file->f_flags & O_NONBLOCK) {
848 		if (!spu_wbox_write(ctx, wbox_data)) {
849 			count = -EAGAIN;
850 			goto out_unlock;
851 		}
852 	} else {
853 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
854 		if (count)
855 			goto out;
856 	}
857 
858 
859 	/* write as much as possible */
860 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
861 		int ret;
862 		ret = get_user(wbox_data, udata);
863 		if (ret)
864 			break;
865 
866 		ret = spu_wbox_write(ctx, wbox_data);
867 		if (ret == 0)
868 			break;
869 	}
870 
871 out_unlock:
872 	spu_release(ctx);
873 out:
874 	return count;
875 }
876 
877 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
878 {
879 	struct spu_context *ctx = file->private_data;
880 	__poll_t mask;
881 
882 	poll_wait(file, &ctx->wbox_wq, wait);
883 
884 	/*
885 	 * For now keep this uninterruptible and also ignore the rule
886 	 * that poll should not sleep.  Will be fixed later.
887 	 */
888 	mutex_lock(&ctx->state_mutex);
889 	mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
890 	spu_release(ctx);
891 
892 	return mask;
893 }
894 
895 static const struct file_operations spufs_wbox_fops = {
896 	.open	= spufs_pipe_open,
897 	.write	= spufs_wbox_write,
898 	.poll	= spufs_wbox_poll,
899 };
900 
901 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
902 			size_t len, loff_t *pos)
903 {
904 	struct spu_context *ctx = file->private_data;
905 	ssize_t ret;
906 	u32 wbox_stat;
907 
908 	if (len < 4)
909 		return -EINVAL;
910 
911 	ret = spu_acquire(ctx);
912 	if (ret)
913 		return ret;
914 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
915 	spu_release(ctx);
916 
917 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
918 		return -EFAULT;
919 
920 	return 4;
921 }
922 
923 static const struct file_operations spufs_wbox_stat_fops = {
924 	.open	= spufs_pipe_open,
925 	.read	= spufs_wbox_stat_read,
926 };
927 
928 static int spufs_signal1_open(struct inode *inode, struct file *file)
929 {
930 	struct spufs_inode_info *i = SPUFS_I(inode);
931 	struct spu_context *ctx = i->i_ctx;
932 
933 	mutex_lock(&ctx->mapping_lock);
934 	file->private_data = ctx;
935 	if (!i->i_openers++)
936 		ctx->signal1 = inode->i_mapping;
937 	mutex_unlock(&ctx->mapping_lock);
938 	return nonseekable_open(inode, file);
939 }
940 
941 static int
942 spufs_signal1_release(struct inode *inode, struct file *file)
943 {
944 	struct spufs_inode_info *i = SPUFS_I(inode);
945 	struct spu_context *ctx = i->i_ctx;
946 
947 	mutex_lock(&ctx->mapping_lock);
948 	if (!--i->i_openers)
949 		ctx->signal1 = NULL;
950 	mutex_unlock(&ctx->mapping_lock);
951 	return 0;
952 }
953 
954 static ssize_t spufs_signal1_dump(struct spu_context *ctx,
955 		struct coredump_params *cprm)
956 {
957 	if (!ctx->csa.spu_chnlcnt_RW[3])
958 		return 0;
959 	return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[3],
960 			       sizeof(ctx->csa.spu_chnldata_RW[3]));
961 }
962 
963 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
964 			size_t len)
965 {
966 	if (len < sizeof(ctx->csa.spu_chnldata_RW[3]))
967 		return -EINVAL;
968 	if (!ctx->csa.spu_chnlcnt_RW[3])
969 		return 0;
970 	if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[3],
971 			 sizeof(ctx->csa.spu_chnldata_RW[3])))
972 		return -EFAULT;
973 	return sizeof(ctx->csa.spu_chnldata_RW[3]);
974 }
975 
976 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
977 			size_t len, loff_t *pos)
978 {
979 	int ret;
980 	struct spu_context *ctx = file->private_data;
981 
982 	ret = spu_acquire_saved(ctx);
983 	if (ret)
984 		return ret;
985 	ret = __spufs_signal1_read(ctx, buf, len);
986 	spu_release_saved(ctx);
987 
988 	return ret;
989 }
990 
991 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
992 			size_t len, loff_t *pos)
993 {
994 	struct spu_context *ctx;
995 	ssize_t ret;
996 	u32 data;
997 
998 	ctx = file->private_data;
999 
1000 	if (len < 4)
1001 		return -EINVAL;
1002 
1003 	if (copy_from_user(&data, buf, 4))
1004 		return -EFAULT;
1005 
1006 	ret = spu_acquire(ctx);
1007 	if (ret)
1008 		return ret;
1009 	ctx->ops->signal1_write(ctx, data);
1010 	spu_release(ctx);
1011 
1012 	return 4;
1013 }
1014 
1015 static vm_fault_t
1016 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1017 {
1018 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1019 	return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1020 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1021 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1022 	 * signal 1 and 2 area
1023 	 */
1024 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1025 #else
1026 #error unsupported page size
1027 #endif
1028 }
1029 
1030 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1031 	.fault = spufs_signal1_mmap_fault,
1032 };
1033 
1034 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1035 {
1036 	if (!(vma->vm_flags & VM_SHARED))
1037 		return -EINVAL;
1038 
1039 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1040 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1041 
1042 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1043 	return 0;
1044 }
1045 
1046 static const struct file_operations spufs_signal1_fops = {
1047 	.open = spufs_signal1_open,
1048 	.release = spufs_signal1_release,
1049 	.read = spufs_signal1_read,
1050 	.write = spufs_signal1_write,
1051 	.mmap = spufs_signal1_mmap,
1052 };
1053 
1054 static const struct file_operations spufs_signal1_nosched_fops = {
1055 	.open = spufs_signal1_open,
1056 	.release = spufs_signal1_release,
1057 	.write = spufs_signal1_write,
1058 	.mmap = spufs_signal1_mmap,
1059 };
1060 
1061 static int spufs_signal2_open(struct inode *inode, struct file *file)
1062 {
1063 	struct spufs_inode_info *i = SPUFS_I(inode);
1064 	struct spu_context *ctx = i->i_ctx;
1065 
1066 	mutex_lock(&ctx->mapping_lock);
1067 	file->private_data = ctx;
1068 	if (!i->i_openers++)
1069 		ctx->signal2 = inode->i_mapping;
1070 	mutex_unlock(&ctx->mapping_lock);
1071 	return nonseekable_open(inode, file);
1072 }
1073 
1074 static int
1075 spufs_signal2_release(struct inode *inode, struct file *file)
1076 {
1077 	struct spufs_inode_info *i = SPUFS_I(inode);
1078 	struct spu_context *ctx = i->i_ctx;
1079 
1080 	mutex_lock(&ctx->mapping_lock);
1081 	if (!--i->i_openers)
1082 		ctx->signal2 = NULL;
1083 	mutex_unlock(&ctx->mapping_lock);
1084 	return 0;
1085 }
1086 
1087 static ssize_t spufs_signal2_dump(struct spu_context *ctx,
1088 		struct coredump_params *cprm)
1089 {
1090 	if (!ctx->csa.spu_chnlcnt_RW[4])
1091 		return 0;
1092 	return spufs_dump_emit(cprm, &ctx->csa.spu_chnldata_RW[4],
1093 			       sizeof(ctx->csa.spu_chnldata_RW[4]));
1094 }
1095 
1096 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1097 			size_t len)
1098 {
1099 	if (len < sizeof(ctx->csa.spu_chnldata_RW[4]))
1100 		return -EINVAL;
1101 	if (!ctx->csa.spu_chnlcnt_RW[4])
1102 		return 0;
1103 	if (copy_to_user(buf, &ctx->csa.spu_chnldata_RW[4],
1104 			 sizeof(ctx->csa.spu_chnldata_RW[4])))
1105 		return -EFAULT;
1106 	return sizeof(ctx->csa.spu_chnldata_RW[4]);
1107 }
1108 
1109 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1110 			size_t len, loff_t *pos)
1111 {
1112 	struct spu_context *ctx = file->private_data;
1113 	int ret;
1114 
1115 	ret = spu_acquire_saved(ctx);
1116 	if (ret)
1117 		return ret;
1118 	ret = __spufs_signal2_read(ctx, buf, len);
1119 	spu_release_saved(ctx);
1120 
1121 	return ret;
1122 }
1123 
1124 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1125 			size_t len, loff_t *pos)
1126 {
1127 	struct spu_context *ctx;
1128 	ssize_t ret;
1129 	u32 data;
1130 
1131 	ctx = file->private_data;
1132 
1133 	if (len < 4)
1134 		return -EINVAL;
1135 
1136 	if (copy_from_user(&data, buf, 4))
1137 		return -EFAULT;
1138 
1139 	ret = spu_acquire(ctx);
1140 	if (ret)
1141 		return ret;
1142 	ctx->ops->signal2_write(ctx, data);
1143 	spu_release(ctx);
1144 
1145 	return 4;
1146 }
1147 
1148 #if SPUFS_MMAP_4K
1149 static vm_fault_t
1150 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1151 {
1152 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1153 	return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1154 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1155 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1156 	 * signal 1 and 2 area
1157 	 */
1158 	return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1159 #else
1160 #error unsupported page size
1161 #endif
1162 }
1163 
1164 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1165 	.fault = spufs_signal2_mmap_fault,
1166 };
1167 
1168 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1169 {
1170 	if (!(vma->vm_flags & VM_SHARED))
1171 		return -EINVAL;
1172 
1173 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1174 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1175 
1176 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1177 	return 0;
1178 }
1179 #else /* SPUFS_MMAP_4K */
1180 #define spufs_signal2_mmap NULL
1181 #endif /* !SPUFS_MMAP_4K */
1182 
1183 static const struct file_operations spufs_signal2_fops = {
1184 	.open = spufs_signal2_open,
1185 	.release = spufs_signal2_release,
1186 	.read = spufs_signal2_read,
1187 	.write = spufs_signal2_write,
1188 	.mmap = spufs_signal2_mmap,
1189 };
1190 
1191 static const struct file_operations spufs_signal2_nosched_fops = {
1192 	.open = spufs_signal2_open,
1193 	.release = spufs_signal2_release,
1194 	.write = spufs_signal2_write,
1195 	.mmap = spufs_signal2_mmap,
1196 };
1197 
1198 /*
1199  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1200  * work of acquiring (or not) the SPU context before calling through
1201  * to the actual get routine. The set routine is called directly.
1202  */
1203 #define SPU_ATTR_NOACQUIRE	0
1204 #define SPU_ATTR_ACQUIRE	1
1205 #define SPU_ATTR_ACQUIRE_SAVED	2
1206 
1207 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1208 static int __##__get(void *data, u64 *val)				\
1209 {									\
1210 	struct spu_context *ctx = data;					\
1211 	int ret = 0;							\
1212 									\
1213 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1214 		ret = spu_acquire(ctx);					\
1215 		if (ret)						\
1216 			return ret;					\
1217 		*val = __get(ctx);					\
1218 		spu_release(ctx);					\
1219 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1220 		ret = spu_acquire_saved(ctx);				\
1221 		if (ret)						\
1222 			return ret;					\
1223 		*val = __get(ctx);					\
1224 		spu_release_saved(ctx);					\
1225 	} else								\
1226 		*val = __get(ctx);					\
1227 									\
1228 	return 0;							\
1229 }									\
1230 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1231 
1232 static int spufs_signal1_type_set(void *data, u64 val)
1233 {
1234 	struct spu_context *ctx = data;
1235 	int ret;
1236 
1237 	ret = spu_acquire(ctx);
1238 	if (ret)
1239 		return ret;
1240 	ctx->ops->signal1_type_set(ctx, val);
1241 	spu_release(ctx);
1242 
1243 	return 0;
1244 }
1245 
1246 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1247 {
1248 	return ctx->ops->signal1_type_get(ctx);
1249 }
1250 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1251 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1252 
1253 
1254 static int spufs_signal2_type_set(void *data, u64 val)
1255 {
1256 	struct spu_context *ctx = data;
1257 	int ret;
1258 
1259 	ret = spu_acquire(ctx);
1260 	if (ret)
1261 		return ret;
1262 	ctx->ops->signal2_type_set(ctx, val);
1263 	spu_release(ctx);
1264 
1265 	return 0;
1266 }
1267 
1268 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1269 {
1270 	return ctx->ops->signal2_type_get(ctx);
1271 }
1272 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1273 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1274 
1275 #if SPUFS_MMAP_4K
1276 static vm_fault_t
1277 spufs_mss_mmap_fault(struct vm_fault *vmf)
1278 {
1279 	return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1280 }
1281 
1282 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1283 	.fault = spufs_mss_mmap_fault,
1284 };
1285 
1286 /*
1287  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1288  */
1289 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1290 {
1291 	if (!(vma->vm_flags & VM_SHARED))
1292 		return -EINVAL;
1293 
1294 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1295 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1296 
1297 	vma->vm_ops = &spufs_mss_mmap_vmops;
1298 	return 0;
1299 }
1300 #else /* SPUFS_MMAP_4K */
1301 #define spufs_mss_mmap NULL
1302 #endif /* !SPUFS_MMAP_4K */
1303 
1304 static int spufs_mss_open(struct inode *inode, struct file *file)
1305 {
1306 	struct spufs_inode_info *i = SPUFS_I(inode);
1307 	struct spu_context *ctx = i->i_ctx;
1308 
1309 	file->private_data = i->i_ctx;
1310 
1311 	mutex_lock(&ctx->mapping_lock);
1312 	if (!i->i_openers++)
1313 		ctx->mss = inode->i_mapping;
1314 	mutex_unlock(&ctx->mapping_lock);
1315 	return nonseekable_open(inode, file);
1316 }
1317 
1318 static int
1319 spufs_mss_release(struct inode *inode, struct file *file)
1320 {
1321 	struct spufs_inode_info *i = SPUFS_I(inode);
1322 	struct spu_context *ctx = i->i_ctx;
1323 
1324 	mutex_lock(&ctx->mapping_lock);
1325 	if (!--i->i_openers)
1326 		ctx->mss = NULL;
1327 	mutex_unlock(&ctx->mapping_lock);
1328 	return 0;
1329 }
1330 
1331 static const struct file_operations spufs_mss_fops = {
1332 	.open	 = spufs_mss_open,
1333 	.release = spufs_mss_release,
1334 	.mmap	 = spufs_mss_mmap,
1335 };
1336 
1337 static vm_fault_t
1338 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1339 {
1340 	return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1341 }
1342 
1343 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1344 	.fault = spufs_psmap_mmap_fault,
1345 };
1346 
1347 /*
1348  * mmap support for full problem state area [0x00000 - 0x1ffff].
1349  */
1350 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1351 {
1352 	if (!(vma->vm_flags & VM_SHARED))
1353 		return -EINVAL;
1354 
1355 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1356 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1357 
1358 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1359 	return 0;
1360 }
1361 
1362 static int spufs_psmap_open(struct inode *inode, struct file *file)
1363 {
1364 	struct spufs_inode_info *i = SPUFS_I(inode);
1365 	struct spu_context *ctx = i->i_ctx;
1366 
1367 	mutex_lock(&ctx->mapping_lock);
1368 	file->private_data = i->i_ctx;
1369 	if (!i->i_openers++)
1370 		ctx->psmap = inode->i_mapping;
1371 	mutex_unlock(&ctx->mapping_lock);
1372 	return nonseekable_open(inode, file);
1373 }
1374 
1375 static int
1376 spufs_psmap_release(struct inode *inode, struct file *file)
1377 {
1378 	struct spufs_inode_info *i = SPUFS_I(inode);
1379 	struct spu_context *ctx = i->i_ctx;
1380 
1381 	mutex_lock(&ctx->mapping_lock);
1382 	if (!--i->i_openers)
1383 		ctx->psmap = NULL;
1384 	mutex_unlock(&ctx->mapping_lock);
1385 	return 0;
1386 }
1387 
1388 static const struct file_operations spufs_psmap_fops = {
1389 	.open	 = spufs_psmap_open,
1390 	.release = spufs_psmap_release,
1391 	.mmap	 = spufs_psmap_mmap,
1392 };
1393 
1394 
1395 #if SPUFS_MMAP_4K
1396 static vm_fault_t
1397 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1398 {
1399 	return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1400 }
1401 
1402 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1403 	.fault = spufs_mfc_mmap_fault,
1404 };
1405 
1406 /*
1407  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1408  */
1409 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1410 {
1411 	if (!(vma->vm_flags & VM_SHARED))
1412 		return -EINVAL;
1413 
1414 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
1415 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1416 
1417 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1418 	return 0;
1419 }
1420 #else /* SPUFS_MMAP_4K */
1421 #define spufs_mfc_mmap NULL
1422 #endif /* !SPUFS_MMAP_4K */
1423 
1424 static int spufs_mfc_open(struct inode *inode, struct file *file)
1425 {
1426 	struct spufs_inode_info *i = SPUFS_I(inode);
1427 	struct spu_context *ctx = i->i_ctx;
1428 
1429 	/* we don't want to deal with DMA into other processes */
1430 	if (ctx->owner != current->mm)
1431 		return -EINVAL;
1432 
1433 	if (atomic_read(&inode->i_count) != 1)
1434 		return -EBUSY;
1435 
1436 	mutex_lock(&ctx->mapping_lock);
1437 	file->private_data = ctx;
1438 	if (!i->i_openers++)
1439 		ctx->mfc = inode->i_mapping;
1440 	mutex_unlock(&ctx->mapping_lock);
1441 	return nonseekable_open(inode, file);
1442 }
1443 
1444 static int
1445 spufs_mfc_release(struct inode *inode, struct file *file)
1446 {
1447 	struct spufs_inode_info *i = SPUFS_I(inode);
1448 	struct spu_context *ctx = i->i_ctx;
1449 
1450 	mutex_lock(&ctx->mapping_lock);
1451 	if (!--i->i_openers)
1452 		ctx->mfc = NULL;
1453 	mutex_unlock(&ctx->mapping_lock);
1454 	return 0;
1455 }
1456 
1457 /* interrupt-level mfc callback function. */
1458 void spufs_mfc_callback(struct spu *spu)
1459 {
1460 	struct spu_context *ctx = spu->ctx;
1461 
1462 	if (ctx)
1463 		wake_up_all(&ctx->mfc_wq);
1464 }
1465 
1466 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1467 {
1468 	/* See if there is one tag group is complete */
1469 	/* FIXME we need locking around tagwait */
1470 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1471 	ctx->tagwait &= ~*status;
1472 	if (*status)
1473 		return 1;
1474 
1475 	/* enable interrupt waiting for any tag group,
1476 	   may silently fail if interrupts are already enabled */
1477 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1478 	return 0;
1479 }
1480 
1481 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1482 			size_t size, loff_t *pos)
1483 {
1484 	struct spu_context *ctx = file->private_data;
1485 	int ret = -EINVAL;
1486 	u32 status;
1487 
1488 	if (size != 4)
1489 		goto out;
1490 
1491 	ret = spu_acquire(ctx);
1492 	if (ret)
1493 		return ret;
1494 
1495 	ret = -EINVAL;
1496 	if (file->f_flags & O_NONBLOCK) {
1497 		status = ctx->ops->read_mfc_tagstatus(ctx);
1498 		if (!(status & ctx->tagwait))
1499 			ret = -EAGAIN;
1500 		else
1501 			/* XXX(hch): shouldn't we clear ret here? */
1502 			ctx->tagwait &= ~status;
1503 	} else {
1504 		ret = spufs_wait(ctx->mfc_wq,
1505 			   spufs_read_mfc_tagstatus(ctx, &status));
1506 		if (ret)
1507 			goto out;
1508 	}
1509 	spu_release(ctx);
1510 
1511 	ret = 4;
1512 	if (copy_to_user(buffer, &status, 4))
1513 		ret = -EFAULT;
1514 
1515 out:
1516 	return ret;
1517 }
1518 
1519 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1520 {
1521 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1522 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1523 
1524 	switch (cmd->cmd) {
1525 	case MFC_PUT_CMD:
1526 	case MFC_PUTF_CMD:
1527 	case MFC_PUTB_CMD:
1528 	case MFC_GET_CMD:
1529 	case MFC_GETF_CMD:
1530 	case MFC_GETB_CMD:
1531 		break;
1532 	default:
1533 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1534 		return -EIO;
1535 	}
1536 
1537 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1538 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1539 				cmd->ea, cmd->lsa);
1540 		return -EIO;
1541 	}
1542 
1543 	switch (cmd->size & 0xf) {
1544 	case 1:
1545 		break;
1546 	case 2:
1547 		if (cmd->lsa & 1)
1548 			goto error;
1549 		break;
1550 	case 4:
1551 		if (cmd->lsa & 3)
1552 			goto error;
1553 		break;
1554 	case 8:
1555 		if (cmd->lsa & 7)
1556 			goto error;
1557 		break;
1558 	case 0:
1559 		if (cmd->lsa & 15)
1560 			goto error;
1561 		break;
1562 	error:
1563 	default:
1564 		pr_debug("invalid DMA alignment %x for size %x\n",
1565 			cmd->lsa & 0xf, cmd->size);
1566 		return -EIO;
1567 	}
1568 
1569 	if (cmd->size > 16 * 1024) {
1570 		pr_debug("invalid DMA size %x\n", cmd->size);
1571 		return -EIO;
1572 	}
1573 
1574 	if (cmd->tag & 0xfff0) {
1575 		/* we reserve the higher tag numbers for kernel use */
1576 		pr_debug("invalid DMA tag\n");
1577 		return -EIO;
1578 	}
1579 
1580 	if (cmd->class) {
1581 		/* not supported in this version */
1582 		pr_debug("invalid DMA class\n");
1583 		return -EIO;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static int spu_send_mfc_command(struct spu_context *ctx,
1590 				struct mfc_dma_command cmd,
1591 				int *error)
1592 {
1593 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1594 	if (*error == -EAGAIN) {
1595 		/* wait for any tag group to complete
1596 		   so we have space for the new command */
1597 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1598 		/* try again, because the queue might be
1599 		   empty again */
1600 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1601 		if (*error == -EAGAIN)
1602 			return 0;
1603 	}
1604 	return 1;
1605 }
1606 
1607 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1608 			size_t size, loff_t *pos)
1609 {
1610 	struct spu_context *ctx = file->private_data;
1611 	struct mfc_dma_command cmd;
1612 	int ret = -EINVAL;
1613 
1614 	if (size != sizeof cmd)
1615 		goto out;
1616 
1617 	ret = -EFAULT;
1618 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1619 		goto out;
1620 
1621 	ret = spufs_check_valid_dma(&cmd);
1622 	if (ret)
1623 		goto out;
1624 
1625 	ret = spu_acquire(ctx);
1626 	if (ret)
1627 		goto out;
1628 
1629 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1630 	if (ret)
1631 		goto out;
1632 
1633 	if (file->f_flags & O_NONBLOCK) {
1634 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1635 	} else {
1636 		int status;
1637 		ret = spufs_wait(ctx->mfc_wq,
1638 				 spu_send_mfc_command(ctx, cmd, &status));
1639 		if (ret)
1640 			goto out;
1641 		if (status)
1642 			ret = status;
1643 	}
1644 
1645 	if (ret)
1646 		goto out_unlock;
1647 
1648 	ctx->tagwait |= 1 << cmd.tag;
1649 	ret = size;
1650 
1651 out_unlock:
1652 	spu_release(ctx);
1653 out:
1654 	return ret;
1655 }
1656 
1657 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1658 {
1659 	struct spu_context *ctx = file->private_data;
1660 	u32 free_elements, tagstatus;
1661 	__poll_t mask;
1662 
1663 	poll_wait(file, &ctx->mfc_wq, wait);
1664 
1665 	/*
1666 	 * For now keep this uninterruptible and also ignore the rule
1667 	 * that poll should not sleep.  Will be fixed later.
1668 	 */
1669 	mutex_lock(&ctx->state_mutex);
1670 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1671 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1672 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1673 	spu_release(ctx);
1674 
1675 	mask = 0;
1676 	if (free_elements & 0xffff)
1677 		mask |= EPOLLOUT | EPOLLWRNORM;
1678 	if (tagstatus & ctx->tagwait)
1679 		mask |= EPOLLIN | EPOLLRDNORM;
1680 
1681 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1682 		free_elements, tagstatus, ctx->tagwait);
1683 
1684 	return mask;
1685 }
1686 
1687 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1688 {
1689 	struct spu_context *ctx = file->private_data;
1690 	int ret;
1691 
1692 	ret = spu_acquire(ctx);
1693 	if (ret)
1694 		return ret;
1695 
1696 	spu_release(ctx);
1697 
1698 	return 0;
1699 }
1700 
1701 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1702 {
1703 	struct inode *inode = file_inode(file);
1704 	int err = file_write_and_wait_range(file, start, end);
1705 	if (!err) {
1706 		inode_lock(inode);
1707 		err = spufs_mfc_flush(file, NULL);
1708 		inode_unlock(inode);
1709 	}
1710 	return err;
1711 }
1712 
1713 static const struct file_operations spufs_mfc_fops = {
1714 	.open	 = spufs_mfc_open,
1715 	.release = spufs_mfc_release,
1716 	.read	 = spufs_mfc_read,
1717 	.write	 = spufs_mfc_write,
1718 	.poll	 = spufs_mfc_poll,
1719 	.flush	 = spufs_mfc_flush,
1720 	.fsync	 = spufs_mfc_fsync,
1721 	.mmap	 = spufs_mfc_mmap,
1722 };
1723 
1724 static int spufs_npc_set(void *data, u64 val)
1725 {
1726 	struct spu_context *ctx = data;
1727 	int ret;
1728 
1729 	ret = spu_acquire(ctx);
1730 	if (ret)
1731 		return ret;
1732 	ctx->ops->npc_write(ctx, val);
1733 	spu_release(ctx);
1734 
1735 	return 0;
1736 }
1737 
1738 static u64 spufs_npc_get(struct spu_context *ctx)
1739 {
1740 	return ctx->ops->npc_read(ctx);
1741 }
1742 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1743 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1744 
1745 static int spufs_decr_set(void *data, u64 val)
1746 {
1747 	struct spu_context *ctx = data;
1748 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1749 	int ret;
1750 
1751 	ret = spu_acquire_saved(ctx);
1752 	if (ret)
1753 		return ret;
1754 	lscsa->decr.slot[0] = (u32) val;
1755 	spu_release_saved(ctx);
1756 
1757 	return 0;
1758 }
1759 
1760 static u64 spufs_decr_get(struct spu_context *ctx)
1761 {
1762 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1763 	return lscsa->decr.slot[0];
1764 }
1765 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1766 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1767 
1768 static int spufs_decr_status_set(void *data, u64 val)
1769 {
1770 	struct spu_context *ctx = data;
1771 	int ret;
1772 
1773 	ret = spu_acquire_saved(ctx);
1774 	if (ret)
1775 		return ret;
1776 	if (val)
1777 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1778 	else
1779 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1780 	spu_release_saved(ctx);
1781 
1782 	return 0;
1783 }
1784 
1785 static u64 spufs_decr_status_get(struct spu_context *ctx)
1786 {
1787 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1788 		return SPU_DECR_STATUS_RUNNING;
1789 	else
1790 		return 0;
1791 }
1792 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1793 		       spufs_decr_status_set, "0x%llx\n",
1794 		       SPU_ATTR_ACQUIRE_SAVED);
1795 
1796 static int spufs_event_mask_set(void *data, u64 val)
1797 {
1798 	struct spu_context *ctx = data;
1799 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1800 	int ret;
1801 
1802 	ret = spu_acquire_saved(ctx);
1803 	if (ret)
1804 		return ret;
1805 	lscsa->event_mask.slot[0] = (u32) val;
1806 	spu_release_saved(ctx);
1807 
1808 	return 0;
1809 }
1810 
1811 static u64 spufs_event_mask_get(struct spu_context *ctx)
1812 {
1813 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1814 	return lscsa->event_mask.slot[0];
1815 }
1816 
1817 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1818 		       spufs_event_mask_set, "0x%llx\n",
1819 		       SPU_ATTR_ACQUIRE_SAVED);
1820 
1821 static u64 spufs_event_status_get(struct spu_context *ctx)
1822 {
1823 	struct spu_state *state = &ctx->csa;
1824 	u64 stat;
1825 	stat = state->spu_chnlcnt_RW[0];
1826 	if (stat)
1827 		return state->spu_chnldata_RW[0];
1828 	return 0;
1829 }
1830 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1831 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1832 
1833 static int spufs_srr0_set(void *data, u64 val)
1834 {
1835 	struct spu_context *ctx = data;
1836 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1837 	int ret;
1838 
1839 	ret = spu_acquire_saved(ctx);
1840 	if (ret)
1841 		return ret;
1842 	lscsa->srr0.slot[0] = (u32) val;
1843 	spu_release_saved(ctx);
1844 
1845 	return 0;
1846 }
1847 
1848 static u64 spufs_srr0_get(struct spu_context *ctx)
1849 {
1850 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1851 	return lscsa->srr0.slot[0];
1852 }
1853 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1854 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1855 
1856 static u64 spufs_id_get(struct spu_context *ctx)
1857 {
1858 	u64 num;
1859 
1860 	if (ctx->state == SPU_STATE_RUNNABLE)
1861 		num = ctx->spu->number;
1862 	else
1863 		num = (unsigned int)-1;
1864 
1865 	return num;
1866 }
1867 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1868 		       SPU_ATTR_ACQUIRE)
1869 
1870 static u64 spufs_object_id_get(struct spu_context *ctx)
1871 {
1872 	/* FIXME: Should there really be no locking here? */
1873 	return ctx->object_id;
1874 }
1875 
1876 static int spufs_object_id_set(void *data, u64 id)
1877 {
1878 	struct spu_context *ctx = data;
1879 	ctx->object_id = id;
1880 
1881 	return 0;
1882 }
1883 
1884 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1885 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1886 
1887 static u64 spufs_lslr_get(struct spu_context *ctx)
1888 {
1889 	return ctx->csa.priv2.spu_lslr_RW;
1890 }
1891 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1892 		       SPU_ATTR_ACQUIRE_SAVED);
1893 
1894 static int spufs_info_open(struct inode *inode, struct file *file)
1895 {
1896 	struct spufs_inode_info *i = SPUFS_I(inode);
1897 	struct spu_context *ctx = i->i_ctx;
1898 	file->private_data = ctx;
1899 	return 0;
1900 }
1901 
1902 static int spufs_caps_show(struct seq_file *s, void *private)
1903 {
1904 	struct spu_context *ctx = s->private;
1905 
1906 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
1907 		seq_puts(s, "sched\n");
1908 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
1909 		seq_puts(s, "step\n");
1910 	return 0;
1911 }
1912 
1913 static int spufs_caps_open(struct inode *inode, struct file *file)
1914 {
1915 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1916 }
1917 
1918 static const struct file_operations spufs_caps_fops = {
1919 	.open		= spufs_caps_open,
1920 	.read		= seq_read,
1921 	.llseek		= seq_lseek,
1922 	.release	= single_release,
1923 };
1924 
1925 static ssize_t spufs_mbox_info_dump(struct spu_context *ctx,
1926 		struct coredump_params *cprm)
1927 {
1928 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1929 		return 0;
1930 	return spufs_dump_emit(cprm, &ctx->csa.prob.pu_mb_R,
1931 			       sizeof(ctx->csa.prob.pu_mb_R));
1932 }
1933 
1934 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1935 				   size_t len, loff_t *pos)
1936 {
1937 	struct spu_context *ctx = file->private_data;
1938 	u32 stat, data;
1939 	int ret;
1940 
1941 	ret = spu_acquire_saved(ctx);
1942 	if (ret)
1943 		return ret;
1944 	spin_lock(&ctx->csa.register_lock);
1945 	stat = ctx->csa.prob.mb_stat_R;
1946 	data = ctx->csa.prob.pu_mb_R;
1947 	spin_unlock(&ctx->csa.register_lock);
1948 	spu_release_saved(ctx);
1949 
1950 	/* EOF if there's no entry in the mbox */
1951 	if (!(stat & 0x0000ff))
1952 		return 0;
1953 
1954 	return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
1955 }
1956 
1957 static const struct file_operations spufs_mbox_info_fops = {
1958 	.open = spufs_info_open,
1959 	.read = spufs_mbox_info_read,
1960 	.llseek  = generic_file_llseek,
1961 };
1962 
1963 static ssize_t spufs_ibox_info_dump(struct spu_context *ctx,
1964 		struct coredump_params *cprm)
1965 {
1966 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
1967 		return 0;
1968 	return spufs_dump_emit(cprm, &ctx->csa.priv2.puint_mb_R,
1969 			       sizeof(ctx->csa.priv2.puint_mb_R));
1970 }
1971 
1972 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1973 				   size_t len, loff_t *pos)
1974 {
1975 	struct spu_context *ctx = file->private_data;
1976 	u32 stat, data;
1977 	int ret;
1978 
1979 	ret = spu_acquire_saved(ctx);
1980 	if (ret)
1981 		return ret;
1982 	spin_lock(&ctx->csa.register_lock);
1983 	stat = ctx->csa.prob.mb_stat_R;
1984 	data = ctx->csa.priv2.puint_mb_R;
1985 	spin_unlock(&ctx->csa.register_lock);
1986 	spu_release_saved(ctx);
1987 
1988 	/* EOF if there's no entry in the ibox */
1989 	if (!(stat & 0xff0000))
1990 		return 0;
1991 
1992 	return simple_read_from_buffer(buf, len, pos, &data, sizeof(data));
1993 }
1994 
1995 static const struct file_operations spufs_ibox_info_fops = {
1996 	.open = spufs_info_open,
1997 	.read = spufs_ibox_info_read,
1998 	.llseek  = generic_file_llseek,
1999 };
2000 
2001 static size_t spufs_wbox_info_cnt(struct spu_context *ctx)
2002 {
2003 	return (4 - ((ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8)) * sizeof(u32);
2004 }
2005 
2006 static ssize_t spufs_wbox_info_dump(struct spu_context *ctx,
2007 		struct coredump_params *cprm)
2008 {
2009 	return spufs_dump_emit(cprm, &ctx->csa.spu_mailbox_data,
2010 			spufs_wbox_info_cnt(ctx));
2011 }
2012 
2013 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2014 				   size_t len, loff_t *pos)
2015 {
2016 	struct spu_context *ctx = file->private_data;
2017 	u32 data[ARRAY_SIZE(ctx->csa.spu_mailbox_data)];
2018 	int ret, count;
2019 
2020 	ret = spu_acquire_saved(ctx);
2021 	if (ret)
2022 		return ret;
2023 	spin_lock(&ctx->csa.register_lock);
2024 	count = spufs_wbox_info_cnt(ctx);
2025 	memcpy(&data, &ctx->csa.spu_mailbox_data, sizeof(data));
2026 	spin_unlock(&ctx->csa.register_lock);
2027 	spu_release_saved(ctx);
2028 
2029 	return simple_read_from_buffer(buf, len, pos, &data,
2030 				count * sizeof(u32));
2031 }
2032 
2033 static const struct file_operations spufs_wbox_info_fops = {
2034 	.open = spufs_info_open,
2035 	.read = spufs_wbox_info_read,
2036 	.llseek  = generic_file_llseek,
2037 };
2038 
2039 static void spufs_get_dma_info(struct spu_context *ctx,
2040 		struct spu_dma_info *info)
2041 {
2042 	int i;
2043 
2044 	info->dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2045 	info->dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2046 	info->dma_info_status = ctx->csa.spu_chnldata_RW[24];
2047 	info->dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2048 	info->dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2049 	for (i = 0; i < 16; i++) {
2050 		struct mfc_cq_sr *qp = &info->dma_info_command_data[i];
2051 		struct mfc_cq_sr *spuqp = &ctx->csa.priv2.spuq[i];
2052 
2053 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2054 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2055 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2056 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2057 	}
2058 }
2059 
2060 static ssize_t spufs_dma_info_dump(struct spu_context *ctx,
2061 		struct coredump_params *cprm)
2062 {
2063 	struct spu_dma_info info;
2064 
2065 	spufs_get_dma_info(ctx, &info);
2066 	return spufs_dump_emit(cprm, &info, sizeof(info));
2067 }
2068 
2069 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2070 			      size_t len, loff_t *pos)
2071 {
2072 	struct spu_context *ctx = file->private_data;
2073 	struct spu_dma_info info;
2074 	int ret;
2075 
2076 	ret = spu_acquire_saved(ctx);
2077 	if (ret)
2078 		return ret;
2079 	spin_lock(&ctx->csa.register_lock);
2080 	spufs_get_dma_info(ctx, &info);
2081 	spin_unlock(&ctx->csa.register_lock);
2082 	spu_release_saved(ctx);
2083 
2084 	return simple_read_from_buffer(buf, len, pos, &info,
2085 				sizeof(info));
2086 }
2087 
2088 static const struct file_operations spufs_dma_info_fops = {
2089 	.open = spufs_info_open,
2090 	.read = spufs_dma_info_read,
2091 };
2092 
2093 static void spufs_get_proxydma_info(struct spu_context *ctx,
2094 		struct spu_proxydma_info *info)
2095 {
2096 	int i;
2097 
2098 	info->proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2099 	info->proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2100 	info->proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2101 
2102 	for (i = 0; i < 8; i++) {
2103 		struct mfc_cq_sr *qp = &info->proxydma_info_command_data[i];
2104 		struct mfc_cq_sr *puqp = &ctx->csa.priv2.puq[i];
2105 
2106 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2107 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2108 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2109 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2110 	}
2111 }
2112 
2113 static ssize_t spufs_proxydma_info_dump(struct spu_context *ctx,
2114 		struct coredump_params *cprm)
2115 {
2116 	struct spu_proxydma_info info;
2117 
2118 	spufs_get_proxydma_info(ctx, &info);
2119 	return spufs_dump_emit(cprm, &info, sizeof(info));
2120 }
2121 
2122 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2123 				   size_t len, loff_t *pos)
2124 {
2125 	struct spu_context *ctx = file->private_data;
2126 	struct spu_proxydma_info info;
2127 	int ret;
2128 
2129 	if (len < sizeof(info))
2130 		return -EINVAL;
2131 
2132 	ret = spu_acquire_saved(ctx);
2133 	if (ret)
2134 		return ret;
2135 	spin_lock(&ctx->csa.register_lock);
2136 	spufs_get_proxydma_info(ctx, &info);
2137 	spin_unlock(&ctx->csa.register_lock);
2138 	spu_release_saved(ctx);
2139 
2140 	return simple_read_from_buffer(buf, len, pos, &info,
2141 				sizeof(info));
2142 }
2143 
2144 static const struct file_operations spufs_proxydma_info_fops = {
2145 	.open = spufs_info_open,
2146 	.read = spufs_proxydma_info_read,
2147 };
2148 
2149 static int spufs_show_tid(struct seq_file *s, void *private)
2150 {
2151 	struct spu_context *ctx = s->private;
2152 
2153 	seq_printf(s, "%d\n", ctx->tid);
2154 	return 0;
2155 }
2156 
2157 static int spufs_tid_open(struct inode *inode, struct file *file)
2158 {
2159 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2160 }
2161 
2162 static const struct file_operations spufs_tid_fops = {
2163 	.open		= spufs_tid_open,
2164 	.read		= seq_read,
2165 	.llseek		= seq_lseek,
2166 	.release	= single_release,
2167 };
2168 
2169 static const char *ctx_state_names[] = {
2170 	"user", "system", "iowait", "loaded"
2171 };
2172 
2173 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2174 		enum spu_utilization_state state)
2175 {
2176 	unsigned long long time = ctx->stats.times[state];
2177 
2178 	/*
2179 	 * In general, utilization statistics are updated by the controlling
2180 	 * thread as the spu context moves through various well defined
2181 	 * state transitions, but if the context is lazily loaded its
2182 	 * utilization statistics are not updated as the controlling thread
2183 	 * is not tightly coupled with the execution of the spu context.  We
2184 	 * calculate and apply the time delta from the last recorded state
2185 	 * of the spu context.
2186 	 */
2187 	if (ctx->spu && ctx->stats.util_state == state) {
2188 		time += ktime_get_ns() - ctx->stats.tstamp;
2189 	}
2190 
2191 	return time / NSEC_PER_MSEC;
2192 }
2193 
2194 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2195 {
2196 	unsigned long long slb_flts = ctx->stats.slb_flt;
2197 
2198 	if (ctx->state == SPU_STATE_RUNNABLE) {
2199 		slb_flts += (ctx->spu->stats.slb_flt -
2200 			     ctx->stats.slb_flt_base);
2201 	}
2202 
2203 	return slb_flts;
2204 }
2205 
2206 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2207 {
2208 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2209 
2210 	if (ctx->state == SPU_STATE_RUNNABLE) {
2211 		class2_intrs += (ctx->spu->stats.class2_intr -
2212 				 ctx->stats.class2_intr_base);
2213 	}
2214 
2215 	return class2_intrs;
2216 }
2217 
2218 
2219 static int spufs_show_stat(struct seq_file *s, void *private)
2220 {
2221 	struct spu_context *ctx = s->private;
2222 	int ret;
2223 
2224 	ret = spu_acquire(ctx);
2225 	if (ret)
2226 		return ret;
2227 
2228 	seq_printf(s, "%s %llu %llu %llu %llu "
2229 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2230 		ctx_state_names[ctx->stats.util_state],
2231 		spufs_acct_time(ctx, SPU_UTIL_USER),
2232 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2233 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2234 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2235 		ctx->stats.vol_ctx_switch,
2236 		ctx->stats.invol_ctx_switch,
2237 		spufs_slb_flts(ctx),
2238 		ctx->stats.hash_flt,
2239 		ctx->stats.min_flt,
2240 		ctx->stats.maj_flt,
2241 		spufs_class2_intrs(ctx),
2242 		ctx->stats.libassist);
2243 	spu_release(ctx);
2244 	return 0;
2245 }
2246 
2247 static int spufs_stat_open(struct inode *inode, struct file *file)
2248 {
2249 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2250 }
2251 
2252 static const struct file_operations spufs_stat_fops = {
2253 	.open		= spufs_stat_open,
2254 	.read		= seq_read,
2255 	.llseek		= seq_lseek,
2256 	.release	= single_release,
2257 };
2258 
2259 static inline int spufs_switch_log_used(struct spu_context *ctx)
2260 {
2261 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2262 		SWITCH_LOG_BUFSIZE;
2263 }
2264 
2265 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2266 {
2267 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2268 }
2269 
2270 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2271 {
2272 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2273 	int rc;
2274 
2275 	rc = spu_acquire(ctx);
2276 	if (rc)
2277 		return rc;
2278 
2279 	if (ctx->switch_log) {
2280 		rc = -EBUSY;
2281 		goto out;
2282 	}
2283 
2284 	ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2285 				  SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2286 
2287 	if (!ctx->switch_log) {
2288 		rc = -ENOMEM;
2289 		goto out;
2290 	}
2291 
2292 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2293 	init_waitqueue_head(&ctx->switch_log->wait);
2294 	rc = 0;
2295 
2296 out:
2297 	spu_release(ctx);
2298 	return rc;
2299 }
2300 
2301 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2302 {
2303 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2304 	int rc;
2305 
2306 	rc = spu_acquire(ctx);
2307 	if (rc)
2308 		return rc;
2309 
2310 	kfree(ctx->switch_log);
2311 	ctx->switch_log = NULL;
2312 	spu_release(ctx);
2313 
2314 	return 0;
2315 }
2316 
2317 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2318 {
2319 	struct switch_log_entry *p;
2320 
2321 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2322 
2323 	return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2324 			(unsigned long long) p->tstamp.tv_sec,
2325 			(unsigned int) p->tstamp.tv_nsec,
2326 			p->spu_id,
2327 			(unsigned int) p->type,
2328 			(unsigned int) p->val,
2329 			(unsigned long long) p->timebase);
2330 }
2331 
2332 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2333 			     size_t len, loff_t *ppos)
2334 {
2335 	struct inode *inode = file_inode(file);
2336 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2337 	int error = 0, cnt = 0;
2338 
2339 	if (!buf)
2340 		return -EINVAL;
2341 
2342 	error = spu_acquire(ctx);
2343 	if (error)
2344 		return error;
2345 
2346 	while (cnt < len) {
2347 		char tbuf[128];
2348 		int width;
2349 
2350 		if (spufs_switch_log_used(ctx) == 0) {
2351 			if (cnt > 0) {
2352 				/* If there's data ready to go, we can
2353 				 * just return straight away */
2354 				break;
2355 
2356 			} else if (file->f_flags & O_NONBLOCK) {
2357 				error = -EAGAIN;
2358 				break;
2359 
2360 			} else {
2361 				/* spufs_wait will drop the mutex and
2362 				 * re-acquire, but since we're in read(), the
2363 				 * file cannot be _released (and so
2364 				 * ctx->switch_log is stable).
2365 				 */
2366 				error = spufs_wait(ctx->switch_log->wait,
2367 						spufs_switch_log_used(ctx) > 0);
2368 
2369 				/* On error, spufs_wait returns without the
2370 				 * state mutex held */
2371 				if (error)
2372 					return error;
2373 
2374 				/* We may have had entries read from underneath
2375 				 * us while we dropped the mutex in spufs_wait,
2376 				 * so re-check */
2377 				if (spufs_switch_log_used(ctx) == 0)
2378 					continue;
2379 			}
2380 		}
2381 
2382 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2383 		if (width < len)
2384 			ctx->switch_log->tail =
2385 				(ctx->switch_log->tail + 1) %
2386 				 SWITCH_LOG_BUFSIZE;
2387 		else
2388 			/* If the record is greater than space available return
2389 			 * partial buffer (so far) */
2390 			break;
2391 
2392 		error = copy_to_user(buf + cnt, tbuf, width);
2393 		if (error)
2394 			break;
2395 		cnt += width;
2396 	}
2397 
2398 	spu_release(ctx);
2399 
2400 	return cnt == 0 ? error : cnt;
2401 }
2402 
2403 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2404 {
2405 	struct inode *inode = file_inode(file);
2406 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2407 	__poll_t mask = 0;
2408 	int rc;
2409 
2410 	poll_wait(file, &ctx->switch_log->wait, wait);
2411 
2412 	rc = spu_acquire(ctx);
2413 	if (rc)
2414 		return rc;
2415 
2416 	if (spufs_switch_log_used(ctx) > 0)
2417 		mask |= EPOLLIN;
2418 
2419 	spu_release(ctx);
2420 
2421 	return mask;
2422 }
2423 
2424 static const struct file_operations spufs_switch_log_fops = {
2425 	.open		= spufs_switch_log_open,
2426 	.read		= spufs_switch_log_read,
2427 	.poll		= spufs_switch_log_poll,
2428 	.release	= spufs_switch_log_release,
2429 };
2430 
2431 /**
2432  * Log a context switch event to a switch log reader.
2433  *
2434  * Must be called with ctx->state_mutex held.
2435  */
2436 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2437 		u32 type, u32 val)
2438 {
2439 	if (!ctx->switch_log)
2440 		return;
2441 
2442 	if (spufs_switch_log_avail(ctx) > 1) {
2443 		struct switch_log_entry *p;
2444 
2445 		p = ctx->switch_log->log + ctx->switch_log->head;
2446 		ktime_get_ts64(&p->tstamp);
2447 		p->timebase = get_tb();
2448 		p->spu_id = spu ? spu->number : -1;
2449 		p->type = type;
2450 		p->val = val;
2451 
2452 		ctx->switch_log->head =
2453 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2454 	}
2455 
2456 	wake_up(&ctx->switch_log->wait);
2457 }
2458 
2459 static int spufs_show_ctx(struct seq_file *s, void *private)
2460 {
2461 	struct spu_context *ctx = s->private;
2462 	u64 mfc_control_RW;
2463 
2464 	mutex_lock(&ctx->state_mutex);
2465 	if (ctx->spu) {
2466 		struct spu *spu = ctx->spu;
2467 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2468 
2469 		spin_lock_irq(&spu->register_lock);
2470 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2471 		spin_unlock_irq(&spu->register_lock);
2472 	} else {
2473 		struct spu_state *csa = &ctx->csa;
2474 
2475 		mfc_control_RW = csa->priv2.mfc_control_RW;
2476 	}
2477 
2478 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2479 		" %c %llx %llx %llx %llx %x %x\n",
2480 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2481 		ctx->flags,
2482 		ctx->sched_flags,
2483 		ctx->prio,
2484 		ctx->time_slice,
2485 		ctx->spu ? ctx->spu->number : -1,
2486 		!list_empty(&ctx->rq) ? 'q' : ' ',
2487 		ctx->csa.class_0_pending,
2488 		ctx->csa.class_0_dar,
2489 		ctx->csa.class_1_dsisr,
2490 		mfc_control_RW,
2491 		ctx->ops->runcntl_read(ctx),
2492 		ctx->ops->status_read(ctx));
2493 
2494 	mutex_unlock(&ctx->state_mutex);
2495 
2496 	return 0;
2497 }
2498 
2499 static int spufs_ctx_open(struct inode *inode, struct file *file)
2500 {
2501 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2502 }
2503 
2504 static const struct file_operations spufs_ctx_fops = {
2505 	.open           = spufs_ctx_open,
2506 	.read           = seq_read,
2507 	.llseek         = seq_lseek,
2508 	.release        = single_release,
2509 };
2510 
2511 const struct spufs_tree_descr spufs_dir_contents[] = {
2512 	{ "capabilities", &spufs_caps_fops, 0444, },
2513 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2514 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2515 	{ "mbox", &spufs_mbox_fops, 0444, },
2516 	{ "ibox", &spufs_ibox_fops, 0444, },
2517 	{ "wbox", &spufs_wbox_fops, 0222, },
2518 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2519 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2520 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2521 	{ "signal1", &spufs_signal1_fops, 0666, },
2522 	{ "signal2", &spufs_signal2_fops, 0666, },
2523 	{ "signal1_type", &spufs_signal1_type, 0666, },
2524 	{ "signal2_type", &spufs_signal2_type, 0666, },
2525 	{ "cntl", &spufs_cntl_fops,  0666, },
2526 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2527 	{ "lslr", &spufs_lslr_ops, 0444, },
2528 	{ "mfc", &spufs_mfc_fops, 0666, },
2529 	{ "mss", &spufs_mss_fops, 0666, },
2530 	{ "npc", &spufs_npc_ops, 0666, },
2531 	{ "srr0", &spufs_srr0_ops, 0666, },
2532 	{ "decr", &spufs_decr_ops, 0666, },
2533 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2534 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2535 	{ "event_status", &spufs_event_status_ops, 0444, },
2536 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2537 	{ "phys-id", &spufs_id_ops, 0666, },
2538 	{ "object-id", &spufs_object_id_ops, 0666, },
2539 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2540 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2541 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2542 	{ "dma_info", &spufs_dma_info_fops, 0444,
2543 		sizeof(struct spu_dma_info), },
2544 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2545 		sizeof(struct spu_proxydma_info)},
2546 	{ "tid", &spufs_tid_fops, 0444, },
2547 	{ "stat", &spufs_stat_fops, 0444, },
2548 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2549 	{},
2550 };
2551 
2552 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2553 	{ "capabilities", &spufs_caps_fops, 0444, },
2554 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2555 	{ "mbox", &spufs_mbox_fops, 0444, },
2556 	{ "ibox", &spufs_ibox_fops, 0444, },
2557 	{ "wbox", &spufs_wbox_fops, 0222, },
2558 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2559 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2560 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2561 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2562 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2563 	{ "signal1_type", &spufs_signal1_type, 0666, },
2564 	{ "signal2_type", &spufs_signal2_type, 0666, },
2565 	{ "mss", &spufs_mss_fops, 0666, },
2566 	{ "mfc", &spufs_mfc_fops, 0666, },
2567 	{ "cntl", &spufs_cntl_fops,  0666, },
2568 	{ "npc", &spufs_npc_ops, 0666, },
2569 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2570 	{ "phys-id", &spufs_id_ops, 0666, },
2571 	{ "object-id", &spufs_object_id_ops, 0666, },
2572 	{ "tid", &spufs_tid_fops, 0444, },
2573 	{ "stat", &spufs_stat_fops, 0444, },
2574 	{},
2575 };
2576 
2577 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2578 	{ ".ctx", &spufs_ctx_fops, 0444, },
2579 	{},
2580 };
2581 
2582 const struct spufs_coredump_reader spufs_coredump_read[] = {
2583 	{ "regs", spufs_regs_dump, NULL, sizeof(struct spu_reg128[128])},
2584 	{ "fpcr", spufs_fpcr_dump, NULL, sizeof(struct spu_reg128) },
2585 	{ "lslr", NULL, spufs_lslr_get, 19 },
2586 	{ "decr", NULL, spufs_decr_get, 19 },
2587 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2588 	{ "mem", spufs_mem_dump, NULL, LS_SIZE, },
2589 	{ "signal1", spufs_signal1_dump, NULL, sizeof(u32) },
2590 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2591 	{ "signal2", spufs_signal2_dump, NULL, sizeof(u32) },
2592 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2593 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2594 	{ "event_status", NULL, spufs_event_status_get, 19 },
2595 	{ "mbox_info", spufs_mbox_info_dump, NULL, sizeof(u32) },
2596 	{ "ibox_info", spufs_ibox_info_dump, NULL, sizeof(u32) },
2597 	{ "wbox_info", spufs_wbox_info_dump, NULL, 4 * sizeof(u32)},
2598 	{ "dma_info", spufs_dma_info_dump, NULL, sizeof(struct spu_dma_info)},
2599 	{ "proxydma_info", spufs_proxydma_info_dump,
2600 			   NULL, sizeof(struct spu_proxydma_info)},
2601 	{ "object-id", NULL, spufs_object_id_get, 19 },
2602 	{ "npc", NULL, spufs_npc_get, 19 },
2603 	{ NULL },
2604 };
2605