1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/export.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <linux/stop_machine.h> 26 #include <linux/proc_fs.h> 27 #include <linux/seq_file.h> 28 #include <linux/uaccess.h> 29 #include <linux/slab.h> 30 #include <asm/sparsemem.h> 31 #include <asm/prom.h> 32 #include <asm/smp.h> 33 #include <asm/firmware.h> 34 #include <asm/paca.h> 35 #include <asm/hvcall.h> 36 #include <asm/setup.h> 37 #include <asm/vdso.h> 38 39 static int numa_enabled = 1; 40 41 static char *cmdline __initdata; 42 43 static int numa_debug; 44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 45 46 int numa_cpu_lookup_table[NR_CPUS]; 47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 48 struct pglist_data *node_data[MAX_NUMNODES]; 49 50 EXPORT_SYMBOL(numa_cpu_lookup_table); 51 EXPORT_SYMBOL(node_to_cpumask_map); 52 EXPORT_SYMBOL(node_data); 53 54 static int min_common_depth; 55 static int n_mem_addr_cells, n_mem_size_cells; 56 static int form1_affinity; 57 58 #define MAX_DISTANCE_REF_POINTS 4 59 static int distance_ref_points_depth; 60 static const unsigned int *distance_ref_points; 61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 62 63 /* 64 * Allocate node_to_cpumask_map based on number of available nodes 65 * Requires node_possible_map to be valid. 66 * 67 * Note: cpumask_of_node() is not valid until after this is done. 68 */ 69 static void __init setup_node_to_cpumask_map(void) 70 { 71 unsigned int node; 72 73 /* setup nr_node_ids if not done yet */ 74 if (nr_node_ids == MAX_NUMNODES) 75 setup_nr_node_ids(); 76 77 /* allocate the map */ 78 for (node = 0; node < nr_node_ids; node++) 79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 80 81 /* cpumask_of_node() will now work */ 82 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 83 } 84 85 static int __init fake_numa_create_new_node(unsigned long end_pfn, 86 unsigned int *nid) 87 { 88 unsigned long long mem; 89 char *p = cmdline; 90 static unsigned int fake_nid; 91 static unsigned long long curr_boundary; 92 93 /* 94 * Modify node id, iff we started creating NUMA nodes 95 * We want to continue from where we left of the last time 96 */ 97 if (fake_nid) 98 *nid = fake_nid; 99 /* 100 * In case there are no more arguments to parse, the 101 * node_id should be the same as the last fake node id 102 * (we've handled this above). 103 */ 104 if (!p) 105 return 0; 106 107 mem = memparse(p, &p); 108 if (!mem) 109 return 0; 110 111 if (mem < curr_boundary) 112 return 0; 113 114 curr_boundary = mem; 115 116 if ((end_pfn << PAGE_SHIFT) > mem) { 117 /* 118 * Skip commas and spaces 119 */ 120 while (*p == ',' || *p == ' ' || *p == '\t') 121 p++; 122 123 cmdline = p; 124 fake_nid++; 125 *nid = fake_nid; 126 dbg("created new fake_node with id %d\n", fake_nid); 127 return 1; 128 } 129 return 0; 130 } 131 132 /* 133 * get_node_active_region - Return active region containing pfn 134 * Active range returned is empty if none found. 135 * @pfn: The page to return the region for 136 * @node_ar: Returned set to the active region containing @pfn 137 */ 138 static void __init get_node_active_region(unsigned long pfn, 139 struct node_active_region *node_ar) 140 { 141 unsigned long start_pfn, end_pfn; 142 int i, nid; 143 144 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 145 if (pfn >= start_pfn && pfn < end_pfn) { 146 node_ar->nid = nid; 147 node_ar->start_pfn = start_pfn; 148 node_ar->end_pfn = end_pfn; 149 break; 150 } 151 } 152 } 153 154 static void map_cpu_to_node(int cpu, int node) 155 { 156 numa_cpu_lookup_table[cpu] = node; 157 158 dbg("adding cpu %d to node %d\n", cpu, node); 159 160 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 161 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 162 } 163 164 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 165 static void unmap_cpu_from_node(unsigned long cpu) 166 { 167 int node = numa_cpu_lookup_table[cpu]; 168 169 dbg("removing cpu %lu from node %d\n", cpu, node); 170 171 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 172 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 173 } else { 174 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 175 cpu, node); 176 } 177 } 178 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 179 180 /* must hold reference to node during call */ 181 static const int *of_get_associativity(struct device_node *dev) 182 { 183 return of_get_property(dev, "ibm,associativity", NULL); 184 } 185 186 /* 187 * Returns the property linux,drconf-usable-memory if 188 * it exists (the property exists only in kexec/kdump kernels, 189 * added by kexec-tools) 190 */ 191 static const u32 *of_get_usable_memory(struct device_node *memory) 192 { 193 const u32 *prop; 194 u32 len; 195 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 196 if (!prop || len < sizeof(unsigned int)) 197 return 0; 198 return prop; 199 } 200 201 int __node_distance(int a, int b) 202 { 203 int i; 204 int distance = LOCAL_DISTANCE; 205 206 if (!form1_affinity) 207 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 208 209 for (i = 0; i < distance_ref_points_depth; i++) { 210 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 211 break; 212 213 /* Double the distance for each NUMA level */ 214 distance *= 2; 215 } 216 217 return distance; 218 } 219 220 static void initialize_distance_lookup_table(int nid, 221 const unsigned int *associativity) 222 { 223 int i; 224 225 if (!form1_affinity) 226 return; 227 228 for (i = 0; i < distance_ref_points_depth; i++) { 229 distance_lookup_table[nid][i] = 230 associativity[distance_ref_points[i]]; 231 } 232 } 233 234 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 235 * info is found. 236 */ 237 static int associativity_to_nid(const unsigned int *associativity) 238 { 239 int nid = -1; 240 241 if (min_common_depth == -1) 242 goto out; 243 244 if (associativity[0] >= min_common_depth) 245 nid = associativity[min_common_depth]; 246 247 /* POWER4 LPAR uses 0xffff as invalid node */ 248 if (nid == 0xffff || nid >= MAX_NUMNODES) 249 nid = -1; 250 251 if (nid > 0 && associativity[0] >= distance_ref_points_depth) 252 initialize_distance_lookup_table(nid, associativity); 253 254 out: 255 return nid; 256 } 257 258 /* Returns the nid associated with the given device tree node, 259 * or -1 if not found. 260 */ 261 static int of_node_to_nid_single(struct device_node *device) 262 { 263 int nid = -1; 264 const unsigned int *tmp; 265 266 tmp = of_get_associativity(device); 267 if (tmp) 268 nid = associativity_to_nid(tmp); 269 return nid; 270 } 271 272 /* Walk the device tree upwards, looking for an associativity id */ 273 int of_node_to_nid(struct device_node *device) 274 { 275 struct device_node *tmp; 276 int nid = -1; 277 278 of_node_get(device); 279 while (device) { 280 nid = of_node_to_nid_single(device); 281 if (nid != -1) 282 break; 283 284 tmp = device; 285 device = of_get_parent(tmp); 286 of_node_put(tmp); 287 } 288 of_node_put(device); 289 290 return nid; 291 } 292 EXPORT_SYMBOL_GPL(of_node_to_nid); 293 294 static int __init find_min_common_depth(void) 295 { 296 int depth; 297 struct device_node *root; 298 299 if (firmware_has_feature(FW_FEATURE_OPAL)) 300 root = of_find_node_by_path("/ibm,opal"); 301 else 302 root = of_find_node_by_path("/rtas"); 303 if (!root) 304 root = of_find_node_by_path("/"); 305 306 /* 307 * This property is a set of 32-bit integers, each representing 308 * an index into the ibm,associativity nodes. 309 * 310 * With form 0 affinity the first integer is for an SMP configuration 311 * (should be all 0's) and the second is for a normal NUMA 312 * configuration. We have only one level of NUMA. 313 * 314 * With form 1 affinity the first integer is the most significant 315 * NUMA boundary and the following are progressively less significant 316 * boundaries. There can be more than one level of NUMA. 317 */ 318 distance_ref_points = of_get_property(root, 319 "ibm,associativity-reference-points", 320 &distance_ref_points_depth); 321 322 if (!distance_ref_points) { 323 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 324 goto err; 325 } 326 327 distance_ref_points_depth /= sizeof(int); 328 329 if (firmware_has_feature(FW_FEATURE_OPAL) || 330 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 331 dbg("Using form 1 affinity\n"); 332 form1_affinity = 1; 333 } 334 335 if (form1_affinity) { 336 depth = distance_ref_points[0]; 337 } else { 338 if (distance_ref_points_depth < 2) { 339 printk(KERN_WARNING "NUMA: " 340 "short ibm,associativity-reference-points\n"); 341 goto err; 342 } 343 344 depth = distance_ref_points[1]; 345 } 346 347 /* 348 * Warn and cap if the hardware supports more than 349 * MAX_DISTANCE_REF_POINTS domains. 350 */ 351 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 352 printk(KERN_WARNING "NUMA: distance array capped at " 353 "%d entries\n", MAX_DISTANCE_REF_POINTS); 354 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 355 } 356 357 of_node_put(root); 358 return depth; 359 360 err: 361 of_node_put(root); 362 return -1; 363 } 364 365 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 366 { 367 struct device_node *memory = NULL; 368 369 memory = of_find_node_by_type(memory, "memory"); 370 if (!memory) 371 panic("numa.c: No memory nodes found!"); 372 373 *n_addr_cells = of_n_addr_cells(memory); 374 *n_size_cells = of_n_size_cells(memory); 375 of_node_put(memory); 376 } 377 378 static unsigned long read_n_cells(int n, const unsigned int **buf) 379 { 380 unsigned long result = 0; 381 382 while (n--) { 383 result = (result << 32) | **buf; 384 (*buf)++; 385 } 386 return result; 387 } 388 389 /* 390 * Read the next memblock list entry from the ibm,dynamic-memory property 391 * and return the information in the provided of_drconf_cell structure. 392 */ 393 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 394 { 395 const u32 *cp; 396 397 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 398 399 cp = *cellp; 400 drmem->drc_index = cp[0]; 401 drmem->reserved = cp[1]; 402 drmem->aa_index = cp[2]; 403 drmem->flags = cp[3]; 404 405 *cellp = cp + 4; 406 } 407 408 /* 409 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 410 * 411 * The layout of the ibm,dynamic-memory property is a number N of memblock 412 * list entries followed by N memblock list entries. Each memblock list entry 413 * contains information as laid out in the of_drconf_cell struct above. 414 */ 415 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 416 { 417 const u32 *prop; 418 u32 len, entries; 419 420 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 421 if (!prop || len < sizeof(unsigned int)) 422 return 0; 423 424 entries = *prop++; 425 426 /* Now that we know the number of entries, revalidate the size 427 * of the property read in to ensure we have everything 428 */ 429 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 430 return 0; 431 432 *dm = prop; 433 return entries; 434 } 435 436 /* 437 * Retrieve and validate the ibm,lmb-size property for drconf memory 438 * from the device tree. 439 */ 440 static u64 of_get_lmb_size(struct device_node *memory) 441 { 442 const u32 *prop; 443 u32 len; 444 445 prop = of_get_property(memory, "ibm,lmb-size", &len); 446 if (!prop || len < sizeof(unsigned int)) 447 return 0; 448 449 return read_n_cells(n_mem_size_cells, &prop); 450 } 451 452 struct assoc_arrays { 453 u32 n_arrays; 454 u32 array_sz; 455 const u32 *arrays; 456 }; 457 458 /* 459 * Retrieve and validate the list of associativity arrays for drconf 460 * memory from the ibm,associativity-lookup-arrays property of the 461 * device tree.. 462 * 463 * The layout of the ibm,associativity-lookup-arrays property is a number N 464 * indicating the number of associativity arrays, followed by a number M 465 * indicating the size of each associativity array, followed by a list 466 * of N associativity arrays. 467 */ 468 static int of_get_assoc_arrays(struct device_node *memory, 469 struct assoc_arrays *aa) 470 { 471 const u32 *prop; 472 u32 len; 473 474 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 475 if (!prop || len < 2 * sizeof(unsigned int)) 476 return -1; 477 478 aa->n_arrays = *prop++; 479 aa->array_sz = *prop++; 480 481 /* Now that we know the number of arrays and size of each array, 482 * revalidate the size of the property read in. 483 */ 484 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 485 return -1; 486 487 aa->arrays = prop; 488 return 0; 489 } 490 491 /* 492 * This is like of_node_to_nid_single() for memory represented in the 493 * ibm,dynamic-reconfiguration-memory node. 494 */ 495 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 496 struct assoc_arrays *aa) 497 { 498 int default_nid = 0; 499 int nid = default_nid; 500 int index; 501 502 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 503 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 504 drmem->aa_index < aa->n_arrays) { 505 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 506 nid = aa->arrays[index]; 507 508 if (nid == 0xffff || nid >= MAX_NUMNODES) 509 nid = default_nid; 510 } 511 512 return nid; 513 } 514 515 /* 516 * Figure out to which domain a cpu belongs and stick it there. 517 * Return the id of the domain used. 518 */ 519 static int numa_setup_cpu(unsigned long lcpu) 520 { 521 int nid = 0; 522 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 523 524 if (!cpu) { 525 WARN_ON(1); 526 goto out; 527 } 528 529 nid = of_node_to_nid_single(cpu); 530 531 if (nid < 0 || !node_online(nid)) 532 nid = first_online_node; 533 out: 534 map_cpu_to_node(lcpu, nid); 535 536 of_node_put(cpu); 537 538 return nid; 539 } 540 541 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, 542 void *hcpu) 543 { 544 unsigned long lcpu = (unsigned long)hcpu; 545 int ret = NOTIFY_DONE; 546 547 switch (action) { 548 case CPU_UP_PREPARE: 549 case CPU_UP_PREPARE_FROZEN: 550 numa_setup_cpu(lcpu); 551 ret = NOTIFY_OK; 552 break; 553 #ifdef CONFIG_HOTPLUG_CPU 554 case CPU_DEAD: 555 case CPU_DEAD_FROZEN: 556 case CPU_UP_CANCELED: 557 case CPU_UP_CANCELED_FROZEN: 558 unmap_cpu_from_node(lcpu); 559 break; 560 ret = NOTIFY_OK; 561 #endif 562 } 563 return ret; 564 } 565 566 /* 567 * Check and possibly modify a memory region to enforce the memory limit. 568 * 569 * Returns the size the region should have to enforce the memory limit. 570 * This will either be the original value of size, a truncated value, 571 * or zero. If the returned value of size is 0 the region should be 572 * discarded as it lies wholly above the memory limit. 573 */ 574 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 575 unsigned long size) 576 { 577 /* 578 * We use memblock_end_of_DRAM() in here instead of memory_limit because 579 * we've already adjusted it for the limit and it takes care of 580 * having memory holes below the limit. Also, in the case of 581 * iommu_is_off, memory_limit is not set but is implicitly enforced. 582 */ 583 584 if (start + size <= memblock_end_of_DRAM()) 585 return size; 586 587 if (start >= memblock_end_of_DRAM()) 588 return 0; 589 590 return memblock_end_of_DRAM() - start; 591 } 592 593 /* 594 * Reads the counter for a given entry in 595 * linux,drconf-usable-memory property 596 */ 597 static inline int __init read_usm_ranges(const u32 **usm) 598 { 599 /* 600 * For each lmb in ibm,dynamic-memory a corresponding 601 * entry in linux,drconf-usable-memory property contains 602 * a counter followed by that many (base, size) duple. 603 * read the counter from linux,drconf-usable-memory 604 */ 605 return read_n_cells(n_mem_size_cells, usm); 606 } 607 608 /* 609 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 610 * node. This assumes n_mem_{addr,size}_cells have been set. 611 */ 612 static void __init parse_drconf_memory(struct device_node *memory) 613 { 614 const u32 *uninitialized_var(dm), *usm; 615 unsigned int n, rc, ranges, is_kexec_kdump = 0; 616 unsigned long lmb_size, base, size, sz; 617 int nid; 618 struct assoc_arrays aa = { .arrays = NULL }; 619 620 n = of_get_drconf_memory(memory, &dm); 621 if (!n) 622 return; 623 624 lmb_size = of_get_lmb_size(memory); 625 if (!lmb_size) 626 return; 627 628 rc = of_get_assoc_arrays(memory, &aa); 629 if (rc) 630 return; 631 632 /* check if this is a kexec/kdump kernel */ 633 usm = of_get_usable_memory(memory); 634 if (usm != NULL) 635 is_kexec_kdump = 1; 636 637 for (; n != 0; --n) { 638 struct of_drconf_cell drmem; 639 640 read_drconf_cell(&drmem, &dm); 641 642 /* skip this block if the reserved bit is set in flags (0x80) 643 or if the block is not assigned to this partition (0x8) */ 644 if ((drmem.flags & DRCONF_MEM_RESERVED) 645 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 646 continue; 647 648 base = drmem.base_addr; 649 size = lmb_size; 650 ranges = 1; 651 652 if (is_kexec_kdump) { 653 ranges = read_usm_ranges(&usm); 654 if (!ranges) /* there are no (base, size) duple */ 655 continue; 656 } 657 do { 658 if (is_kexec_kdump) { 659 base = read_n_cells(n_mem_addr_cells, &usm); 660 size = read_n_cells(n_mem_size_cells, &usm); 661 } 662 nid = of_drconf_to_nid_single(&drmem, &aa); 663 fake_numa_create_new_node( 664 ((base + size) >> PAGE_SHIFT), 665 &nid); 666 node_set_online(nid); 667 sz = numa_enforce_memory_limit(base, size); 668 if (sz) 669 memblock_set_node(base, sz, nid); 670 } while (--ranges); 671 } 672 } 673 674 static int __init parse_numa_properties(void) 675 { 676 struct device_node *memory; 677 int default_nid = 0; 678 unsigned long i; 679 680 if (numa_enabled == 0) { 681 printk(KERN_WARNING "NUMA disabled by user\n"); 682 return -1; 683 } 684 685 min_common_depth = find_min_common_depth(); 686 687 if (min_common_depth < 0) 688 return min_common_depth; 689 690 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 691 692 /* 693 * Even though we connect cpus to numa domains later in SMP 694 * init, we need to know the node ids now. This is because 695 * each node to be onlined must have NODE_DATA etc backing it. 696 */ 697 for_each_present_cpu(i) { 698 struct device_node *cpu; 699 int nid; 700 701 cpu = of_get_cpu_node(i, NULL); 702 BUG_ON(!cpu); 703 nid = of_node_to_nid_single(cpu); 704 of_node_put(cpu); 705 706 /* 707 * Don't fall back to default_nid yet -- we will plug 708 * cpus into nodes once the memory scan has discovered 709 * the topology. 710 */ 711 if (nid < 0) 712 continue; 713 node_set_online(nid); 714 } 715 716 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 717 718 for_each_node_by_type(memory, "memory") { 719 unsigned long start; 720 unsigned long size; 721 int nid; 722 int ranges; 723 const unsigned int *memcell_buf; 724 unsigned int len; 725 726 memcell_buf = of_get_property(memory, 727 "linux,usable-memory", &len); 728 if (!memcell_buf || len <= 0) 729 memcell_buf = of_get_property(memory, "reg", &len); 730 if (!memcell_buf || len <= 0) 731 continue; 732 733 /* ranges in cell */ 734 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 735 new_range: 736 /* these are order-sensitive, and modify the buffer pointer */ 737 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 738 size = read_n_cells(n_mem_size_cells, &memcell_buf); 739 740 /* 741 * Assumption: either all memory nodes or none will 742 * have associativity properties. If none, then 743 * everything goes to default_nid. 744 */ 745 nid = of_node_to_nid_single(memory); 746 if (nid < 0) 747 nid = default_nid; 748 749 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 750 node_set_online(nid); 751 752 if (!(size = numa_enforce_memory_limit(start, size))) { 753 if (--ranges) 754 goto new_range; 755 else 756 continue; 757 } 758 759 memblock_set_node(start, size, nid); 760 761 if (--ranges) 762 goto new_range; 763 } 764 765 /* 766 * Now do the same thing for each MEMBLOCK listed in the 767 * ibm,dynamic-memory property in the 768 * ibm,dynamic-reconfiguration-memory node. 769 */ 770 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 771 if (memory) 772 parse_drconf_memory(memory); 773 774 return 0; 775 } 776 777 static void __init setup_nonnuma(void) 778 { 779 unsigned long top_of_ram = memblock_end_of_DRAM(); 780 unsigned long total_ram = memblock_phys_mem_size(); 781 unsigned long start_pfn, end_pfn; 782 unsigned int nid = 0; 783 struct memblock_region *reg; 784 785 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 786 top_of_ram, total_ram); 787 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 788 (top_of_ram - total_ram) >> 20); 789 790 for_each_memblock(memory, reg) { 791 start_pfn = memblock_region_memory_base_pfn(reg); 792 end_pfn = memblock_region_memory_end_pfn(reg); 793 794 fake_numa_create_new_node(end_pfn, &nid); 795 memblock_set_node(PFN_PHYS(start_pfn), 796 PFN_PHYS(end_pfn - start_pfn), nid); 797 node_set_online(nid); 798 } 799 } 800 801 void __init dump_numa_cpu_topology(void) 802 { 803 unsigned int node; 804 unsigned int cpu, count; 805 806 if (min_common_depth == -1 || !numa_enabled) 807 return; 808 809 for_each_online_node(node) { 810 printk(KERN_DEBUG "Node %d CPUs:", node); 811 812 count = 0; 813 /* 814 * If we used a CPU iterator here we would miss printing 815 * the holes in the cpumap. 816 */ 817 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 818 if (cpumask_test_cpu(cpu, 819 node_to_cpumask_map[node])) { 820 if (count == 0) 821 printk(" %u", cpu); 822 ++count; 823 } else { 824 if (count > 1) 825 printk("-%u", cpu - 1); 826 count = 0; 827 } 828 } 829 830 if (count > 1) 831 printk("-%u", nr_cpu_ids - 1); 832 printk("\n"); 833 } 834 } 835 836 static void __init dump_numa_memory_topology(void) 837 { 838 unsigned int node; 839 unsigned int count; 840 841 if (min_common_depth == -1 || !numa_enabled) 842 return; 843 844 for_each_online_node(node) { 845 unsigned long i; 846 847 printk(KERN_DEBUG "Node %d Memory:", node); 848 849 count = 0; 850 851 for (i = 0; i < memblock_end_of_DRAM(); 852 i += (1 << SECTION_SIZE_BITS)) { 853 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 854 if (count == 0) 855 printk(" 0x%lx", i); 856 ++count; 857 } else { 858 if (count > 0) 859 printk("-0x%lx", i); 860 count = 0; 861 } 862 } 863 864 if (count > 0) 865 printk("-0x%lx", i); 866 printk("\n"); 867 } 868 } 869 870 /* 871 * Allocate some memory, satisfying the memblock or bootmem allocator where 872 * required. nid is the preferred node and end is the physical address of 873 * the highest address in the node. 874 * 875 * Returns the virtual address of the memory. 876 */ 877 static void __init *careful_zallocation(int nid, unsigned long size, 878 unsigned long align, 879 unsigned long end_pfn) 880 { 881 void *ret; 882 int new_nid; 883 unsigned long ret_paddr; 884 885 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 886 887 /* retry over all memory */ 888 if (!ret_paddr) 889 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 890 891 if (!ret_paddr) 892 panic("numa.c: cannot allocate %lu bytes for node %d", 893 size, nid); 894 895 ret = __va(ret_paddr); 896 897 /* 898 * We initialize the nodes in numeric order: 0, 1, 2... 899 * and hand over control from the MEMBLOCK allocator to the 900 * bootmem allocator. If this function is called for 901 * node 5, then we know that all nodes <5 are using the 902 * bootmem allocator instead of the MEMBLOCK allocator. 903 * 904 * So, check the nid from which this allocation came 905 * and double check to see if we need to use bootmem 906 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 907 * since it would be useless. 908 */ 909 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 910 if (new_nid < nid) { 911 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 912 size, align, 0); 913 914 dbg("alloc_bootmem %p %lx\n", ret, size); 915 } 916 917 memset(ret, 0, size); 918 return ret; 919 } 920 921 static struct notifier_block ppc64_numa_nb = { 922 .notifier_call = cpu_numa_callback, 923 .priority = 1 /* Must run before sched domains notifier. */ 924 }; 925 926 static void __init mark_reserved_regions_for_nid(int nid) 927 { 928 struct pglist_data *node = NODE_DATA(nid); 929 struct memblock_region *reg; 930 931 for_each_memblock(reserved, reg) { 932 unsigned long physbase = reg->base; 933 unsigned long size = reg->size; 934 unsigned long start_pfn = physbase >> PAGE_SHIFT; 935 unsigned long end_pfn = PFN_UP(physbase + size); 936 struct node_active_region node_ar; 937 unsigned long node_end_pfn = node->node_start_pfn + 938 node->node_spanned_pages; 939 940 /* 941 * Check to make sure that this memblock.reserved area is 942 * within the bounds of the node that we care about. 943 * Checking the nid of the start and end points is not 944 * sufficient because the reserved area could span the 945 * entire node. 946 */ 947 if (end_pfn <= node->node_start_pfn || 948 start_pfn >= node_end_pfn) 949 continue; 950 951 get_node_active_region(start_pfn, &node_ar); 952 while (start_pfn < end_pfn && 953 node_ar.start_pfn < node_ar.end_pfn) { 954 unsigned long reserve_size = size; 955 /* 956 * if reserved region extends past active region 957 * then trim size to active region 958 */ 959 if (end_pfn > node_ar.end_pfn) 960 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 961 - physbase; 962 /* 963 * Only worry about *this* node, others may not 964 * yet have valid NODE_DATA(). 965 */ 966 if (node_ar.nid == nid) { 967 dbg("reserve_bootmem %lx %lx nid=%d\n", 968 physbase, reserve_size, node_ar.nid); 969 reserve_bootmem_node(NODE_DATA(node_ar.nid), 970 physbase, reserve_size, 971 BOOTMEM_DEFAULT); 972 } 973 /* 974 * if reserved region is contained in the active region 975 * then done. 976 */ 977 if (end_pfn <= node_ar.end_pfn) 978 break; 979 980 /* 981 * reserved region extends past the active region 982 * get next active region that contains this 983 * reserved region 984 */ 985 start_pfn = node_ar.end_pfn; 986 physbase = start_pfn << PAGE_SHIFT; 987 size = size - reserve_size; 988 get_node_active_region(start_pfn, &node_ar); 989 } 990 } 991 } 992 993 994 void __init do_init_bootmem(void) 995 { 996 int nid; 997 998 min_low_pfn = 0; 999 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1000 max_pfn = max_low_pfn; 1001 1002 if (parse_numa_properties()) 1003 setup_nonnuma(); 1004 else 1005 dump_numa_memory_topology(); 1006 1007 for_each_online_node(nid) { 1008 unsigned long start_pfn, end_pfn; 1009 void *bootmem_vaddr; 1010 unsigned long bootmap_pages; 1011 1012 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1013 1014 /* 1015 * Allocate the node structure node local if possible 1016 * 1017 * Be careful moving this around, as it relies on all 1018 * previous nodes' bootmem to be initialized and have 1019 * all reserved areas marked. 1020 */ 1021 NODE_DATA(nid) = careful_zallocation(nid, 1022 sizeof(struct pglist_data), 1023 SMP_CACHE_BYTES, end_pfn); 1024 1025 dbg("node %d\n", nid); 1026 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1027 1028 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1029 NODE_DATA(nid)->node_start_pfn = start_pfn; 1030 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1031 1032 if (NODE_DATA(nid)->node_spanned_pages == 0) 1033 continue; 1034 1035 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1036 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1037 1038 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1039 bootmem_vaddr = careful_zallocation(nid, 1040 bootmap_pages << PAGE_SHIFT, 1041 PAGE_SIZE, end_pfn); 1042 1043 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1044 1045 init_bootmem_node(NODE_DATA(nid), 1046 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1047 start_pfn, end_pfn); 1048 1049 free_bootmem_with_active_regions(nid, end_pfn); 1050 /* 1051 * Be very careful about moving this around. Future 1052 * calls to careful_zallocation() depend on this getting 1053 * done correctly. 1054 */ 1055 mark_reserved_regions_for_nid(nid); 1056 sparse_memory_present_with_active_regions(nid); 1057 } 1058 1059 init_bootmem_done = 1; 1060 1061 /* 1062 * Now bootmem is initialised we can create the node to cpumask 1063 * lookup tables and setup the cpu callback to populate them. 1064 */ 1065 setup_node_to_cpumask_map(); 1066 1067 register_cpu_notifier(&ppc64_numa_nb); 1068 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1069 (void *)(unsigned long)boot_cpuid); 1070 } 1071 1072 void __init paging_init(void) 1073 { 1074 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1075 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1076 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1077 free_area_init_nodes(max_zone_pfns); 1078 } 1079 1080 static int __init early_numa(char *p) 1081 { 1082 if (!p) 1083 return 0; 1084 1085 if (strstr(p, "off")) 1086 numa_enabled = 0; 1087 1088 if (strstr(p, "debug")) 1089 numa_debug = 1; 1090 1091 p = strstr(p, "fake="); 1092 if (p) 1093 cmdline = p + strlen("fake="); 1094 1095 return 0; 1096 } 1097 early_param("numa", early_numa); 1098 1099 #ifdef CONFIG_MEMORY_HOTPLUG 1100 /* 1101 * Find the node associated with a hot added memory section for 1102 * memory represented in the device tree by the property 1103 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1104 */ 1105 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1106 unsigned long scn_addr) 1107 { 1108 const u32 *dm; 1109 unsigned int drconf_cell_cnt, rc; 1110 unsigned long lmb_size; 1111 struct assoc_arrays aa; 1112 int nid = -1; 1113 1114 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1115 if (!drconf_cell_cnt) 1116 return -1; 1117 1118 lmb_size = of_get_lmb_size(memory); 1119 if (!lmb_size) 1120 return -1; 1121 1122 rc = of_get_assoc_arrays(memory, &aa); 1123 if (rc) 1124 return -1; 1125 1126 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1127 struct of_drconf_cell drmem; 1128 1129 read_drconf_cell(&drmem, &dm); 1130 1131 /* skip this block if it is reserved or not assigned to 1132 * this partition */ 1133 if ((drmem.flags & DRCONF_MEM_RESERVED) 1134 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1135 continue; 1136 1137 if ((scn_addr < drmem.base_addr) 1138 || (scn_addr >= (drmem.base_addr + lmb_size))) 1139 continue; 1140 1141 nid = of_drconf_to_nid_single(&drmem, &aa); 1142 break; 1143 } 1144 1145 return nid; 1146 } 1147 1148 /* 1149 * Find the node associated with a hot added memory section for memory 1150 * represented in the device tree as a node (i.e. memory@XXXX) for 1151 * each memblock. 1152 */ 1153 int hot_add_node_scn_to_nid(unsigned long scn_addr) 1154 { 1155 struct device_node *memory; 1156 int nid = -1; 1157 1158 for_each_node_by_type(memory, "memory") { 1159 unsigned long start, size; 1160 int ranges; 1161 const unsigned int *memcell_buf; 1162 unsigned int len; 1163 1164 memcell_buf = of_get_property(memory, "reg", &len); 1165 if (!memcell_buf || len <= 0) 1166 continue; 1167 1168 /* ranges in cell */ 1169 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1170 1171 while (ranges--) { 1172 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1173 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1174 1175 if ((scn_addr < start) || (scn_addr >= (start + size))) 1176 continue; 1177 1178 nid = of_node_to_nid_single(memory); 1179 break; 1180 } 1181 1182 if (nid >= 0) 1183 break; 1184 } 1185 1186 of_node_put(memory); 1187 1188 return nid; 1189 } 1190 1191 /* 1192 * Find the node associated with a hot added memory section. Section 1193 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1194 * sections are fully contained within a single MEMBLOCK. 1195 */ 1196 int hot_add_scn_to_nid(unsigned long scn_addr) 1197 { 1198 struct device_node *memory = NULL; 1199 int nid, found = 0; 1200 1201 if (!numa_enabled || (min_common_depth < 0)) 1202 return first_online_node; 1203 1204 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1205 if (memory) { 1206 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1207 of_node_put(memory); 1208 } else { 1209 nid = hot_add_node_scn_to_nid(scn_addr); 1210 } 1211 1212 if (nid < 0 || !node_online(nid)) 1213 nid = first_online_node; 1214 1215 if (NODE_DATA(nid)->node_spanned_pages) 1216 return nid; 1217 1218 for_each_online_node(nid) { 1219 if (NODE_DATA(nid)->node_spanned_pages) { 1220 found = 1; 1221 break; 1222 } 1223 } 1224 1225 BUG_ON(!found); 1226 return nid; 1227 } 1228 1229 static u64 hot_add_drconf_memory_max(void) 1230 { 1231 struct device_node *memory = NULL; 1232 unsigned int drconf_cell_cnt = 0; 1233 u64 lmb_size = 0; 1234 const u32 *dm = 0; 1235 1236 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1237 if (memory) { 1238 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1239 lmb_size = of_get_lmb_size(memory); 1240 of_node_put(memory); 1241 } 1242 return lmb_size * drconf_cell_cnt; 1243 } 1244 1245 /* 1246 * memory_hotplug_max - return max address of memory that may be added 1247 * 1248 * This is currently only used on systems that support drconfig memory 1249 * hotplug. 1250 */ 1251 u64 memory_hotplug_max(void) 1252 { 1253 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1254 } 1255 #endif /* CONFIG_MEMORY_HOTPLUG */ 1256 1257 /* Virtual Processor Home Node (VPHN) support */ 1258 #ifdef CONFIG_PPC_SPLPAR 1259 struct topology_update_data { 1260 struct topology_update_data *next; 1261 unsigned int cpu; 1262 int old_nid; 1263 int new_nid; 1264 }; 1265 1266 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1267 static cpumask_t cpu_associativity_changes_mask; 1268 static int vphn_enabled; 1269 static int prrn_enabled; 1270 static void reset_topology_timer(void); 1271 1272 /* 1273 * Store the current values of the associativity change counters in the 1274 * hypervisor. 1275 */ 1276 static void setup_cpu_associativity_change_counters(void) 1277 { 1278 int cpu; 1279 1280 /* The VPHN feature supports a maximum of 8 reference points */ 1281 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1282 1283 for_each_possible_cpu(cpu) { 1284 int i; 1285 u8 *counts = vphn_cpu_change_counts[cpu]; 1286 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1287 1288 for (i = 0; i < distance_ref_points_depth; i++) 1289 counts[i] = hypervisor_counts[i]; 1290 } 1291 } 1292 1293 /* 1294 * The hypervisor maintains a set of 8 associativity change counters in 1295 * the VPA of each cpu that correspond to the associativity levels in the 1296 * ibm,associativity-reference-points property. When an associativity 1297 * level changes, the corresponding counter is incremented. 1298 * 1299 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1300 * node associativity levels have changed. 1301 * 1302 * Returns the number of cpus with unhandled associativity changes. 1303 */ 1304 static int update_cpu_associativity_changes_mask(void) 1305 { 1306 int cpu; 1307 cpumask_t *changes = &cpu_associativity_changes_mask; 1308 1309 for_each_possible_cpu(cpu) { 1310 int i, changed = 0; 1311 u8 *counts = vphn_cpu_change_counts[cpu]; 1312 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1313 1314 for (i = 0; i < distance_ref_points_depth; i++) { 1315 if (hypervisor_counts[i] != counts[i]) { 1316 counts[i] = hypervisor_counts[i]; 1317 changed = 1; 1318 } 1319 } 1320 if (changed) { 1321 cpumask_set_cpu(cpu, changes); 1322 } 1323 } 1324 1325 return cpumask_weight(changes); 1326 } 1327 1328 /* 1329 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1330 * the complete property we have to add the length in the first cell. 1331 */ 1332 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1333 1334 /* 1335 * Convert the associativity domain numbers returned from the hypervisor 1336 * to the sequence they would appear in the ibm,associativity property. 1337 */ 1338 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) 1339 { 1340 int i, nr_assoc_doms = 0; 1341 const u16 *field = (const u16*) packed; 1342 1343 #define VPHN_FIELD_UNUSED (0xffff) 1344 #define VPHN_FIELD_MSB (0x8000) 1345 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1346 1347 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1348 if (*field == VPHN_FIELD_UNUSED) { 1349 /* All significant fields processed, and remaining 1350 * fields contain the reserved value of all 1's. 1351 * Just store them. 1352 */ 1353 unpacked[i] = *((u32*)field); 1354 field += 2; 1355 } else if (*field & VPHN_FIELD_MSB) { 1356 /* Data is in the lower 15 bits of this field */ 1357 unpacked[i] = *field & VPHN_FIELD_MASK; 1358 field++; 1359 nr_assoc_doms++; 1360 } else { 1361 /* Data is in the lower 15 bits of this field 1362 * concatenated with the next 16 bit field 1363 */ 1364 unpacked[i] = *((u32*)field); 1365 field += 2; 1366 nr_assoc_doms++; 1367 } 1368 } 1369 1370 /* The first cell contains the length of the property */ 1371 unpacked[0] = nr_assoc_doms; 1372 1373 return nr_assoc_doms; 1374 } 1375 1376 /* 1377 * Retrieve the new associativity information for a virtual processor's 1378 * home node. 1379 */ 1380 static long hcall_vphn(unsigned long cpu, unsigned int *associativity) 1381 { 1382 long rc; 1383 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1384 u64 flags = 1; 1385 int hwcpu = get_hard_smp_processor_id(cpu); 1386 1387 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1388 vphn_unpack_associativity(retbuf, associativity); 1389 1390 return rc; 1391 } 1392 1393 static long vphn_get_associativity(unsigned long cpu, 1394 unsigned int *associativity) 1395 { 1396 long rc; 1397 1398 rc = hcall_vphn(cpu, associativity); 1399 1400 switch (rc) { 1401 case H_FUNCTION: 1402 printk(KERN_INFO 1403 "VPHN is not supported. Disabling polling...\n"); 1404 stop_topology_update(); 1405 break; 1406 case H_HARDWARE: 1407 printk(KERN_ERR 1408 "hcall_vphn() experienced a hardware fault " 1409 "preventing VPHN. Disabling polling...\n"); 1410 stop_topology_update(); 1411 } 1412 1413 return rc; 1414 } 1415 1416 /* 1417 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1418 * characteristics change. This function doesn't perform any locking and is 1419 * only safe to call from stop_machine(). 1420 */ 1421 static int update_cpu_topology(void *data) 1422 { 1423 struct topology_update_data *update; 1424 unsigned long cpu; 1425 1426 if (!data) 1427 return -EINVAL; 1428 1429 cpu = get_cpu(); 1430 1431 for (update = data; update; update = update->next) { 1432 if (cpu != update->cpu) 1433 continue; 1434 1435 unmap_cpu_from_node(update->cpu); 1436 map_cpu_to_node(update->cpu, update->new_nid); 1437 vdso_getcpu_init(); 1438 } 1439 1440 return 0; 1441 } 1442 1443 /* 1444 * Update the node maps and sysfs entries for each cpu whose home node 1445 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1446 */ 1447 int arch_update_cpu_topology(void) 1448 { 1449 unsigned int cpu, changed = 0; 1450 struct topology_update_data *updates, *ud; 1451 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1452 cpumask_t updated_cpus; 1453 struct device *dev; 1454 int weight, i = 0; 1455 1456 weight = cpumask_weight(&cpu_associativity_changes_mask); 1457 if (!weight) 1458 return 0; 1459 1460 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1461 if (!updates) 1462 return 0; 1463 1464 cpumask_clear(&updated_cpus); 1465 1466 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1467 ud = &updates[i++]; 1468 ud->cpu = cpu; 1469 vphn_get_associativity(cpu, associativity); 1470 ud->new_nid = associativity_to_nid(associativity); 1471 1472 if (ud->new_nid < 0 || !node_online(ud->new_nid)) 1473 ud->new_nid = first_online_node; 1474 1475 ud->old_nid = numa_cpu_lookup_table[cpu]; 1476 cpumask_set_cpu(cpu, &updated_cpus); 1477 1478 if (i < weight) 1479 ud->next = &updates[i]; 1480 } 1481 1482 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1483 1484 for (ud = &updates[0]; ud; ud = ud->next) { 1485 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1486 register_cpu_under_node(ud->cpu, ud->new_nid); 1487 1488 dev = get_cpu_device(ud->cpu); 1489 if (dev) 1490 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1491 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1492 changed = 1; 1493 } 1494 1495 kfree(updates); 1496 return changed; 1497 } 1498 1499 static void topology_work_fn(struct work_struct *work) 1500 { 1501 rebuild_sched_domains(); 1502 } 1503 static DECLARE_WORK(topology_work, topology_work_fn); 1504 1505 void topology_schedule_update(void) 1506 { 1507 schedule_work(&topology_work); 1508 } 1509 1510 static void topology_timer_fn(unsigned long ignored) 1511 { 1512 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1513 topology_schedule_update(); 1514 else if (vphn_enabled) { 1515 if (update_cpu_associativity_changes_mask() > 0) 1516 topology_schedule_update(); 1517 reset_topology_timer(); 1518 } 1519 } 1520 static struct timer_list topology_timer = 1521 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1522 1523 static void reset_topology_timer(void) 1524 { 1525 topology_timer.data = 0; 1526 topology_timer.expires = jiffies + 60 * HZ; 1527 mod_timer(&topology_timer, topology_timer.expires); 1528 } 1529 1530 #ifdef CONFIG_SMP 1531 1532 static void stage_topology_update(int core_id) 1533 { 1534 cpumask_or(&cpu_associativity_changes_mask, 1535 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1536 reset_topology_timer(); 1537 } 1538 1539 static int dt_update_callback(struct notifier_block *nb, 1540 unsigned long action, void *data) 1541 { 1542 struct of_prop_reconfig *update; 1543 int rc = NOTIFY_DONE; 1544 1545 switch (action) { 1546 case OF_RECONFIG_UPDATE_PROPERTY: 1547 update = (struct of_prop_reconfig *)data; 1548 if (!of_prop_cmp(update->dn->type, "cpu") && 1549 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1550 u32 core_id; 1551 of_property_read_u32(update->dn, "reg", &core_id); 1552 stage_topology_update(core_id); 1553 rc = NOTIFY_OK; 1554 } 1555 break; 1556 } 1557 1558 return rc; 1559 } 1560 1561 static struct notifier_block dt_update_nb = { 1562 .notifier_call = dt_update_callback, 1563 }; 1564 1565 #endif 1566 1567 /* 1568 * Start polling for associativity changes. 1569 */ 1570 int start_topology_update(void) 1571 { 1572 int rc = 0; 1573 1574 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1575 if (!prrn_enabled) { 1576 prrn_enabled = 1; 1577 vphn_enabled = 0; 1578 #ifdef CONFIG_SMP 1579 rc = of_reconfig_notifier_register(&dt_update_nb); 1580 #endif 1581 } 1582 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1583 get_lppaca()->shared_proc) { 1584 if (!vphn_enabled) { 1585 prrn_enabled = 0; 1586 vphn_enabled = 1; 1587 setup_cpu_associativity_change_counters(); 1588 init_timer_deferrable(&topology_timer); 1589 reset_topology_timer(); 1590 } 1591 } 1592 1593 return rc; 1594 } 1595 1596 /* 1597 * Disable polling for VPHN associativity changes. 1598 */ 1599 int stop_topology_update(void) 1600 { 1601 int rc = 0; 1602 1603 if (prrn_enabled) { 1604 prrn_enabled = 0; 1605 #ifdef CONFIG_SMP 1606 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1607 #endif 1608 } else if (vphn_enabled) { 1609 vphn_enabled = 0; 1610 rc = del_timer_sync(&topology_timer); 1611 } 1612 1613 return rc; 1614 } 1615 1616 int prrn_is_enabled(void) 1617 { 1618 return prrn_enabled; 1619 } 1620 1621 static int topology_read(struct seq_file *file, void *v) 1622 { 1623 if (vphn_enabled || prrn_enabled) 1624 seq_puts(file, "on\n"); 1625 else 1626 seq_puts(file, "off\n"); 1627 1628 return 0; 1629 } 1630 1631 static int topology_open(struct inode *inode, struct file *file) 1632 { 1633 return single_open(file, topology_read, NULL); 1634 } 1635 1636 static ssize_t topology_write(struct file *file, const char __user *buf, 1637 size_t count, loff_t *off) 1638 { 1639 char kbuf[4]; /* "on" or "off" plus null. */ 1640 int read_len; 1641 1642 read_len = count < 3 ? count : 3; 1643 if (copy_from_user(kbuf, buf, read_len)) 1644 return -EINVAL; 1645 1646 kbuf[read_len] = '\0'; 1647 1648 if (!strncmp(kbuf, "on", 2)) 1649 start_topology_update(); 1650 else if (!strncmp(kbuf, "off", 3)) 1651 stop_topology_update(); 1652 else 1653 return -EINVAL; 1654 1655 return count; 1656 } 1657 1658 static const struct file_operations topology_ops = { 1659 .read = seq_read, 1660 .write = topology_write, 1661 .open = topology_open, 1662 .release = single_release 1663 }; 1664 1665 static int topology_update_init(void) 1666 { 1667 start_topology_update(); 1668 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops); 1669 1670 return 0; 1671 } 1672 device_initcall(topology_update_init); 1673 #endif /* CONFIG_PPC_SPLPAR */ 1674