1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Perf interface to expose Dispatch Trace Log counters.
4 *
5 * Copyright (C) 2024 Kajol Jain, IBM Corporation
6 */
7
8 #ifdef CONFIG_PPC_SPLPAR
9 #define pr_fmt(fmt) "vpa_dtl: " fmt
10
11 #include <asm/dtl.h>
12 #include <linux/perf_event.h>
13 #include <asm/plpar_wrappers.h>
14 #include <linux/vmalloc.h>
15
16 #define EVENT(_name, _code) enum{_name = _code}
17
18 /*
19 * Based on Power Architecture Platform Reference(PAPR) documentation,
20 * Table 14.14. Per Virtual Processor Area, below Dispatch Trace Log(DTL)
21 * Enable Mask used to get corresponding virtual processor dispatch
22 * to preempt traces:
23 * DTL_CEDE(0x1): Trace voluntary (OS initiated) virtual
24 * processor waits
25 * DTL_PREEMPT(0x2): Trace time slice preempts
26 * DTL_FAULT(0x4): Trace virtual partition memory page
27 faults.
28 * DTL_ALL(0x7): Trace all (DTL_CEDE | DTL_PREEMPT | DTL_FAULT)
29 *
30 * Event codes based on Dispatch Trace Log Enable Mask.
31 */
32 EVENT(DTL_CEDE, 0x1);
33 EVENT(DTL_PREEMPT, 0x2);
34 EVENT(DTL_FAULT, 0x4);
35 EVENT(DTL_ALL, 0x7);
36
37 GENERIC_EVENT_ATTR(dtl_cede, DTL_CEDE);
38 GENERIC_EVENT_ATTR(dtl_preempt, DTL_PREEMPT);
39 GENERIC_EVENT_ATTR(dtl_fault, DTL_FAULT);
40 GENERIC_EVENT_ATTR(dtl_all, DTL_ALL);
41
42 PMU_FORMAT_ATTR(event, "config:0-7");
43
44 static struct attribute *events_attr[] = {
45 GENERIC_EVENT_PTR(DTL_CEDE),
46 GENERIC_EVENT_PTR(DTL_PREEMPT),
47 GENERIC_EVENT_PTR(DTL_FAULT),
48 GENERIC_EVENT_PTR(DTL_ALL),
49 NULL
50 };
51
52 static struct attribute_group event_group = {
53 .name = "events",
54 .attrs = events_attr,
55 };
56
57 static struct attribute *format_attrs[] = {
58 &format_attr_event.attr,
59 NULL,
60 };
61
62 static const struct attribute_group format_group = {
63 .name = "format",
64 .attrs = format_attrs,
65 };
66
67 static const struct attribute_group *attr_groups[] = {
68 &format_group,
69 &event_group,
70 NULL,
71 };
72
73 struct vpa_dtl {
74 struct dtl_entry *buf;
75 u64 last_idx;
76 };
77
78 struct vpa_pmu_ctx {
79 struct perf_output_handle handle;
80 };
81
82 struct vpa_pmu_buf {
83 int nr_pages;
84 bool snapshot;
85 u64 *base;
86 u64 size;
87 u64 head;
88 u64 head_size;
89 /* boot timebase and frequency needs to be saved only at once */
90 int boottb_freq_saved;
91 u64 threshold;
92 bool full;
93 };
94
95 /*
96 * To corelate each DTL entry with other events across CPU's,
97 * we need to map timebase from "struct dtl_entry" which phyp
98 * provides with boot timebase. This also needs timebase frequency.
99 * Formula is: ((timbase from DTL entry - boot time) / frequency)
100 *
101 * To match with size of "struct dtl_entry" to ease post processing,
102 * padded 24 bytes to the structure.
103 */
104 struct boottb_freq {
105 u64 boot_tb;
106 u64 tb_freq;
107 u64 timebase;
108 u64 padded[3];
109 };
110
111 static DEFINE_PER_CPU(struct vpa_pmu_ctx, vpa_pmu_ctx);
112 static DEFINE_PER_CPU(struct vpa_dtl, vpa_dtl_cpu);
113
114 /* variable to capture reference count for the active dtl threads */
115 static int dtl_global_refc;
116 static spinlock_t dtl_global_lock = __SPIN_LOCK_UNLOCKED(dtl_global_lock);
117
118 /*
119 * Capture DTL data in AUX buffer
120 */
vpa_dtl_capture_aux(long * n_entries,struct vpa_pmu_buf * buf,struct vpa_dtl * dtl,int index)121 static void vpa_dtl_capture_aux(long *n_entries, struct vpa_pmu_buf *buf,
122 struct vpa_dtl *dtl, int index)
123 {
124 struct dtl_entry *aux_copy_buf = (struct dtl_entry *)buf->base;
125
126 /*
127 * check if there is enough space to contain the
128 * DTL data. If not, save the data for available
129 * memory and set full to true.
130 */
131 if (buf->head + *n_entries >= buf->threshold) {
132 *n_entries = buf->threshold - buf->head;
133 buf->full = 1;
134 }
135
136 /*
137 * Copy to AUX buffer from per-thread address
138 */
139 memcpy(aux_copy_buf + buf->head, &dtl->buf[index], *n_entries * sizeof(struct dtl_entry));
140
141 if (buf->full) {
142 /*
143 * Set head of private aux to zero when buffer is full
144 * so that next data will be copied to beginning of the
145 * buffer
146 */
147 buf->head = 0;
148 return;
149 }
150
151 buf->head += *n_entries;
152
153 return;
154 }
155
156 /*
157 * Function to dump the dispatch trace log buffer data to the
158 * perf data.
159 *
160 * perf_aux_output_begin: This function is called before writing
161 * to AUX area. This returns the pointer to aux area private structure,
162 * ie "struct vpa_pmu_buf" here which is set in setup_aux() function.
163 * The function obtains the output handle (used in perf_aux_output_end).
164 * when capture completes in vpa_dtl_capture_aux(), call perf_aux_output_end()
165 * to commit the recorded data.
166 *
167 * perf_aux_output_end: This function commits data by adjusting the
168 * aux_head of "struct perf_buffer". aux_tail will be moved in perf tools
169 * side when writing the data from aux buffer to perf.data file in disk.
170 *
171 * Here in the private aux structure, we maintain head to know where
172 * to copy data next time in the PMU driver. vpa_pmu_buf->head is moved to
173 * maintain the aux head for PMU driver. It is responsiblity of PMU
174 * driver to make sure data is copied between perf_aux_output_begin and
175 * perf_aux_output_end.
176 *
177 * After data is copied in vpa_dtl_capture_aux() function, perf_aux_output_end()
178 * is called to move the aux->head of "struct perf_buffer" to indicate size of
179 * data in aux buffer. This will post a PERF_RECORD_AUX into the perf buffer.
180 * Data will be written to disk only when the allocated buffer is full.
181 *
182 * By this approach, all the DTL data will be present as-is in the
183 * perf.data. The data will be pre-processed in perf tools side when doing
184 * perf report/perf script and this will avoid time taken to create samples
185 * in the kernel space.
186 */
vpa_dtl_dump_sample_data(struct perf_event * event)187 static void vpa_dtl_dump_sample_data(struct perf_event *event)
188 {
189 u64 cur_idx, last_idx, i;
190 u64 boot_tb;
191 struct boottb_freq boottb_freq;
192
193 /* actual number of entries read */
194 long n_read = 0, read_size = 0;
195
196 /* number of entries added to dtl buffer */
197 long n_req;
198
199 struct vpa_pmu_ctx *vpa_ctx = this_cpu_ptr(&vpa_pmu_ctx);
200
201 struct vpa_pmu_buf *aux_buf;
202
203 struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
204 u64 size;
205
206 cur_idx = be64_to_cpu(lppaca_of(event->cpu).dtl_idx);
207 last_idx = dtl->last_idx;
208
209 if (last_idx + N_DISPATCH_LOG <= cur_idx)
210 last_idx = cur_idx - N_DISPATCH_LOG + 1;
211
212 n_req = cur_idx - last_idx;
213
214 /* no new entry added to the buffer, return */
215 if (n_req <= 0)
216 return;
217
218 dtl->last_idx = last_idx + n_req;
219 boot_tb = get_boot_tb();
220
221 i = last_idx % N_DISPATCH_LOG;
222
223 aux_buf = perf_aux_output_begin(&vpa_ctx->handle, event);
224 if (!aux_buf) {
225 pr_debug("returning. no aux\n");
226 return;
227 }
228
229 if (!aux_buf->boottb_freq_saved) {
230 pr_debug("Copying boot tb to aux buffer: %lld\n", boot_tb);
231 /* Save boot_tb to convert raw timebase to it's relative system boot time */
232 boottb_freq.boot_tb = boot_tb;
233 /* Save tb_ticks_per_sec to convert timebase to sec */
234 boottb_freq.tb_freq = tb_ticks_per_sec;
235 boottb_freq.timebase = 0;
236 memcpy(aux_buf->base, &boottb_freq, sizeof(boottb_freq));
237 aux_buf->head += 1;
238 aux_buf->boottb_freq_saved = 1;
239 n_read += 1;
240 }
241
242 /* read the tail of the buffer if we've wrapped */
243 if (i + n_req > N_DISPATCH_LOG) {
244 read_size = N_DISPATCH_LOG - i;
245 vpa_dtl_capture_aux(&read_size, aux_buf, dtl, i);
246 n_req -= read_size;
247 n_read += read_size;
248 i = 0;
249 if (aux_buf->full) {
250 size = (n_read * sizeof(struct dtl_entry));
251 if ((size + aux_buf->head_size) > aux_buf->size) {
252 size = aux_buf->size - aux_buf->head_size;
253 perf_aux_output_end(&vpa_ctx->handle, size);
254 aux_buf->head = 0;
255 aux_buf->head_size = 0;
256 } else {
257 aux_buf->head_size += (n_read * sizeof(struct dtl_entry));
258 perf_aux_output_end(&vpa_ctx->handle, n_read * sizeof(struct dtl_entry));
259 }
260 goto out;
261 }
262 }
263
264 /* .. and now the head */
265 vpa_dtl_capture_aux(&n_req, aux_buf, dtl, i);
266
267 size = ((n_req + n_read) * sizeof(struct dtl_entry));
268 if ((size + aux_buf->head_size) > aux_buf->size) {
269 size = aux_buf->size - aux_buf->head_size;
270 perf_aux_output_end(&vpa_ctx->handle, size);
271 aux_buf->head = 0;
272 aux_buf->head_size = 0;
273 } else {
274 aux_buf->head_size += ((n_req + n_read) * sizeof(struct dtl_entry));
275 /* Move the aux->head to indicate size of data in aux buffer */
276 perf_aux_output_end(&vpa_ctx->handle, (n_req + n_read) * sizeof(struct dtl_entry));
277 }
278 out:
279 aux_buf->full = 0;
280 }
281
282 /*
283 * The VPA Dispatch Trace log counters do not interrupt on overflow.
284 * Therefore, the kernel needs to poll the counters to avoid missing
285 * an overflow using hrtimer. The timer interval is based on sample_period
286 * count provided by user, and minimum interval is 1 millisecond.
287 */
vpa_dtl_hrtimer_handle(struct hrtimer * hrtimer)288 static enum hrtimer_restart vpa_dtl_hrtimer_handle(struct hrtimer *hrtimer)
289 {
290 struct perf_event *event;
291 u64 period;
292
293 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
294
295 if (event->state != PERF_EVENT_STATE_ACTIVE)
296 return HRTIMER_NORESTART;
297
298 vpa_dtl_dump_sample_data(event);
299 period = max_t(u64, NSEC_PER_MSEC, event->hw.sample_period);
300 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
301
302 return HRTIMER_RESTART;
303 }
304
vpa_dtl_start_hrtimer(struct perf_event * event)305 static void vpa_dtl_start_hrtimer(struct perf_event *event)
306 {
307 u64 period;
308 struct hw_perf_event *hwc = &event->hw;
309
310 period = max_t(u64, NSEC_PER_MSEC, hwc->sample_period);
311 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), HRTIMER_MODE_REL_PINNED);
312 }
313
vpa_dtl_stop_hrtimer(struct perf_event * event)314 static void vpa_dtl_stop_hrtimer(struct perf_event *event)
315 {
316 struct hw_perf_event *hwc = &event->hw;
317
318 hrtimer_cancel(&hwc->hrtimer);
319 }
320
vpa_dtl_reset_global_refc(struct perf_event * event)321 static void vpa_dtl_reset_global_refc(struct perf_event *event)
322 {
323 spin_lock(&dtl_global_lock);
324 dtl_global_refc--;
325 if (dtl_global_refc <= 0) {
326 dtl_global_refc = 0;
327 up_write(&dtl_access_lock);
328 }
329 spin_unlock(&dtl_global_lock);
330 }
331
vpa_dtl_mem_alloc(int cpu)332 static int vpa_dtl_mem_alloc(int cpu)
333 {
334 struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, cpu);
335 struct dtl_entry *buf = NULL;
336
337 /* Check for dispatch trace log buffer cache */
338 if (!dtl_cache)
339 return -ENOMEM;
340
341 buf = kmem_cache_alloc_node(dtl_cache, GFP_KERNEL | GFP_ATOMIC, cpu_to_node(cpu));
342 if (!buf) {
343 pr_warn("buffer allocation failed for cpu %d\n", cpu);
344 return -ENOMEM;
345 }
346 dtl->buf = buf;
347 return 0;
348 }
349
vpa_dtl_event_init(struct perf_event * event)350 static int vpa_dtl_event_init(struct perf_event *event)
351 {
352 struct hw_perf_event *hwc = &event->hw;
353
354 /* test the event attr type for PMU enumeration */
355 if (event->attr.type != event->pmu->type)
356 return -ENOENT;
357
358 if (!perfmon_capable())
359 return -EACCES;
360
361 /* Return if this is a counting event */
362 if (!is_sampling_event(event))
363 return -EOPNOTSUPP;
364
365 /* no branch sampling */
366 if (has_branch_stack(event))
367 return -EOPNOTSUPP;
368
369 /* Invalid eventcode */
370 switch (event->attr.config) {
371 case DTL_LOG_CEDE:
372 case DTL_LOG_PREEMPT:
373 case DTL_LOG_FAULT:
374 case DTL_LOG_ALL:
375 break;
376 default:
377 return -EINVAL;
378 }
379
380 spin_lock(&dtl_global_lock);
381
382 /*
383 * To ensure there are no other conflicting dtl users
384 * (example: /proc/powerpc/vcpudispatch_stats or debugfs dtl),
385 * below code try to take the dtl_access_lock.
386 * The dtl_access_lock is a rwlock defined in dtl.h, which is used
387 * to unsure there is no conflicting dtl users.
388 * Based on below code, vpa_dtl pmu tries to take write access lock
389 * and also checks for dtl_global_refc, to make sure that the
390 * dtl_access_lock is taken by vpa_dtl pmu interface.
391 */
392 if (dtl_global_refc == 0 && !down_write_trylock(&dtl_access_lock)) {
393 spin_unlock(&dtl_global_lock);
394 return -EBUSY;
395 }
396
397 /* Allocate dtl buffer memory */
398 if (vpa_dtl_mem_alloc(event->cpu)) {
399 spin_unlock(&dtl_global_lock);
400 return -ENOMEM;
401 }
402
403 /*
404 * Increment the number of active vpa_dtl pmu threads. The
405 * dtl_global_refc is used to keep count of cpu threads that
406 * currently capturing dtl data using vpa_dtl pmu interface.
407 */
408 dtl_global_refc++;
409
410 spin_unlock(&dtl_global_lock);
411
412 hrtimer_setup(&hwc->hrtimer, vpa_dtl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
413
414 /*
415 * Since hrtimers have a fixed rate, we can do a static freq->period
416 * mapping and avoid the whole period adjust feedback stuff.
417 */
418 if (event->attr.freq) {
419 long freq = event->attr.sample_freq;
420
421 event->attr.sample_period = NSEC_PER_SEC / freq;
422 hwc->sample_period = event->attr.sample_period;
423 local64_set(&hwc->period_left, hwc->sample_period);
424 hwc->last_period = hwc->sample_period;
425 event->attr.freq = 0;
426 }
427
428 event->destroy = vpa_dtl_reset_global_refc;
429 return 0;
430 }
431
vpa_dtl_event_add(struct perf_event * event,int flags)432 static int vpa_dtl_event_add(struct perf_event *event, int flags)
433 {
434 int ret, hwcpu;
435 unsigned long addr;
436 struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
437
438 /*
439 * Register our dtl buffer with the hypervisor. The
440 * HV expects the buffer size to be passed in the second
441 * word of the buffer. Refer section '14.11.3.2. H_REGISTER_VPA'
442 * from PAPR for more information.
443 */
444 ((u32 *)dtl->buf)[1] = cpu_to_be32(DISPATCH_LOG_BYTES);
445 dtl->last_idx = 0;
446
447 hwcpu = get_hard_smp_processor_id(event->cpu);
448 addr = __pa(dtl->buf);
449
450 ret = register_dtl(hwcpu, addr);
451 if (ret) {
452 pr_warn("DTL registration for cpu %d (hw %d) failed with %d\n",
453 event->cpu, hwcpu, ret);
454 return ret;
455 }
456
457 /* set our initial buffer indices */
458 lppaca_of(event->cpu).dtl_idx = 0;
459
460 /*
461 * Ensure that our updates to the lppaca fields have
462 * occurred before we actually enable the logging
463 */
464 smp_wmb();
465
466 /* enable event logging */
467 lppaca_of(event->cpu).dtl_enable_mask = event->attr.config;
468
469 vpa_dtl_start_hrtimer(event);
470
471 return 0;
472 }
473
vpa_dtl_event_del(struct perf_event * event,int flags)474 static void vpa_dtl_event_del(struct perf_event *event, int flags)
475 {
476 int hwcpu = get_hard_smp_processor_id(event->cpu);
477 struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
478
479 vpa_dtl_stop_hrtimer(event);
480 unregister_dtl(hwcpu);
481 kmem_cache_free(dtl_cache, dtl->buf);
482 dtl->buf = NULL;
483 lppaca_of(event->cpu).dtl_enable_mask = 0x0;
484 }
485
486 /*
487 * This function definition is empty as vpa_dtl_dump_sample_data
488 * is used to parse and dump the dispatch trace log data,
489 * to perf data.
490 */
vpa_dtl_event_read(struct perf_event * event)491 static void vpa_dtl_event_read(struct perf_event *event)
492 {
493 }
494
495 /*
496 * Set up pmu-private data structures for an AUX area
497 * **pages contains the aux buffer allocated for this event
498 * for the corresponding cpu. rb_alloc_aux uses "alloc_pages_node"
499 * and returns pointer to each page address. Map these pages to
500 * contiguous space using vmap and use that as base address.
501 *
502 * The aux private data structure ie, "struct vpa_pmu_buf" mainly
503 * saves
504 * - buf->base: aux buffer base address
505 * - buf->head: offset from base address where data will be written to.
506 * - buf->size: Size of allocated memory
507 */
vpa_dtl_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)508 static void *vpa_dtl_setup_aux(struct perf_event *event, void **pages,
509 int nr_pages, bool snapshot)
510 {
511 int i, cpu = event->cpu;
512 struct vpa_pmu_buf *buf __free(kfree) = NULL;
513 struct page **pglist __free(kfree) = NULL;
514
515 /* We need at least one page for this to work. */
516 if (!nr_pages)
517 return NULL;
518
519 if (cpu == -1)
520 cpu = raw_smp_processor_id();
521
522 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
523 if (!buf)
524 return NULL;
525
526 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
527 if (!pglist)
528 return NULL;
529
530 for (i = 0; i < nr_pages; ++i)
531 pglist[i] = virt_to_page(pages[i]);
532
533 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
534 if (!buf->base)
535 return NULL;
536
537 buf->nr_pages = nr_pages;
538 buf->snapshot = false;
539
540 buf->size = nr_pages << PAGE_SHIFT;
541 buf->head = 0;
542 buf->head_size = 0;
543 buf->boottb_freq_saved = 0;
544 buf->threshold = ((buf->size - 32) / sizeof(struct dtl_entry));
545 return no_free_ptr(buf);
546 }
547
548 /*
549 * free pmu-private AUX data structures
550 */
vpa_dtl_free_aux(void * aux)551 static void vpa_dtl_free_aux(void *aux)
552 {
553 struct vpa_pmu_buf *buf = aux;
554
555 vunmap(buf->base);
556 kfree(buf);
557 }
558
559 static struct pmu vpa_dtl_pmu = {
560 .task_ctx_nr = perf_invalid_context,
561
562 .name = "vpa_dtl",
563 .attr_groups = attr_groups,
564 .event_init = vpa_dtl_event_init,
565 .add = vpa_dtl_event_add,
566 .del = vpa_dtl_event_del,
567 .read = vpa_dtl_event_read,
568 .setup_aux = vpa_dtl_setup_aux,
569 .free_aux = vpa_dtl_free_aux,
570 .capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_EXCLUSIVE,
571 };
572
vpa_dtl_init(void)573 static int vpa_dtl_init(void)
574 {
575 int r;
576
577 if (!firmware_has_feature(FW_FEATURE_SPLPAR)) {
578 pr_debug("not a shared virtualized system, not enabling\n");
579 return -ENODEV;
580 }
581
582 /* This driver is intended only for L1 host. */
583 if (is_kvm_guest()) {
584 pr_debug("Only supported for L1 host system\n");
585 return -ENODEV;
586 }
587
588 r = perf_pmu_register(&vpa_dtl_pmu, vpa_dtl_pmu.name, -1);
589 if (r)
590 return r;
591
592 return 0;
593 }
594
595 device_initcall(vpa_dtl_init);
596 #endif //CONFIG_PPC_SPLPAR
597