xref: /linux/arch/powerpc/platforms/cell/spufs/file.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39 
40 #include "spufs.h"
41 #include "sputrace.h"
42 
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44 
45 /* Simple attribute files */
46 struct spufs_attr {
47 	int (*get)(void *, u64 *);
48 	int (*set)(void *, u64);
49 	char get_buf[24];       /* enough to store a u64 and "\n\0" */
50 	char set_buf[24];
51 	void *data;
52 	const char *fmt;        /* format for read operation */
53 	struct mutex mutex;     /* protects access to these buffers */
54 };
55 
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 		int (*get)(void *, u64 *), int (*set)(void *, u64),
58 		const char *fmt)
59 {
60 	struct spufs_attr *attr;
61 
62 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 	if (!attr)
64 		return -ENOMEM;
65 
66 	attr->get = get;
67 	attr->set = set;
68 	attr->data = inode->i_private;
69 	attr->fmt = fmt;
70 	mutex_init(&attr->mutex);
71 	file->private_data = attr;
72 
73 	return nonseekable_open(inode, file);
74 }
75 
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79 	return 0;
80 }
81 
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 		size_t len, loff_t *ppos)
84 {
85 	struct spufs_attr *attr;
86 	size_t size;
87 	ssize_t ret;
88 
89 	attr = file->private_data;
90 	if (!attr->get)
91 		return -EACCES;
92 
93 	ret = mutex_lock_interruptible(&attr->mutex);
94 	if (ret)
95 		return ret;
96 
97 	if (*ppos) {		/* continued read */
98 		size = strlen(attr->get_buf);
99 	} else {		/* first read */
100 		u64 val;
101 		ret = attr->get(attr->data, &val);
102 		if (ret)
103 			goto out;
104 
105 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 				 attr->fmt, (unsigned long long)val);
107 	}
108 
109 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 	mutex_unlock(&attr->mutex);
112 	return ret;
113 }
114 
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 		size_t len, loff_t *ppos)
117 {
118 	struct spufs_attr *attr;
119 	u64 val;
120 	size_t size;
121 	ssize_t ret;
122 
123 	attr = file->private_data;
124 	if (!attr->set)
125 		return -EACCES;
126 
127 	ret = mutex_lock_interruptible(&attr->mutex);
128 	if (ret)
129 		return ret;
130 
131 	ret = -EFAULT;
132 	size = min(sizeof(attr->set_buf) - 1, len);
133 	if (copy_from_user(attr->set_buf, buf, size))
134 		goto out;
135 
136 	ret = len; /* claim we got the whole input */
137 	attr->set_buf[size] = '\0';
138 	val = simple_strtol(attr->set_buf, NULL, 0);
139 	attr->set(attr->data, val);
140 out:
141 	mutex_unlock(&attr->mutex);
142 	return ret;
143 }
144 
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
146 static int __fops ## _open(struct inode *inode, struct file *file)	\
147 {									\
148 	__simple_attr_check_format(__fmt, 0ull);			\
149 	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
150 }									\
151 static const struct file_operations __fops = {				\
152 	.open	 = __fops ## _open,					\
153 	.release = spufs_attr_release,					\
154 	.read	 = spufs_attr_read,					\
155 	.write	 = spufs_attr_write,					\
156 	.llseek  = generic_file_llseek,					\
157 };
158 
159 
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 	struct spufs_inode_info *i = SPUFS_I(inode);
164 	struct spu_context *ctx = i->i_ctx;
165 
166 	mutex_lock(&ctx->mapping_lock);
167 	file->private_data = ctx;
168 	if (!i->i_openers++)
169 		ctx->local_store = inode->i_mapping;
170 	mutex_unlock(&ctx->mapping_lock);
171 	return 0;
172 }
173 
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 	struct spufs_inode_info *i = SPUFS_I(inode);
178 	struct spu_context *ctx = i->i_ctx;
179 
180 	mutex_lock(&ctx->mapping_lock);
181 	if (!--i->i_openers)
182 		ctx->local_store = NULL;
183 	mutex_unlock(&ctx->mapping_lock);
184 	return 0;
185 }
186 
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 			size_t size, loff_t *pos)
190 {
191 	char *local_store = ctx->ops->get_ls(ctx);
192 	return simple_read_from_buffer(buffer, size, pos, local_store,
193 					LS_SIZE);
194 }
195 
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198 				size_t size, loff_t *pos)
199 {
200 	struct spu_context *ctx = file->private_data;
201 	ssize_t ret;
202 
203 	ret = spu_acquire(ctx);
204 	if (ret)
205 		return ret;
206 	ret = __spufs_mem_read(ctx, buffer, size, pos);
207 	spu_release(ctx);
208 
209 	return ret;
210 }
211 
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214 					size_t size, loff_t *ppos)
215 {
216 	struct spu_context *ctx = file->private_data;
217 	char *local_store;
218 	loff_t pos = *ppos;
219 	int ret;
220 
221 	if (pos > LS_SIZE)
222 		return -EFBIG;
223 
224 	ret = spu_acquire(ctx);
225 	if (ret)
226 		return ret;
227 
228 	local_store = ctx->ops->get_ls(ctx);
229 	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230 	spu_release(ctx);
231 
232 	return size;
233 }
234 
235 static int
236 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
237 {
238 	struct spu_context *ctx	= vma->vm_file->private_data;
239 	unsigned long pfn, offset;
240 
241 	offset = vmf->pgoff << PAGE_SHIFT;
242 	if (offset >= LS_SIZE)
243 		return VM_FAULT_SIGBUS;
244 
245 	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
246 			vmf->address, offset);
247 
248 	if (spu_acquire(ctx))
249 		return VM_FAULT_NOPAGE;
250 
251 	if (ctx->state == SPU_STATE_SAVED) {
252 		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
253 		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
254 	} else {
255 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
256 		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
257 	}
258 	vm_insert_pfn(vma, vmf->address, pfn);
259 
260 	spu_release(ctx);
261 
262 	return VM_FAULT_NOPAGE;
263 }
264 
265 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
266 				unsigned long address,
267 				void *buf, int len, int write)
268 {
269 	struct spu_context *ctx = vma->vm_file->private_data;
270 	unsigned long offset = address - vma->vm_start;
271 	char *local_store;
272 
273 	if (write && !(vma->vm_flags & VM_WRITE))
274 		return -EACCES;
275 	if (spu_acquire(ctx))
276 		return -EINTR;
277 	if ((offset + len) > vma->vm_end)
278 		len = vma->vm_end - offset;
279 	local_store = ctx->ops->get_ls(ctx);
280 	if (write)
281 		memcpy_toio(local_store + offset, buf, len);
282 	else
283 		memcpy_fromio(buf, local_store + offset, len);
284 	spu_release(ctx);
285 	return len;
286 }
287 
288 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
289 	.fault = spufs_mem_mmap_fault,
290 	.access = spufs_mem_mmap_access,
291 };
292 
293 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
294 {
295 	if (!(vma->vm_flags & VM_SHARED))
296 		return -EINVAL;
297 
298 	vma->vm_flags |= VM_IO | VM_PFNMAP;
299 	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
300 
301 	vma->vm_ops = &spufs_mem_mmap_vmops;
302 	return 0;
303 }
304 
305 static const struct file_operations spufs_mem_fops = {
306 	.open			= spufs_mem_open,
307 	.release		= spufs_mem_release,
308 	.read			= spufs_mem_read,
309 	.write			= spufs_mem_write,
310 	.llseek			= generic_file_llseek,
311 	.mmap			= spufs_mem_mmap,
312 };
313 
314 static int spufs_ps_fault(struct vm_area_struct *vma,
315 				    struct vm_fault *vmf,
316 				    unsigned long ps_offs,
317 				    unsigned long ps_size)
318 {
319 	struct spu_context *ctx = vma->vm_file->private_data;
320 	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
321 	int ret = 0;
322 
323 	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
324 
325 	if (offset >= ps_size)
326 		return VM_FAULT_SIGBUS;
327 
328 	if (fatal_signal_pending(current))
329 		return VM_FAULT_SIGBUS;
330 
331 	/*
332 	 * Because we release the mmap_sem, the context may be destroyed while
333 	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
334 	 * in the meantime.
335 	 */
336 	get_spu_context(ctx);
337 
338 	/*
339 	 * We have to wait for context to be loaded before we have
340 	 * pages to hand out to the user, but we don't want to wait
341 	 * with the mmap_sem held.
342 	 * It is possible to drop the mmap_sem here, but then we need
343 	 * to return VM_FAULT_NOPAGE because the mappings may have
344 	 * hanged.
345 	 */
346 	if (spu_acquire(ctx))
347 		goto refault;
348 
349 	if (ctx->state == SPU_STATE_SAVED) {
350 		up_read(&current->mm->mmap_sem);
351 		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
352 		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
353 		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
354 		down_read(&current->mm->mmap_sem);
355 	} else {
356 		area = ctx->spu->problem_phys + ps_offs;
357 		vm_insert_pfn(vma, vmf->address, (area + offset) >> PAGE_SHIFT);
358 		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
359 	}
360 
361 	if (!ret)
362 		spu_release(ctx);
363 
364 refault:
365 	put_spu_context(ctx);
366 	return VM_FAULT_NOPAGE;
367 }
368 
369 #if SPUFS_MMAP_4K
370 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
371 					   struct vm_fault *vmf)
372 {
373 	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
374 }
375 
376 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
377 	.fault = spufs_cntl_mmap_fault,
378 };
379 
380 /*
381  * mmap support for problem state control area [0x4000 - 0x4fff].
382  */
383 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
384 {
385 	if (!(vma->vm_flags & VM_SHARED))
386 		return -EINVAL;
387 
388 	vma->vm_flags |= VM_IO | VM_PFNMAP;
389 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
390 
391 	vma->vm_ops = &spufs_cntl_mmap_vmops;
392 	return 0;
393 }
394 #else /* SPUFS_MMAP_4K */
395 #define spufs_cntl_mmap NULL
396 #endif /* !SPUFS_MMAP_4K */
397 
398 static int spufs_cntl_get(void *data, u64 *val)
399 {
400 	struct spu_context *ctx = data;
401 	int ret;
402 
403 	ret = spu_acquire(ctx);
404 	if (ret)
405 		return ret;
406 	*val = ctx->ops->status_read(ctx);
407 	spu_release(ctx);
408 
409 	return 0;
410 }
411 
412 static int spufs_cntl_set(void *data, u64 val)
413 {
414 	struct spu_context *ctx = data;
415 	int ret;
416 
417 	ret = spu_acquire(ctx);
418 	if (ret)
419 		return ret;
420 	ctx->ops->runcntl_write(ctx, val);
421 	spu_release(ctx);
422 
423 	return 0;
424 }
425 
426 static int spufs_cntl_open(struct inode *inode, struct file *file)
427 {
428 	struct spufs_inode_info *i = SPUFS_I(inode);
429 	struct spu_context *ctx = i->i_ctx;
430 
431 	mutex_lock(&ctx->mapping_lock);
432 	file->private_data = ctx;
433 	if (!i->i_openers++)
434 		ctx->cntl = inode->i_mapping;
435 	mutex_unlock(&ctx->mapping_lock);
436 	return simple_attr_open(inode, file, spufs_cntl_get,
437 					spufs_cntl_set, "0x%08lx");
438 }
439 
440 static int
441 spufs_cntl_release(struct inode *inode, struct file *file)
442 {
443 	struct spufs_inode_info *i = SPUFS_I(inode);
444 	struct spu_context *ctx = i->i_ctx;
445 
446 	simple_attr_release(inode, file);
447 
448 	mutex_lock(&ctx->mapping_lock);
449 	if (!--i->i_openers)
450 		ctx->cntl = NULL;
451 	mutex_unlock(&ctx->mapping_lock);
452 	return 0;
453 }
454 
455 static const struct file_operations spufs_cntl_fops = {
456 	.open = spufs_cntl_open,
457 	.release = spufs_cntl_release,
458 	.read = simple_attr_read,
459 	.write = simple_attr_write,
460 	.llseek	= generic_file_llseek,
461 	.mmap = spufs_cntl_mmap,
462 };
463 
464 static int
465 spufs_regs_open(struct inode *inode, struct file *file)
466 {
467 	struct spufs_inode_info *i = SPUFS_I(inode);
468 	file->private_data = i->i_ctx;
469 	return 0;
470 }
471 
472 static ssize_t
473 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
474 			size_t size, loff_t *pos)
475 {
476 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
477 	return simple_read_from_buffer(buffer, size, pos,
478 				      lscsa->gprs, sizeof lscsa->gprs);
479 }
480 
481 static ssize_t
482 spufs_regs_read(struct file *file, char __user *buffer,
483 		size_t size, loff_t *pos)
484 {
485 	int ret;
486 	struct spu_context *ctx = file->private_data;
487 
488 	/* pre-check for file position: if we'd return EOF, there's no point
489 	 * causing a deschedule */
490 	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
491 		return 0;
492 
493 	ret = spu_acquire_saved(ctx);
494 	if (ret)
495 		return ret;
496 	ret = __spufs_regs_read(ctx, buffer, size, pos);
497 	spu_release_saved(ctx);
498 	return ret;
499 }
500 
501 static ssize_t
502 spufs_regs_write(struct file *file, const char __user *buffer,
503 		 size_t size, loff_t *pos)
504 {
505 	struct spu_context *ctx = file->private_data;
506 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
507 	int ret;
508 
509 	if (*pos >= sizeof(lscsa->gprs))
510 		return -EFBIG;
511 
512 	ret = spu_acquire_saved(ctx);
513 	if (ret)
514 		return ret;
515 
516 	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
517 					buffer, size);
518 
519 	spu_release_saved(ctx);
520 	return size;
521 }
522 
523 static const struct file_operations spufs_regs_fops = {
524 	.open	 = spufs_regs_open,
525 	.read    = spufs_regs_read,
526 	.write   = spufs_regs_write,
527 	.llseek  = generic_file_llseek,
528 };
529 
530 static ssize_t
531 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
532 			size_t size, loff_t * pos)
533 {
534 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
535 	return simple_read_from_buffer(buffer, size, pos,
536 				      &lscsa->fpcr, sizeof(lscsa->fpcr));
537 }
538 
539 static ssize_t
540 spufs_fpcr_read(struct file *file, char __user * buffer,
541 		size_t size, loff_t * pos)
542 {
543 	int ret;
544 	struct spu_context *ctx = file->private_data;
545 
546 	ret = spu_acquire_saved(ctx);
547 	if (ret)
548 		return ret;
549 	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
550 	spu_release_saved(ctx);
551 	return ret;
552 }
553 
554 static ssize_t
555 spufs_fpcr_write(struct file *file, const char __user * buffer,
556 		 size_t size, loff_t * pos)
557 {
558 	struct spu_context *ctx = file->private_data;
559 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
560 	int ret;
561 
562 	if (*pos >= sizeof(lscsa->fpcr))
563 		return -EFBIG;
564 
565 	ret = spu_acquire_saved(ctx);
566 	if (ret)
567 		return ret;
568 
569 	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
570 					buffer, size);
571 
572 	spu_release_saved(ctx);
573 	return size;
574 }
575 
576 static const struct file_operations spufs_fpcr_fops = {
577 	.open = spufs_regs_open,
578 	.read = spufs_fpcr_read,
579 	.write = spufs_fpcr_write,
580 	.llseek = generic_file_llseek,
581 };
582 
583 /* generic open function for all pipe-like files */
584 static int spufs_pipe_open(struct inode *inode, struct file *file)
585 {
586 	struct spufs_inode_info *i = SPUFS_I(inode);
587 	file->private_data = i->i_ctx;
588 
589 	return nonseekable_open(inode, file);
590 }
591 
592 /*
593  * Read as many bytes from the mailbox as possible, until
594  * one of the conditions becomes true:
595  *
596  * - no more data available in the mailbox
597  * - end of the user provided buffer
598  * - end of the mapped area
599  */
600 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
601 			size_t len, loff_t *pos)
602 {
603 	struct spu_context *ctx = file->private_data;
604 	u32 mbox_data, __user *udata;
605 	ssize_t count;
606 
607 	if (len < 4)
608 		return -EINVAL;
609 
610 	if (!access_ok(VERIFY_WRITE, buf, len))
611 		return -EFAULT;
612 
613 	udata = (void __user *)buf;
614 
615 	count = spu_acquire(ctx);
616 	if (count)
617 		return count;
618 
619 	for (count = 0; (count + 4) <= len; count += 4, udata++) {
620 		int ret;
621 		ret = ctx->ops->mbox_read(ctx, &mbox_data);
622 		if (ret == 0)
623 			break;
624 
625 		/*
626 		 * at the end of the mapped area, we can fault
627 		 * but still need to return the data we have
628 		 * read successfully so far.
629 		 */
630 		ret = __put_user(mbox_data, udata);
631 		if (ret) {
632 			if (!count)
633 				count = -EFAULT;
634 			break;
635 		}
636 	}
637 	spu_release(ctx);
638 
639 	if (!count)
640 		count = -EAGAIN;
641 
642 	return count;
643 }
644 
645 static const struct file_operations spufs_mbox_fops = {
646 	.open	= spufs_pipe_open,
647 	.read	= spufs_mbox_read,
648 	.llseek	= no_llseek,
649 };
650 
651 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
652 			size_t len, loff_t *pos)
653 {
654 	struct spu_context *ctx = file->private_data;
655 	ssize_t ret;
656 	u32 mbox_stat;
657 
658 	if (len < 4)
659 		return -EINVAL;
660 
661 	ret = spu_acquire(ctx);
662 	if (ret)
663 		return ret;
664 
665 	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
666 
667 	spu_release(ctx);
668 
669 	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
670 		return -EFAULT;
671 
672 	return 4;
673 }
674 
675 static const struct file_operations spufs_mbox_stat_fops = {
676 	.open	= spufs_pipe_open,
677 	.read	= spufs_mbox_stat_read,
678 	.llseek = no_llseek,
679 };
680 
681 /* low-level ibox access function */
682 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
683 {
684 	return ctx->ops->ibox_read(ctx, data);
685 }
686 
687 static int spufs_ibox_fasync(int fd, struct file *file, int on)
688 {
689 	struct spu_context *ctx = file->private_data;
690 
691 	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
692 }
693 
694 /* interrupt-level ibox callback function. */
695 void spufs_ibox_callback(struct spu *spu)
696 {
697 	struct spu_context *ctx = spu->ctx;
698 
699 	if (!ctx)
700 		return;
701 
702 	wake_up_all(&ctx->ibox_wq);
703 	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
704 }
705 
706 /*
707  * Read as many bytes from the interrupt mailbox as possible, until
708  * one of the conditions becomes true:
709  *
710  * - no more data available in the mailbox
711  * - end of the user provided buffer
712  * - end of the mapped area
713  *
714  * If the file is opened without O_NONBLOCK, we wait here until
715  * any data is available, but return when we have been able to
716  * read something.
717  */
718 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
719 			size_t len, loff_t *pos)
720 {
721 	struct spu_context *ctx = file->private_data;
722 	u32 ibox_data, __user *udata;
723 	ssize_t count;
724 
725 	if (len < 4)
726 		return -EINVAL;
727 
728 	if (!access_ok(VERIFY_WRITE, buf, len))
729 		return -EFAULT;
730 
731 	udata = (void __user *)buf;
732 
733 	count = spu_acquire(ctx);
734 	if (count)
735 		goto out;
736 
737 	/* wait only for the first element */
738 	count = 0;
739 	if (file->f_flags & O_NONBLOCK) {
740 		if (!spu_ibox_read(ctx, &ibox_data)) {
741 			count = -EAGAIN;
742 			goto out_unlock;
743 		}
744 	} else {
745 		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
746 		if (count)
747 			goto out;
748 	}
749 
750 	/* if we can't write at all, return -EFAULT */
751 	count = __put_user(ibox_data, udata);
752 	if (count)
753 		goto out_unlock;
754 
755 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
756 		int ret;
757 		ret = ctx->ops->ibox_read(ctx, &ibox_data);
758 		if (ret == 0)
759 			break;
760 		/*
761 		 * at the end of the mapped area, we can fault
762 		 * but still need to return the data we have
763 		 * read successfully so far.
764 		 */
765 		ret = __put_user(ibox_data, udata);
766 		if (ret)
767 			break;
768 	}
769 
770 out_unlock:
771 	spu_release(ctx);
772 out:
773 	return count;
774 }
775 
776 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
777 {
778 	struct spu_context *ctx = file->private_data;
779 	unsigned int mask;
780 
781 	poll_wait(file, &ctx->ibox_wq, wait);
782 
783 	/*
784 	 * For now keep this uninterruptible and also ignore the rule
785 	 * that poll should not sleep.  Will be fixed later.
786 	 */
787 	mutex_lock(&ctx->state_mutex);
788 	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
789 	spu_release(ctx);
790 
791 	return mask;
792 }
793 
794 static const struct file_operations spufs_ibox_fops = {
795 	.open	= spufs_pipe_open,
796 	.read	= spufs_ibox_read,
797 	.poll	= spufs_ibox_poll,
798 	.fasync	= spufs_ibox_fasync,
799 	.llseek = no_llseek,
800 };
801 
802 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
803 			size_t len, loff_t *pos)
804 {
805 	struct spu_context *ctx = file->private_data;
806 	ssize_t ret;
807 	u32 ibox_stat;
808 
809 	if (len < 4)
810 		return -EINVAL;
811 
812 	ret = spu_acquire(ctx);
813 	if (ret)
814 		return ret;
815 	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
816 	spu_release(ctx);
817 
818 	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
819 		return -EFAULT;
820 
821 	return 4;
822 }
823 
824 static const struct file_operations spufs_ibox_stat_fops = {
825 	.open	= spufs_pipe_open,
826 	.read	= spufs_ibox_stat_read,
827 	.llseek = no_llseek,
828 };
829 
830 /* low-level mailbox write */
831 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
832 {
833 	return ctx->ops->wbox_write(ctx, data);
834 }
835 
836 static int spufs_wbox_fasync(int fd, struct file *file, int on)
837 {
838 	struct spu_context *ctx = file->private_data;
839 	int ret;
840 
841 	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
842 
843 	return ret;
844 }
845 
846 /* interrupt-level wbox callback function. */
847 void spufs_wbox_callback(struct spu *spu)
848 {
849 	struct spu_context *ctx = spu->ctx;
850 
851 	if (!ctx)
852 		return;
853 
854 	wake_up_all(&ctx->wbox_wq);
855 	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
856 }
857 
858 /*
859  * Write as many bytes to the interrupt mailbox as possible, until
860  * one of the conditions becomes true:
861  *
862  * - the mailbox is full
863  * - end of the user provided buffer
864  * - end of the mapped area
865  *
866  * If the file is opened without O_NONBLOCK, we wait here until
867  * space is available, but return when we have been able to
868  * write something.
869  */
870 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
871 			size_t len, loff_t *pos)
872 {
873 	struct spu_context *ctx = file->private_data;
874 	u32 wbox_data, __user *udata;
875 	ssize_t count;
876 
877 	if (len < 4)
878 		return -EINVAL;
879 
880 	udata = (void __user *)buf;
881 	if (!access_ok(VERIFY_READ, buf, len))
882 		return -EFAULT;
883 
884 	if (__get_user(wbox_data, udata))
885 		return -EFAULT;
886 
887 	count = spu_acquire(ctx);
888 	if (count)
889 		goto out;
890 
891 	/*
892 	 * make sure we can at least write one element, by waiting
893 	 * in case of !O_NONBLOCK
894 	 */
895 	count = 0;
896 	if (file->f_flags & O_NONBLOCK) {
897 		if (!spu_wbox_write(ctx, wbox_data)) {
898 			count = -EAGAIN;
899 			goto out_unlock;
900 		}
901 	} else {
902 		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
903 		if (count)
904 			goto out;
905 	}
906 
907 
908 	/* write as much as possible */
909 	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
910 		int ret;
911 		ret = __get_user(wbox_data, udata);
912 		if (ret)
913 			break;
914 
915 		ret = spu_wbox_write(ctx, wbox_data);
916 		if (ret == 0)
917 			break;
918 	}
919 
920 out_unlock:
921 	spu_release(ctx);
922 out:
923 	return count;
924 }
925 
926 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
927 {
928 	struct spu_context *ctx = file->private_data;
929 	unsigned int mask;
930 
931 	poll_wait(file, &ctx->wbox_wq, wait);
932 
933 	/*
934 	 * For now keep this uninterruptible and also ignore the rule
935 	 * that poll should not sleep.  Will be fixed later.
936 	 */
937 	mutex_lock(&ctx->state_mutex);
938 	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
939 	spu_release(ctx);
940 
941 	return mask;
942 }
943 
944 static const struct file_operations spufs_wbox_fops = {
945 	.open	= spufs_pipe_open,
946 	.write	= spufs_wbox_write,
947 	.poll	= spufs_wbox_poll,
948 	.fasync	= spufs_wbox_fasync,
949 	.llseek = no_llseek,
950 };
951 
952 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
953 			size_t len, loff_t *pos)
954 {
955 	struct spu_context *ctx = file->private_data;
956 	ssize_t ret;
957 	u32 wbox_stat;
958 
959 	if (len < 4)
960 		return -EINVAL;
961 
962 	ret = spu_acquire(ctx);
963 	if (ret)
964 		return ret;
965 	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
966 	spu_release(ctx);
967 
968 	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
969 		return -EFAULT;
970 
971 	return 4;
972 }
973 
974 static const struct file_operations spufs_wbox_stat_fops = {
975 	.open	= spufs_pipe_open,
976 	.read	= spufs_wbox_stat_read,
977 	.llseek = no_llseek,
978 };
979 
980 static int spufs_signal1_open(struct inode *inode, struct file *file)
981 {
982 	struct spufs_inode_info *i = SPUFS_I(inode);
983 	struct spu_context *ctx = i->i_ctx;
984 
985 	mutex_lock(&ctx->mapping_lock);
986 	file->private_data = ctx;
987 	if (!i->i_openers++)
988 		ctx->signal1 = inode->i_mapping;
989 	mutex_unlock(&ctx->mapping_lock);
990 	return nonseekable_open(inode, file);
991 }
992 
993 static int
994 spufs_signal1_release(struct inode *inode, struct file *file)
995 {
996 	struct spufs_inode_info *i = SPUFS_I(inode);
997 	struct spu_context *ctx = i->i_ctx;
998 
999 	mutex_lock(&ctx->mapping_lock);
1000 	if (!--i->i_openers)
1001 		ctx->signal1 = NULL;
1002 	mutex_unlock(&ctx->mapping_lock);
1003 	return 0;
1004 }
1005 
1006 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1007 			size_t len, loff_t *pos)
1008 {
1009 	int ret = 0;
1010 	u32 data;
1011 
1012 	if (len < 4)
1013 		return -EINVAL;
1014 
1015 	if (ctx->csa.spu_chnlcnt_RW[3]) {
1016 		data = ctx->csa.spu_chnldata_RW[3];
1017 		ret = 4;
1018 	}
1019 
1020 	if (!ret)
1021 		goto out;
1022 
1023 	if (copy_to_user(buf, &data, 4))
1024 		return -EFAULT;
1025 
1026 out:
1027 	return ret;
1028 }
1029 
1030 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1031 			size_t len, loff_t *pos)
1032 {
1033 	int ret;
1034 	struct spu_context *ctx = file->private_data;
1035 
1036 	ret = spu_acquire_saved(ctx);
1037 	if (ret)
1038 		return ret;
1039 	ret = __spufs_signal1_read(ctx, buf, len, pos);
1040 	spu_release_saved(ctx);
1041 
1042 	return ret;
1043 }
1044 
1045 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1046 			size_t len, loff_t *pos)
1047 {
1048 	struct spu_context *ctx;
1049 	ssize_t ret;
1050 	u32 data;
1051 
1052 	ctx = file->private_data;
1053 
1054 	if (len < 4)
1055 		return -EINVAL;
1056 
1057 	if (copy_from_user(&data, buf, 4))
1058 		return -EFAULT;
1059 
1060 	ret = spu_acquire(ctx);
1061 	if (ret)
1062 		return ret;
1063 	ctx->ops->signal1_write(ctx, data);
1064 	spu_release(ctx);
1065 
1066 	return 4;
1067 }
1068 
1069 static int
1070 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1071 {
1072 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1073 	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1074 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1075 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1076 	 * signal 1 and 2 area
1077 	 */
1078 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1079 #else
1080 #error unsupported page size
1081 #endif
1082 }
1083 
1084 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1085 	.fault = spufs_signal1_mmap_fault,
1086 };
1087 
1088 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1089 {
1090 	if (!(vma->vm_flags & VM_SHARED))
1091 		return -EINVAL;
1092 
1093 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1094 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1095 
1096 	vma->vm_ops = &spufs_signal1_mmap_vmops;
1097 	return 0;
1098 }
1099 
1100 static const struct file_operations spufs_signal1_fops = {
1101 	.open = spufs_signal1_open,
1102 	.release = spufs_signal1_release,
1103 	.read = spufs_signal1_read,
1104 	.write = spufs_signal1_write,
1105 	.mmap = spufs_signal1_mmap,
1106 	.llseek = no_llseek,
1107 };
1108 
1109 static const struct file_operations spufs_signal1_nosched_fops = {
1110 	.open = spufs_signal1_open,
1111 	.release = spufs_signal1_release,
1112 	.write = spufs_signal1_write,
1113 	.mmap = spufs_signal1_mmap,
1114 	.llseek = no_llseek,
1115 };
1116 
1117 static int spufs_signal2_open(struct inode *inode, struct file *file)
1118 {
1119 	struct spufs_inode_info *i = SPUFS_I(inode);
1120 	struct spu_context *ctx = i->i_ctx;
1121 
1122 	mutex_lock(&ctx->mapping_lock);
1123 	file->private_data = ctx;
1124 	if (!i->i_openers++)
1125 		ctx->signal2 = inode->i_mapping;
1126 	mutex_unlock(&ctx->mapping_lock);
1127 	return nonseekable_open(inode, file);
1128 }
1129 
1130 static int
1131 spufs_signal2_release(struct inode *inode, struct file *file)
1132 {
1133 	struct spufs_inode_info *i = SPUFS_I(inode);
1134 	struct spu_context *ctx = i->i_ctx;
1135 
1136 	mutex_lock(&ctx->mapping_lock);
1137 	if (!--i->i_openers)
1138 		ctx->signal2 = NULL;
1139 	mutex_unlock(&ctx->mapping_lock);
1140 	return 0;
1141 }
1142 
1143 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1144 			size_t len, loff_t *pos)
1145 {
1146 	int ret = 0;
1147 	u32 data;
1148 
1149 	if (len < 4)
1150 		return -EINVAL;
1151 
1152 	if (ctx->csa.spu_chnlcnt_RW[4]) {
1153 		data =  ctx->csa.spu_chnldata_RW[4];
1154 		ret = 4;
1155 	}
1156 
1157 	if (!ret)
1158 		goto out;
1159 
1160 	if (copy_to_user(buf, &data, 4))
1161 		return -EFAULT;
1162 
1163 out:
1164 	return ret;
1165 }
1166 
1167 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1168 			size_t len, loff_t *pos)
1169 {
1170 	struct spu_context *ctx = file->private_data;
1171 	int ret;
1172 
1173 	ret = spu_acquire_saved(ctx);
1174 	if (ret)
1175 		return ret;
1176 	ret = __spufs_signal2_read(ctx, buf, len, pos);
1177 	spu_release_saved(ctx);
1178 
1179 	return ret;
1180 }
1181 
1182 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1183 			size_t len, loff_t *pos)
1184 {
1185 	struct spu_context *ctx;
1186 	ssize_t ret;
1187 	u32 data;
1188 
1189 	ctx = file->private_data;
1190 
1191 	if (len < 4)
1192 		return -EINVAL;
1193 
1194 	if (copy_from_user(&data, buf, 4))
1195 		return -EFAULT;
1196 
1197 	ret = spu_acquire(ctx);
1198 	if (ret)
1199 		return ret;
1200 	ctx->ops->signal2_write(ctx, data);
1201 	spu_release(ctx);
1202 
1203 	return 4;
1204 }
1205 
1206 #if SPUFS_MMAP_4K
1207 static int
1208 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1209 {
1210 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1211 	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1212 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1213 	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1214 	 * signal 1 and 2 area
1215 	 */
1216 	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1217 #else
1218 #error unsupported page size
1219 #endif
1220 }
1221 
1222 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1223 	.fault = spufs_signal2_mmap_fault,
1224 };
1225 
1226 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1227 {
1228 	if (!(vma->vm_flags & VM_SHARED))
1229 		return -EINVAL;
1230 
1231 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1232 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1233 
1234 	vma->vm_ops = &spufs_signal2_mmap_vmops;
1235 	return 0;
1236 }
1237 #else /* SPUFS_MMAP_4K */
1238 #define spufs_signal2_mmap NULL
1239 #endif /* !SPUFS_MMAP_4K */
1240 
1241 static const struct file_operations spufs_signal2_fops = {
1242 	.open = spufs_signal2_open,
1243 	.release = spufs_signal2_release,
1244 	.read = spufs_signal2_read,
1245 	.write = spufs_signal2_write,
1246 	.mmap = spufs_signal2_mmap,
1247 	.llseek = no_llseek,
1248 };
1249 
1250 static const struct file_operations spufs_signal2_nosched_fops = {
1251 	.open = spufs_signal2_open,
1252 	.release = spufs_signal2_release,
1253 	.write = spufs_signal2_write,
1254 	.mmap = spufs_signal2_mmap,
1255 	.llseek = no_llseek,
1256 };
1257 
1258 /*
1259  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1260  * work of acquiring (or not) the SPU context before calling through
1261  * to the actual get routine. The set routine is called directly.
1262  */
1263 #define SPU_ATTR_NOACQUIRE	0
1264 #define SPU_ATTR_ACQUIRE	1
1265 #define SPU_ATTR_ACQUIRE_SAVED	2
1266 
1267 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1268 static int __##__get(void *data, u64 *val)				\
1269 {									\
1270 	struct spu_context *ctx = data;					\
1271 	int ret = 0;							\
1272 									\
1273 	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1274 		ret = spu_acquire(ctx);					\
1275 		if (ret)						\
1276 			return ret;					\
1277 		*val = __get(ctx);					\
1278 		spu_release(ctx);					\
1279 	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1280 		ret = spu_acquire_saved(ctx);				\
1281 		if (ret)						\
1282 			return ret;					\
1283 		*val = __get(ctx);					\
1284 		spu_release_saved(ctx);					\
1285 	} else								\
1286 		*val = __get(ctx);					\
1287 									\
1288 	return 0;							\
1289 }									\
1290 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1291 
1292 static int spufs_signal1_type_set(void *data, u64 val)
1293 {
1294 	struct spu_context *ctx = data;
1295 	int ret;
1296 
1297 	ret = spu_acquire(ctx);
1298 	if (ret)
1299 		return ret;
1300 	ctx->ops->signal1_type_set(ctx, val);
1301 	spu_release(ctx);
1302 
1303 	return 0;
1304 }
1305 
1306 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1307 {
1308 	return ctx->ops->signal1_type_get(ctx);
1309 }
1310 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1311 		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1312 
1313 
1314 static int spufs_signal2_type_set(void *data, u64 val)
1315 {
1316 	struct spu_context *ctx = data;
1317 	int ret;
1318 
1319 	ret = spu_acquire(ctx);
1320 	if (ret)
1321 		return ret;
1322 	ctx->ops->signal2_type_set(ctx, val);
1323 	spu_release(ctx);
1324 
1325 	return 0;
1326 }
1327 
1328 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1329 {
1330 	return ctx->ops->signal2_type_get(ctx);
1331 }
1332 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1333 		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1334 
1335 #if SPUFS_MMAP_4K
1336 static int
1337 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1338 {
1339 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1340 }
1341 
1342 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1343 	.fault = spufs_mss_mmap_fault,
1344 };
1345 
1346 /*
1347  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1348  */
1349 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1350 {
1351 	if (!(vma->vm_flags & VM_SHARED))
1352 		return -EINVAL;
1353 
1354 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1355 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1356 
1357 	vma->vm_ops = &spufs_mss_mmap_vmops;
1358 	return 0;
1359 }
1360 #else /* SPUFS_MMAP_4K */
1361 #define spufs_mss_mmap NULL
1362 #endif /* !SPUFS_MMAP_4K */
1363 
1364 static int spufs_mss_open(struct inode *inode, struct file *file)
1365 {
1366 	struct spufs_inode_info *i = SPUFS_I(inode);
1367 	struct spu_context *ctx = i->i_ctx;
1368 
1369 	file->private_data = i->i_ctx;
1370 
1371 	mutex_lock(&ctx->mapping_lock);
1372 	if (!i->i_openers++)
1373 		ctx->mss = inode->i_mapping;
1374 	mutex_unlock(&ctx->mapping_lock);
1375 	return nonseekable_open(inode, file);
1376 }
1377 
1378 static int
1379 spufs_mss_release(struct inode *inode, struct file *file)
1380 {
1381 	struct spufs_inode_info *i = SPUFS_I(inode);
1382 	struct spu_context *ctx = i->i_ctx;
1383 
1384 	mutex_lock(&ctx->mapping_lock);
1385 	if (!--i->i_openers)
1386 		ctx->mss = NULL;
1387 	mutex_unlock(&ctx->mapping_lock);
1388 	return 0;
1389 }
1390 
1391 static const struct file_operations spufs_mss_fops = {
1392 	.open	 = spufs_mss_open,
1393 	.release = spufs_mss_release,
1394 	.mmap	 = spufs_mss_mmap,
1395 	.llseek  = no_llseek,
1396 };
1397 
1398 static int
1399 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1400 {
1401 	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1402 }
1403 
1404 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1405 	.fault = spufs_psmap_mmap_fault,
1406 };
1407 
1408 /*
1409  * mmap support for full problem state area [0x00000 - 0x1ffff].
1410  */
1411 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1412 {
1413 	if (!(vma->vm_flags & VM_SHARED))
1414 		return -EINVAL;
1415 
1416 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1417 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1418 
1419 	vma->vm_ops = &spufs_psmap_mmap_vmops;
1420 	return 0;
1421 }
1422 
1423 static int spufs_psmap_open(struct inode *inode, struct file *file)
1424 {
1425 	struct spufs_inode_info *i = SPUFS_I(inode);
1426 	struct spu_context *ctx = i->i_ctx;
1427 
1428 	mutex_lock(&ctx->mapping_lock);
1429 	file->private_data = i->i_ctx;
1430 	if (!i->i_openers++)
1431 		ctx->psmap = inode->i_mapping;
1432 	mutex_unlock(&ctx->mapping_lock);
1433 	return nonseekable_open(inode, file);
1434 }
1435 
1436 static int
1437 spufs_psmap_release(struct inode *inode, struct file *file)
1438 {
1439 	struct spufs_inode_info *i = SPUFS_I(inode);
1440 	struct spu_context *ctx = i->i_ctx;
1441 
1442 	mutex_lock(&ctx->mapping_lock);
1443 	if (!--i->i_openers)
1444 		ctx->psmap = NULL;
1445 	mutex_unlock(&ctx->mapping_lock);
1446 	return 0;
1447 }
1448 
1449 static const struct file_operations spufs_psmap_fops = {
1450 	.open	 = spufs_psmap_open,
1451 	.release = spufs_psmap_release,
1452 	.mmap	 = spufs_psmap_mmap,
1453 	.llseek  = no_llseek,
1454 };
1455 
1456 
1457 #if SPUFS_MMAP_4K
1458 static int
1459 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1460 {
1461 	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1462 }
1463 
1464 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1465 	.fault = spufs_mfc_mmap_fault,
1466 };
1467 
1468 /*
1469  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1470  */
1471 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1472 {
1473 	if (!(vma->vm_flags & VM_SHARED))
1474 		return -EINVAL;
1475 
1476 	vma->vm_flags |= VM_IO | VM_PFNMAP;
1477 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1478 
1479 	vma->vm_ops = &spufs_mfc_mmap_vmops;
1480 	return 0;
1481 }
1482 #else /* SPUFS_MMAP_4K */
1483 #define spufs_mfc_mmap NULL
1484 #endif /* !SPUFS_MMAP_4K */
1485 
1486 static int spufs_mfc_open(struct inode *inode, struct file *file)
1487 {
1488 	struct spufs_inode_info *i = SPUFS_I(inode);
1489 	struct spu_context *ctx = i->i_ctx;
1490 
1491 	/* we don't want to deal with DMA into other processes */
1492 	if (ctx->owner != current->mm)
1493 		return -EINVAL;
1494 
1495 	if (atomic_read(&inode->i_count) != 1)
1496 		return -EBUSY;
1497 
1498 	mutex_lock(&ctx->mapping_lock);
1499 	file->private_data = ctx;
1500 	if (!i->i_openers++)
1501 		ctx->mfc = inode->i_mapping;
1502 	mutex_unlock(&ctx->mapping_lock);
1503 	return nonseekable_open(inode, file);
1504 }
1505 
1506 static int
1507 spufs_mfc_release(struct inode *inode, struct file *file)
1508 {
1509 	struct spufs_inode_info *i = SPUFS_I(inode);
1510 	struct spu_context *ctx = i->i_ctx;
1511 
1512 	mutex_lock(&ctx->mapping_lock);
1513 	if (!--i->i_openers)
1514 		ctx->mfc = NULL;
1515 	mutex_unlock(&ctx->mapping_lock);
1516 	return 0;
1517 }
1518 
1519 /* interrupt-level mfc callback function. */
1520 void spufs_mfc_callback(struct spu *spu)
1521 {
1522 	struct spu_context *ctx = spu->ctx;
1523 
1524 	if (!ctx)
1525 		return;
1526 
1527 	wake_up_all(&ctx->mfc_wq);
1528 
1529 	pr_debug("%s %s\n", __func__, spu->name);
1530 	if (ctx->mfc_fasync) {
1531 		u32 free_elements, tagstatus;
1532 		unsigned int mask;
1533 
1534 		/* no need for spu_acquire in interrupt context */
1535 		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1536 		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1537 
1538 		mask = 0;
1539 		if (free_elements & 0xffff)
1540 			mask |= POLLOUT;
1541 		if (tagstatus & ctx->tagwait)
1542 			mask |= POLLIN;
1543 
1544 		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1545 	}
1546 }
1547 
1548 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1549 {
1550 	/* See if there is one tag group is complete */
1551 	/* FIXME we need locking around tagwait */
1552 	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1553 	ctx->tagwait &= ~*status;
1554 	if (*status)
1555 		return 1;
1556 
1557 	/* enable interrupt waiting for any tag group,
1558 	   may silently fail if interrupts are already enabled */
1559 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1560 	return 0;
1561 }
1562 
1563 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1564 			size_t size, loff_t *pos)
1565 {
1566 	struct spu_context *ctx = file->private_data;
1567 	int ret = -EINVAL;
1568 	u32 status;
1569 
1570 	if (size != 4)
1571 		goto out;
1572 
1573 	ret = spu_acquire(ctx);
1574 	if (ret)
1575 		return ret;
1576 
1577 	ret = -EINVAL;
1578 	if (file->f_flags & O_NONBLOCK) {
1579 		status = ctx->ops->read_mfc_tagstatus(ctx);
1580 		if (!(status & ctx->tagwait))
1581 			ret = -EAGAIN;
1582 		else
1583 			/* XXX(hch): shouldn't we clear ret here? */
1584 			ctx->tagwait &= ~status;
1585 	} else {
1586 		ret = spufs_wait(ctx->mfc_wq,
1587 			   spufs_read_mfc_tagstatus(ctx, &status));
1588 		if (ret)
1589 			goto out;
1590 	}
1591 	spu_release(ctx);
1592 
1593 	ret = 4;
1594 	if (copy_to_user(buffer, &status, 4))
1595 		ret = -EFAULT;
1596 
1597 out:
1598 	return ret;
1599 }
1600 
1601 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1602 {
1603 	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1604 		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1605 
1606 	switch (cmd->cmd) {
1607 	case MFC_PUT_CMD:
1608 	case MFC_PUTF_CMD:
1609 	case MFC_PUTB_CMD:
1610 	case MFC_GET_CMD:
1611 	case MFC_GETF_CMD:
1612 	case MFC_GETB_CMD:
1613 		break;
1614 	default:
1615 		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1616 		return -EIO;
1617 	}
1618 
1619 	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1620 		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1621 				cmd->ea, cmd->lsa);
1622 		return -EIO;
1623 	}
1624 
1625 	switch (cmd->size & 0xf) {
1626 	case 1:
1627 		break;
1628 	case 2:
1629 		if (cmd->lsa & 1)
1630 			goto error;
1631 		break;
1632 	case 4:
1633 		if (cmd->lsa & 3)
1634 			goto error;
1635 		break;
1636 	case 8:
1637 		if (cmd->lsa & 7)
1638 			goto error;
1639 		break;
1640 	case 0:
1641 		if (cmd->lsa & 15)
1642 			goto error;
1643 		break;
1644 	error:
1645 	default:
1646 		pr_debug("invalid DMA alignment %x for size %x\n",
1647 			cmd->lsa & 0xf, cmd->size);
1648 		return -EIO;
1649 	}
1650 
1651 	if (cmd->size > 16 * 1024) {
1652 		pr_debug("invalid DMA size %x\n", cmd->size);
1653 		return -EIO;
1654 	}
1655 
1656 	if (cmd->tag & 0xfff0) {
1657 		/* we reserve the higher tag numbers for kernel use */
1658 		pr_debug("invalid DMA tag\n");
1659 		return -EIO;
1660 	}
1661 
1662 	if (cmd->class) {
1663 		/* not supported in this version */
1664 		pr_debug("invalid DMA class\n");
1665 		return -EIO;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static int spu_send_mfc_command(struct spu_context *ctx,
1672 				struct mfc_dma_command cmd,
1673 				int *error)
1674 {
1675 	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1676 	if (*error == -EAGAIN) {
1677 		/* wait for any tag group to complete
1678 		   so we have space for the new command */
1679 		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1680 		/* try again, because the queue might be
1681 		   empty again */
1682 		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1683 		if (*error == -EAGAIN)
1684 			return 0;
1685 	}
1686 	return 1;
1687 }
1688 
1689 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1690 			size_t size, loff_t *pos)
1691 {
1692 	struct spu_context *ctx = file->private_data;
1693 	struct mfc_dma_command cmd;
1694 	int ret = -EINVAL;
1695 
1696 	if (size != sizeof cmd)
1697 		goto out;
1698 
1699 	ret = -EFAULT;
1700 	if (copy_from_user(&cmd, buffer, sizeof cmd))
1701 		goto out;
1702 
1703 	ret = spufs_check_valid_dma(&cmd);
1704 	if (ret)
1705 		goto out;
1706 
1707 	ret = spu_acquire(ctx);
1708 	if (ret)
1709 		goto out;
1710 
1711 	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1712 	if (ret)
1713 		goto out;
1714 
1715 	if (file->f_flags & O_NONBLOCK) {
1716 		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1717 	} else {
1718 		int status;
1719 		ret = spufs_wait(ctx->mfc_wq,
1720 				 spu_send_mfc_command(ctx, cmd, &status));
1721 		if (ret)
1722 			goto out;
1723 		if (status)
1724 			ret = status;
1725 	}
1726 
1727 	if (ret)
1728 		goto out_unlock;
1729 
1730 	ctx->tagwait |= 1 << cmd.tag;
1731 	ret = size;
1732 
1733 out_unlock:
1734 	spu_release(ctx);
1735 out:
1736 	return ret;
1737 }
1738 
1739 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1740 {
1741 	struct spu_context *ctx = file->private_data;
1742 	u32 free_elements, tagstatus;
1743 	unsigned int mask;
1744 
1745 	poll_wait(file, &ctx->mfc_wq, wait);
1746 
1747 	/*
1748 	 * For now keep this uninterruptible and also ignore the rule
1749 	 * that poll should not sleep.  Will be fixed later.
1750 	 */
1751 	mutex_lock(&ctx->state_mutex);
1752 	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1753 	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1754 	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1755 	spu_release(ctx);
1756 
1757 	mask = 0;
1758 	if (free_elements & 0xffff)
1759 		mask |= POLLOUT | POLLWRNORM;
1760 	if (tagstatus & ctx->tagwait)
1761 		mask |= POLLIN | POLLRDNORM;
1762 
1763 	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1764 		free_elements, tagstatus, ctx->tagwait);
1765 
1766 	return mask;
1767 }
1768 
1769 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1770 {
1771 	struct spu_context *ctx = file->private_data;
1772 	int ret;
1773 
1774 	ret = spu_acquire(ctx);
1775 	if (ret)
1776 		goto out;
1777 #if 0
1778 /* this currently hangs */
1779 	ret = spufs_wait(ctx->mfc_wq,
1780 			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1781 	if (ret)
1782 		goto out;
1783 	ret = spufs_wait(ctx->mfc_wq,
1784 			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1785 	if (ret)
1786 		goto out;
1787 #else
1788 	ret = 0;
1789 #endif
1790 	spu_release(ctx);
1791 out:
1792 	return ret;
1793 }
1794 
1795 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1796 {
1797 	struct inode *inode = file_inode(file);
1798 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1799 	if (!err) {
1800 		inode_lock(inode);
1801 		err = spufs_mfc_flush(file, NULL);
1802 		inode_unlock(inode);
1803 	}
1804 	return err;
1805 }
1806 
1807 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1808 {
1809 	struct spu_context *ctx = file->private_data;
1810 
1811 	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1812 }
1813 
1814 static const struct file_operations spufs_mfc_fops = {
1815 	.open	 = spufs_mfc_open,
1816 	.release = spufs_mfc_release,
1817 	.read	 = spufs_mfc_read,
1818 	.write	 = spufs_mfc_write,
1819 	.poll	 = spufs_mfc_poll,
1820 	.flush	 = spufs_mfc_flush,
1821 	.fsync	 = spufs_mfc_fsync,
1822 	.fasync	 = spufs_mfc_fasync,
1823 	.mmap	 = spufs_mfc_mmap,
1824 	.llseek  = no_llseek,
1825 };
1826 
1827 static int spufs_npc_set(void *data, u64 val)
1828 {
1829 	struct spu_context *ctx = data;
1830 	int ret;
1831 
1832 	ret = spu_acquire(ctx);
1833 	if (ret)
1834 		return ret;
1835 	ctx->ops->npc_write(ctx, val);
1836 	spu_release(ctx);
1837 
1838 	return 0;
1839 }
1840 
1841 static u64 spufs_npc_get(struct spu_context *ctx)
1842 {
1843 	return ctx->ops->npc_read(ctx);
1844 }
1845 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1846 		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1847 
1848 static int spufs_decr_set(void *data, u64 val)
1849 {
1850 	struct spu_context *ctx = data;
1851 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1852 	int ret;
1853 
1854 	ret = spu_acquire_saved(ctx);
1855 	if (ret)
1856 		return ret;
1857 	lscsa->decr.slot[0] = (u32) val;
1858 	spu_release_saved(ctx);
1859 
1860 	return 0;
1861 }
1862 
1863 static u64 spufs_decr_get(struct spu_context *ctx)
1864 {
1865 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1866 	return lscsa->decr.slot[0];
1867 }
1868 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1869 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1870 
1871 static int spufs_decr_status_set(void *data, u64 val)
1872 {
1873 	struct spu_context *ctx = data;
1874 	int ret;
1875 
1876 	ret = spu_acquire_saved(ctx);
1877 	if (ret)
1878 		return ret;
1879 	if (val)
1880 		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1881 	else
1882 		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1883 	spu_release_saved(ctx);
1884 
1885 	return 0;
1886 }
1887 
1888 static u64 spufs_decr_status_get(struct spu_context *ctx)
1889 {
1890 	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1891 		return SPU_DECR_STATUS_RUNNING;
1892 	else
1893 		return 0;
1894 }
1895 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1896 		       spufs_decr_status_set, "0x%llx\n",
1897 		       SPU_ATTR_ACQUIRE_SAVED);
1898 
1899 static int spufs_event_mask_set(void *data, u64 val)
1900 {
1901 	struct spu_context *ctx = data;
1902 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1903 	int ret;
1904 
1905 	ret = spu_acquire_saved(ctx);
1906 	if (ret)
1907 		return ret;
1908 	lscsa->event_mask.slot[0] = (u32) val;
1909 	spu_release_saved(ctx);
1910 
1911 	return 0;
1912 }
1913 
1914 static u64 spufs_event_mask_get(struct spu_context *ctx)
1915 {
1916 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1917 	return lscsa->event_mask.slot[0];
1918 }
1919 
1920 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1921 		       spufs_event_mask_set, "0x%llx\n",
1922 		       SPU_ATTR_ACQUIRE_SAVED);
1923 
1924 static u64 spufs_event_status_get(struct spu_context *ctx)
1925 {
1926 	struct spu_state *state = &ctx->csa;
1927 	u64 stat;
1928 	stat = state->spu_chnlcnt_RW[0];
1929 	if (stat)
1930 		return state->spu_chnldata_RW[0];
1931 	return 0;
1932 }
1933 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1934 		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1935 
1936 static int spufs_srr0_set(void *data, u64 val)
1937 {
1938 	struct spu_context *ctx = data;
1939 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1940 	int ret;
1941 
1942 	ret = spu_acquire_saved(ctx);
1943 	if (ret)
1944 		return ret;
1945 	lscsa->srr0.slot[0] = (u32) val;
1946 	spu_release_saved(ctx);
1947 
1948 	return 0;
1949 }
1950 
1951 static u64 spufs_srr0_get(struct spu_context *ctx)
1952 {
1953 	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1954 	return lscsa->srr0.slot[0];
1955 }
1956 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1957 		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1958 
1959 static u64 spufs_id_get(struct spu_context *ctx)
1960 {
1961 	u64 num;
1962 
1963 	if (ctx->state == SPU_STATE_RUNNABLE)
1964 		num = ctx->spu->number;
1965 	else
1966 		num = (unsigned int)-1;
1967 
1968 	return num;
1969 }
1970 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1971 		       SPU_ATTR_ACQUIRE)
1972 
1973 static u64 spufs_object_id_get(struct spu_context *ctx)
1974 {
1975 	/* FIXME: Should there really be no locking here? */
1976 	return ctx->object_id;
1977 }
1978 
1979 static int spufs_object_id_set(void *data, u64 id)
1980 {
1981 	struct spu_context *ctx = data;
1982 	ctx->object_id = id;
1983 
1984 	return 0;
1985 }
1986 
1987 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1988 		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1989 
1990 static u64 spufs_lslr_get(struct spu_context *ctx)
1991 {
1992 	return ctx->csa.priv2.spu_lslr_RW;
1993 }
1994 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1995 		       SPU_ATTR_ACQUIRE_SAVED);
1996 
1997 static int spufs_info_open(struct inode *inode, struct file *file)
1998 {
1999 	struct spufs_inode_info *i = SPUFS_I(inode);
2000 	struct spu_context *ctx = i->i_ctx;
2001 	file->private_data = ctx;
2002 	return 0;
2003 }
2004 
2005 static int spufs_caps_show(struct seq_file *s, void *private)
2006 {
2007 	struct spu_context *ctx = s->private;
2008 
2009 	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2010 		seq_puts(s, "sched\n");
2011 	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2012 		seq_puts(s, "step\n");
2013 	return 0;
2014 }
2015 
2016 static int spufs_caps_open(struct inode *inode, struct file *file)
2017 {
2018 	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2019 }
2020 
2021 static const struct file_operations spufs_caps_fops = {
2022 	.open		= spufs_caps_open,
2023 	.read		= seq_read,
2024 	.llseek		= seq_lseek,
2025 	.release	= single_release,
2026 };
2027 
2028 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2029 			char __user *buf, size_t len, loff_t *pos)
2030 {
2031 	u32 data;
2032 
2033 	/* EOF if there's no entry in the mbox */
2034 	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2035 		return 0;
2036 
2037 	data = ctx->csa.prob.pu_mb_R;
2038 
2039 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2040 }
2041 
2042 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2043 				   size_t len, loff_t *pos)
2044 {
2045 	int ret;
2046 	struct spu_context *ctx = file->private_data;
2047 
2048 	if (!access_ok(VERIFY_WRITE, buf, len))
2049 		return -EFAULT;
2050 
2051 	ret = spu_acquire_saved(ctx);
2052 	if (ret)
2053 		return ret;
2054 	spin_lock(&ctx->csa.register_lock);
2055 	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2056 	spin_unlock(&ctx->csa.register_lock);
2057 	spu_release_saved(ctx);
2058 
2059 	return ret;
2060 }
2061 
2062 static const struct file_operations spufs_mbox_info_fops = {
2063 	.open = spufs_info_open,
2064 	.read = spufs_mbox_info_read,
2065 	.llseek  = generic_file_llseek,
2066 };
2067 
2068 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2069 				char __user *buf, size_t len, loff_t *pos)
2070 {
2071 	u32 data;
2072 
2073 	/* EOF if there's no entry in the ibox */
2074 	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2075 		return 0;
2076 
2077 	data = ctx->csa.priv2.puint_mb_R;
2078 
2079 	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2080 }
2081 
2082 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2083 				   size_t len, loff_t *pos)
2084 {
2085 	struct spu_context *ctx = file->private_data;
2086 	int ret;
2087 
2088 	if (!access_ok(VERIFY_WRITE, buf, len))
2089 		return -EFAULT;
2090 
2091 	ret = spu_acquire_saved(ctx);
2092 	if (ret)
2093 		return ret;
2094 	spin_lock(&ctx->csa.register_lock);
2095 	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2096 	spin_unlock(&ctx->csa.register_lock);
2097 	spu_release_saved(ctx);
2098 
2099 	return ret;
2100 }
2101 
2102 static const struct file_operations spufs_ibox_info_fops = {
2103 	.open = spufs_info_open,
2104 	.read = spufs_ibox_info_read,
2105 	.llseek  = generic_file_llseek,
2106 };
2107 
2108 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2109 			char __user *buf, size_t len, loff_t *pos)
2110 {
2111 	int i, cnt;
2112 	u32 data[4];
2113 	u32 wbox_stat;
2114 
2115 	wbox_stat = ctx->csa.prob.mb_stat_R;
2116 	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2117 	for (i = 0; i < cnt; i++) {
2118 		data[i] = ctx->csa.spu_mailbox_data[i];
2119 	}
2120 
2121 	return simple_read_from_buffer(buf, len, pos, &data,
2122 				cnt * sizeof(u32));
2123 }
2124 
2125 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2126 				   size_t len, loff_t *pos)
2127 {
2128 	struct spu_context *ctx = file->private_data;
2129 	int ret;
2130 
2131 	if (!access_ok(VERIFY_WRITE, buf, len))
2132 		return -EFAULT;
2133 
2134 	ret = spu_acquire_saved(ctx);
2135 	if (ret)
2136 		return ret;
2137 	spin_lock(&ctx->csa.register_lock);
2138 	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2139 	spin_unlock(&ctx->csa.register_lock);
2140 	spu_release_saved(ctx);
2141 
2142 	return ret;
2143 }
2144 
2145 static const struct file_operations spufs_wbox_info_fops = {
2146 	.open = spufs_info_open,
2147 	.read = spufs_wbox_info_read,
2148 	.llseek  = generic_file_llseek,
2149 };
2150 
2151 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2152 			char __user *buf, size_t len, loff_t *pos)
2153 {
2154 	struct spu_dma_info info;
2155 	struct mfc_cq_sr *qp, *spuqp;
2156 	int i;
2157 
2158 	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2159 	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2160 	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2161 	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2162 	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2163 	for (i = 0; i < 16; i++) {
2164 		qp = &info.dma_info_command_data[i];
2165 		spuqp = &ctx->csa.priv2.spuq[i];
2166 
2167 		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2168 		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2169 		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2170 		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2171 	}
2172 
2173 	return simple_read_from_buffer(buf, len, pos, &info,
2174 				sizeof info);
2175 }
2176 
2177 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2178 			      size_t len, loff_t *pos)
2179 {
2180 	struct spu_context *ctx = file->private_data;
2181 	int ret;
2182 
2183 	if (!access_ok(VERIFY_WRITE, buf, len))
2184 		return -EFAULT;
2185 
2186 	ret = spu_acquire_saved(ctx);
2187 	if (ret)
2188 		return ret;
2189 	spin_lock(&ctx->csa.register_lock);
2190 	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2191 	spin_unlock(&ctx->csa.register_lock);
2192 	spu_release_saved(ctx);
2193 
2194 	return ret;
2195 }
2196 
2197 static const struct file_operations spufs_dma_info_fops = {
2198 	.open = spufs_info_open,
2199 	.read = spufs_dma_info_read,
2200 	.llseek = no_llseek,
2201 };
2202 
2203 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2204 			char __user *buf, size_t len, loff_t *pos)
2205 {
2206 	struct spu_proxydma_info info;
2207 	struct mfc_cq_sr *qp, *puqp;
2208 	int ret = sizeof info;
2209 	int i;
2210 
2211 	if (len < ret)
2212 		return -EINVAL;
2213 
2214 	if (!access_ok(VERIFY_WRITE, buf, len))
2215 		return -EFAULT;
2216 
2217 	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2218 	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2219 	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2220 	for (i = 0; i < 8; i++) {
2221 		qp = &info.proxydma_info_command_data[i];
2222 		puqp = &ctx->csa.priv2.puq[i];
2223 
2224 		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2225 		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2226 		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2227 		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2228 	}
2229 
2230 	return simple_read_from_buffer(buf, len, pos, &info,
2231 				sizeof info);
2232 }
2233 
2234 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2235 				   size_t len, loff_t *pos)
2236 {
2237 	struct spu_context *ctx = file->private_data;
2238 	int ret;
2239 
2240 	ret = spu_acquire_saved(ctx);
2241 	if (ret)
2242 		return ret;
2243 	spin_lock(&ctx->csa.register_lock);
2244 	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2245 	spin_unlock(&ctx->csa.register_lock);
2246 	spu_release_saved(ctx);
2247 
2248 	return ret;
2249 }
2250 
2251 static const struct file_operations spufs_proxydma_info_fops = {
2252 	.open = spufs_info_open,
2253 	.read = spufs_proxydma_info_read,
2254 	.llseek = no_llseek,
2255 };
2256 
2257 static int spufs_show_tid(struct seq_file *s, void *private)
2258 {
2259 	struct spu_context *ctx = s->private;
2260 
2261 	seq_printf(s, "%d\n", ctx->tid);
2262 	return 0;
2263 }
2264 
2265 static int spufs_tid_open(struct inode *inode, struct file *file)
2266 {
2267 	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2268 }
2269 
2270 static const struct file_operations spufs_tid_fops = {
2271 	.open		= spufs_tid_open,
2272 	.read		= seq_read,
2273 	.llseek		= seq_lseek,
2274 	.release	= single_release,
2275 };
2276 
2277 static const char *ctx_state_names[] = {
2278 	"user", "system", "iowait", "loaded"
2279 };
2280 
2281 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2282 		enum spu_utilization_state state)
2283 {
2284 	unsigned long long time = ctx->stats.times[state];
2285 
2286 	/*
2287 	 * In general, utilization statistics are updated by the controlling
2288 	 * thread as the spu context moves through various well defined
2289 	 * state transitions, but if the context is lazily loaded its
2290 	 * utilization statistics are not updated as the controlling thread
2291 	 * is not tightly coupled with the execution of the spu context.  We
2292 	 * calculate and apply the time delta from the last recorded state
2293 	 * of the spu context.
2294 	 */
2295 	if (ctx->spu && ctx->stats.util_state == state) {
2296 		time += ktime_get_ns() - ctx->stats.tstamp;
2297 	}
2298 
2299 	return time / NSEC_PER_MSEC;
2300 }
2301 
2302 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2303 {
2304 	unsigned long long slb_flts = ctx->stats.slb_flt;
2305 
2306 	if (ctx->state == SPU_STATE_RUNNABLE) {
2307 		slb_flts += (ctx->spu->stats.slb_flt -
2308 			     ctx->stats.slb_flt_base);
2309 	}
2310 
2311 	return slb_flts;
2312 }
2313 
2314 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2315 {
2316 	unsigned long long class2_intrs = ctx->stats.class2_intr;
2317 
2318 	if (ctx->state == SPU_STATE_RUNNABLE) {
2319 		class2_intrs += (ctx->spu->stats.class2_intr -
2320 				 ctx->stats.class2_intr_base);
2321 	}
2322 
2323 	return class2_intrs;
2324 }
2325 
2326 
2327 static int spufs_show_stat(struct seq_file *s, void *private)
2328 {
2329 	struct spu_context *ctx = s->private;
2330 	int ret;
2331 
2332 	ret = spu_acquire(ctx);
2333 	if (ret)
2334 		return ret;
2335 
2336 	seq_printf(s, "%s %llu %llu %llu %llu "
2337 		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2338 		ctx_state_names[ctx->stats.util_state],
2339 		spufs_acct_time(ctx, SPU_UTIL_USER),
2340 		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2341 		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2342 		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2343 		ctx->stats.vol_ctx_switch,
2344 		ctx->stats.invol_ctx_switch,
2345 		spufs_slb_flts(ctx),
2346 		ctx->stats.hash_flt,
2347 		ctx->stats.min_flt,
2348 		ctx->stats.maj_flt,
2349 		spufs_class2_intrs(ctx),
2350 		ctx->stats.libassist);
2351 	spu_release(ctx);
2352 	return 0;
2353 }
2354 
2355 static int spufs_stat_open(struct inode *inode, struct file *file)
2356 {
2357 	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2358 }
2359 
2360 static const struct file_operations spufs_stat_fops = {
2361 	.open		= spufs_stat_open,
2362 	.read		= seq_read,
2363 	.llseek		= seq_lseek,
2364 	.release	= single_release,
2365 };
2366 
2367 static inline int spufs_switch_log_used(struct spu_context *ctx)
2368 {
2369 	return (ctx->switch_log->head - ctx->switch_log->tail) %
2370 		SWITCH_LOG_BUFSIZE;
2371 }
2372 
2373 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2374 {
2375 	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2376 }
2377 
2378 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2379 {
2380 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2381 	int rc;
2382 
2383 	rc = spu_acquire(ctx);
2384 	if (rc)
2385 		return rc;
2386 
2387 	if (ctx->switch_log) {
2388 		rc = -EBUSY;
2389 		goto out;
2390 	}
2391 
2392 	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2393 		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2394 		GFP_KERNEL);
2395 
2396 	if (!ctx->switch_log) {
2397 		rc = -ENOMEM;
2398 		goto out;
2399 	}
2400 
2401 	ctx->switch_log->head = ctx->switch_log->tail = 0;
2402 	init_waitqueue_head(&ctx->switch_log->wait);
2403 	rc = 0;
2404 
2405 out:
2406 	spu_release(ctx);
2407 	return rc;
2408 }
2409 
2410 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2411 {
2412 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2413 	int rc;
2414 
2415 	rc = spu_acquire(ctx);
2416 	if (rc)
2417 		return rc;
2418 
2419 	kfree(ctx->switch_log);
2420 	ctx->switch_log = NULL;
2421 	spu_release(ctx);
2422 
2423 	return 0;
2424 }
2425 
2426 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2427 {
2428 	struct switch_log_entry *p;
2429 
2430 	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2431 
2432 	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2433 			(unsigned int) p->tstamp.tv_sec,
2434 			(unsigned int) p->tstamp.tv_nsec,
2435 			p->spu_id,
2436 			(unsigned int) p->type,
2437 			(unsigned int) p->val,
2438 			(unsigned long long) p->timebase);
2439 }
2440 
2441 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2442 			     size_t len, loff_t *ppos)
2443 {
2444 	struct inode *inode = file_inode(file);
2445 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2446 	int error = 0, cnt = 0;
2447 
2448 	if (!buf)
2449 		return -EINVAL;
2450 
2451 	error = spu_acquire(ctx);
2452 	if (error)
2453 		return error;
2454 
2455 	while (cnt < len) {
2456 		char tbuf[128];
2457 		int width;
2458 
2459 		if (spufs_switch_log_used(ctx) == 0) {
2460 			if (cnt > 0) {
2461 				/* If there's data ready to go, we can
2462 				 * just return straight away */
2463 				break;
2464 
2465 			} else if (file->f_flags & O_NONBLOCK) {
2466 				error = -EAGAIN;
2467 				break;
2468 
2469 			} else {
2470 				/* spufs_wait will drop the mutex and
2471 				 * re-acquire, but since we're in read(), the
2472 				 * file cannot be _released (and so
2473 				 * ctx->switch_log is stable).
2474 				 */
2475 				error = spufs_wait(ctx->switch_log->wait,
2476 						spufs_switch_log_used(ctx) > 0);
2477 
2478 				/* On error, spufs_wait returns without the
2479 				 * state mutex held */
2480 				if (error)
2481 					return error;
2482 
2483 				/* We may have had entries read from underneath
2484 				 * us while we dropped the mutex in spufs_wait,
2485 				 * so re-check */
2486 				if (spufs_switch_log_used(ctx) == 0)
2487 					continue;
2488 			}
2489 		}
2490 
2491 		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2492 		if (width < len)
2493 			ctx->switch_log->tail =
2494 				(ctx->switch_log->tail + 1) %
2495 				 SWITCH_LOG_BUFSIZE;
2496 		else
2497 			/* If the record is greater than space available return
2498 			 * partial buffer (so far) */
2499 			break;
2500 
2501 		error = copy_to_user(buf + cnt, tbuf, width);
2502 		if (error)
2503 			break;
2504 		cnt += width;
2505 	}
2506 
2507 	spu_release(ctx);
2508 
2509 	return cnt == 0 ? error : cnt;
2510 }
2511 
2512 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2513 {
2514 	struct inode *inode = file_inode(file);
2515 	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2516 	unsigned int mask = 0;
2517 	int rc;
2518 
2519 	poll_wait(file, &ctx->switch_log->wait, wait);
2520 
2521 	rc = spu_acquire(ctx);
2522 	if (rc)
2523 		return rc;
2524 
2525 	if (spufs_switch_log_used(ctx) > 0)
2526 		mask |= POLLIN;
2527 
2528 	spu_release(ctx);
2529 
2530 	return mask;
2531 }
2532 
2533 static const struct file_operations spufs_switch_log_fops = {
2534 	.open		= spufs_switch_log_open,
2535 	.read		= spufs_switch_log_read,
2536 	.poll		= spufs_switch_log_poll,
2537 	.release	= spufs_switch_log_release,
2538 	.llseek		= no_llseek,
2539 };
2540 
2541 /**
2542  * Log a context switch event to a switch log reader.
2543  *
2544  * Must be called with ctx->state_mutex held.
2545  */
2546 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2547 		u32 type, u32 val)
2548 {
2549 	if (!ctx->switch_log)
2550 		return;
2551 
2552 	if (spufs_switch_log_avail(ctx) > 1) {
2553 		struct switch_log_entry *p;
2554 
2555 		p = ctx->switch_log->log + ctx->switch_log->head;
2556 		ktime_get_ts(&p->tstamp);
2557 		p->timebase = get_tb();
2558 		p->spu_id = spu ? spu->number : -1;
2559 		p->type = type;
2560 		p->val = val;
2561 
2562 		ctx->switch_log->head =
2563 			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2564 	}
2565 
2566 	wake_up(&ctx->switch_log->wait);
2567 }
2568 
2569 static int spufs_show_ctx(struct seq_file *s, void *private)
2570 {
2571 	struct spu_context *ctx = s->private;
2572 	u64 mfc_control_RW;
2573 
2574 	mutex_lock(&ctx->state_mutex);
2575 	if (ctx->spu) {
2576 		struct spu *spu = ctx->spu;
2577 		struct spu_priv2 __iomem *priv2 = spu->priv2;
2578 
2579 		spin_lock_irq(&spu->register_lock);
2580 		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2581 		spin_unlock_irq(&spu->register_lock);
2582 	} else {
2583 		struct spu_state *csa = &ctx->csa;
2584 
2585 		mfc_control_RW = csa->priv2.mfc_control_RW;
2586 	}
2587 
2588 	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2589 		" %c %llx %llx %llx %llx %x %x\n",
2590 		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2591 		ctx->flags,
2592 		ctx->sched_flags,
2593 		ctx->prio,
2594 		ctx->time_slice,
2595 		ctx->spu ? ctx->spu->number : -1,
2596 		!list_empty(&ctx->rq) ? 'q' : ' ',
2597 		ctx->csa.class_0_pending,
2598 		ctx->csa.class_0_dar,
2599 		ctx->csa.class_1_dsisr,
2600 		mfc_control_RW,
2601 		ctx->ops->runcntl_read(ctx),
2602 		ctx->ops->status_read(ctx));
2603 
2604 	mutex_unlock(&ctx->state_mutex);
2605 
2606 	return 0;
2607 }
2608 
2609 static int spufs_ctx_open(struct inode *inode, struct file *file)
2610 {
2611 	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2612 }
2613 
2614 static const struct file_operations spufs_ctx_fops = {
2615 	.open           = spufs_ctx_open,
2616 	.read           = seq_read,
2617 	.llseek         = seq_lseek,
2618 	.release        = single_release,
2619 };
2620 
2621 const struct spufs_tree_descr spufs_dir_contents[] = {
2622 	{ "capabilities", &spufs_caps_fops, 0444, },
2623 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2624 	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2625 	{ "mbox", &spufs_mbox_fops, 0444, },
2626 	{ "ibox", &spufs_ibox_fops, 0444, },
2627 	{ "wbox", &spufs_wbox_fops, 0222, },
2628 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2629 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2630 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2631 	{ "signal1", &spufs_signal1_fops, 0666, },
2632 	{ "signal2", &spufs_signal2_fops, 0666, },
2633 	{ "signal1_type", &spufs_signal1_type, 0666, },
2634 	{ "signal2_type", &spufs_signal2_type, 0666, },
2635 	{ "cntl", &spufs_cntl_fops,  0666, },
2636 	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2637 	{ "lslr", &spufs_lslr_ops, 0444, },
2638 	{ "mfc", &spufs_mfc_fops, 0666, },
2639 	{ "mss", &spufs_mss_fops, 0666, },
2640 	{ "npc", &spufs_npc_ops, 0666, },
2641 	{ "srr0", &spufs_srr0_ops, 0666, },
2642 	{ "decr", &spufs_decr_ops, 0666, },
2643 	{ "decr_status", &spufs_decr_status_ops, 0666, },
2644 	{ "event_mask", &spufs_event_mask_ops, 0666, },
2645 	{ "event_status", &spufs_event_status_ops, 0444, },
2646 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2647 	{ "phys-id", &spufs_id_ops, 0666, },
2648 	{ "object-id", &spufs_object_id_ops, 0666, },
2649 	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2650 	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2651 	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2652 	{ "dma_info", &spufs_dma_info_fops, 0444,
2653 		sizeof(struct spu_dma_info), },
2654 	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2655 		sizeof(struct spu_proxydma_info)},
2656 	{ "tid", &spufs_tid_fops, 0444, },
2657 	{ "stat", &spufs_stat_fops, 0444, },
2658 	{ "switch_log", &spufs_switch_log_fops, 0444 },
2659 	{},
2660 };
2661 
2662 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2663 	{ "capabilities", &spufs_caps_fops, 0444, },
2664 	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2665 	{ "mbox", &spufs_mbox_fops, 0444, },
2666 	{ "ibox", &spufs_ibox_fops, 0444, },
2667 	{ "wbox", &spufs_wbox_fops, 0222, },
2668 	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2669 	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2670 	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2671 	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2672 	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2673 	{ "signal1_type", &spufs_signal1_type, 0666, },
2674 	{ "signal2_type", &spufs_signal2_type, 0666, },
2675 	{ "mss", &spufs_mss_fops, 0666, },
2676 	{ "mfc", &spufs_mfc_fops, 0666, },
2677 	{ "cntl", &spufs_cntl_fops,  0666, },
2678 	{ "npc", &spufs_npc_ops, 0666, },
2679 	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2680 	{ "phys-id", &spufs_id_ops, 0666, },
2681 	{ "object-id", &spufs_object_id_ops, 0666, },
2682 	{ "tid", &spufs_tid_fops, 0444, },
2683 	{ "stat", &spufs_stat_fops, 0444, },
2684 	{},
2685 };
2686 
2687 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2688 	{ ".ctx", &spufs_ctx_fops, 0444, },
2689 	{},
2690 };
2691 
2692 const struct spufs_coredump_reader spufs_coredump_read[] = {
2693 	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2694 	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2695 	{ "lslr", NULL, spufs_lslr_get, 19 },
2696 	{ "decr", NULL, spufs_decr_get, 19 },
2697 	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2698 	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2699 	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2700 	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2701 	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2702 	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2703 	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2704 	{ "event_status", NULL, spufs_event_status_get, 19 },
2705 	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2706 	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2707 	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2708 	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2709 	{ "proxydma_info", __spufs_proxydma_info_read,
2710 			   NULL, sizeof(struct spu_proxydma_info)},
2711 	{ "object-id", NULL, spufs_object_id_get, 19 },
2712 	{ "npc", NULL, spufs_npc_get, 19 },
2713 	{ NULL },
2714 };
2715