1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7 #define pr_fmt(fmt) "numa: " fmt
8
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/pfn.h>
21 #include <linux/cpuset.h>
22 #include <linux/node.h>
23 #include <linux/stop_machine.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/uaccess.h>
27 #include <linux/slab.h>
28 #include <asm/cputhreads.h>
29 #include <asm/sparsemem.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/vphn.h>
38 #include <asm/drmem.h>
39
40 static int numa_enabled = 1;
41
42 static char *cmdline __initdata;
43
44 int numa_cpu_lookup_table[NR_CPUS];
45 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
46
47 EXPORT_SYMBOL(numa_cpu_lookup_table);
48 EXPORT_SYMBOL(node_to_cpumask_map);
49
50 static int primary_domain_index;
51 static int n_mem_addr_cells, n_mem_size_cells;
52
53 #define FORM0_AFFINITY 0
54 #define FORM1_AFFINITY 1
55 #define FORM2_AFFINITY 2
56 static int affinity_form;
57
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
63 [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
64 };
65 static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
66
67 /*
68 * Allocate node_to_cpumask_map based on number of available nodes
69 * Requires node_possible_map to be valid.
70 *
71 * Note: cpumask_of_node() is not valid until after this is done.
72 */
setup_node_to_cpumask_map(void)73 static void __init setup_node_to_cpumask_map(void)
74 {
75 unsigned int node;
76
77 /* setup nr_node_ids if not done yet */
78 if (nr_node_ids == MAX_NUMNODES)
79 setup_nr_node_ids();
80
81 /* allocate the map */
82 for_each_node(node)
83 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
84
85 /* cpumask_of_node() will now work */
86 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
87 }
88
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)89 static int __init fake_numa_create_new_node(unsigned long end_pfn,
90 unsigned int *nid)
91 {
92 unsigned long long mem;
93 char *p = cmdline;
94 static unsigned int fake_nid;
95 static unsigned long long curr_boundary;
96
97 /*
98 * Modify node id, iff we started creating NUMA nodes
99 * We want to continue from where we left of the last time
100 */
101 if (fake_nid)
102 *nid = fake_nid;
103 /*
104 * In case there are no more arguments to parse, the
105 * node_id should be the same as the last fake node id
106 * (we've handled this above).
107 */
108 if (!p)
109 return 0;
110
111 mem = memparse(p, &p);
112 if (!mem)
113 return 0;
114
115 if (mem < curr_boundary)
116 return 0;
117
118 curr_boundary = mem;
119
120 if ((end_pfn << PAGE_SHIFT) > mem) {
121 /*
122 * Skip commas and spaces
123 */
124 while (*p == ',' || *p == ' ' || *p == '\t')
125 p++;
126
127 cmdline = p;
128 fake_nid++;
129 *nid = fake_nid;
130 pr_debug("created new fake_node with id %d\n", fake_nid);
131 return 1;
132 }
133 return 0;
134 }
135
reset_numa_cpu_lookup_table(void)136 static void __init reset_numa_cpu_lookup_table(void)
137 {
138 unsigned int cpu;
139
140 for_each_possible_cpu(cpu)
141 numa_cpu_lookup_table[cpu] = -1;
142 }
143
map_cpu_to_node(int cpu,int node)144 void map_cpu_to_node(int cpu, int node)
145 {
146 update_numa_cpu_lookup_table(cpu, node);
147
148 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
149 pr_debug("adding cpu %d to node %d\n", cpu, node);
150 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
151 }
152 }
153
154 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)155 void unmap_cpu_from_node(unsigned long cpu)
156 {
157 int node = numa_cpu_lookup_table[cpu];
158
159 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
160 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
161 pr_debug("removing cpu %lu from node %d\n", cpu, node);
162 } else {
163 pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
164 }
165 }
166 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
167
__associativity_to_nid(const __be32 * associativity,int max_array_sz)168 static int __associativity_to_nid(const __be32 *associativity,
169 int max_array_sz)
170 {
171 int nid;
172 /*
173 * primary_domain_index is 1 based array index.
174 */
175 int index = primary_domain_index - 1;
176
177 if (!numa_enabled || index >= max_array_sz)
178 return NUMA_NO_NODE;
179
180 nid = of_read_number(&associativity[index], 1);
181
182 /* POWER4 LPAR uses 0xffff as invalid node */
183 if (nid == 0xffff || nid >= nr_node_ids)
184 nid = NUMA_NO_NODE;
185 return nid;
186 }
187 /*
188 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
189 * info is found.
190 */
associativity_to_nid(const __be32 * associativity)191 static int associativity_to_nid(const __be32 *associativity)
192 {
193 int array_sz = of_read_number(associativity, 1);
194
195 /* Skip the first element in the associativity array */
196 return __associativity_to_nid((associativity + 1), array_sz);
197 }
198
__cpu_form2_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)199 static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
200 {
201 int dist;
202 int node1, node2;
203
204 node1 = associativity_to_nid(cpu1_assoc);
205 node2 = associativity_to_nid(cpu2_assoc);
206
207 dist = numa_distance_table[node1][node2];
208 if (dist <= LOCAL_DISTANCE)
209 return 0;
210 else if (dist <= REMOTE_DISTANCE)
211 return 1;
212 else
213 return 2;
214 }
215
__cpu_form1_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)216 static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
217 {
218 int dist = 0;
219
220 int i, index;
221
222 for (i = 0; i < distance_ref_points_depth; i++) {
223 index = be32_to_cpu(distance_ref_points[i]);
224 if (cpu1_assoc[index] == cpu2_assoc[index])
225 break;
226 dist++;
227 }
228
229 return dist;
230 }
231
cpu_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)232 int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
233 {
234 /* We should not get called with FORM0 */
235 VM_WARN_ON(affinity_form == FORM0_AFFINITY);
236 if (affinity_form == FORM1_AFFINITY)
237 return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
238 return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
239 }
240
241 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)242 static const __be32 *of_get_associativity(struct device_node *dev)
243 {
244 return of_get_property(dev, "ibm,associativity", NULL);
245 }
246
__node_distance(int a,int b)247 int __node_distance(int a, int b)
248 {
249 int i;
250 int distance = LOCAL_DISTANCE;
251
252 if (affinity_form == FORM2_AFFINITY)
253 return numa_distance_table[a][b];
254 else if (affinity_form == FORM0_AFFINITY)
255 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
256
257 for (i = 0; i < distance_ref_points_depth; i++) {
258 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
259 break;
260
261 /* Double the distance for each NUMA level */
262 distance *= 2;
263 }
264
265 return distance;
266 }
267 EXPORT_SYMBOL(__node_distance);
268
269 /* Returns the nid associated with the given device tree node,
270 * or -1 if not found.
271 */
of_node_to_nid_single(struct device_node * device)272 static int of_node_to_nid_single(struct device_node *device)
273 {
274 int nid = NUMA_NO_NODE;
275 const __be32 *tmp;
276
277 tmp = of_get_associativity(device);
278 if (tmp)
279 nid = associativity_to_nid(tmp);
280 return nid;
281 }
282
283 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)284 int of_node_to_nid(struct device_node *device)
285 {
286 int nid = NUMA_NO_NODE;
287
288 of_node_get(device);
289 while (device) {
290 nid = of_node_to_nid_single(device);
291 if (nid != -1)
292 break;
293
294 device = of_get_next_parent(device);
295 }
296 of_node_put(device);
297
298 return nid;
299 }
300 EXPORT_SYMBOL(of_node_to_nid);
301
__initialize_form1_numa_distance(const __be32 * associativity,int max_array_sz)302 static void __initialize_form1_numa_distance(const __be32 *associativity,
303 int max_array_sz)
304 {
305 int i, nid;
306
307 if (affinity_form != FORM1_AFFINITY)
308 return;
309
310 nid = __associativity_to_nid(associativity, max_array_sz);
311 if (nid != NUMA_NO_NODE) {
312 for (i = 0; i < distance_ref_points_depth; i++) {
313 const __be32 *entry;
314 int index = be32_to_cpu(distance_ref_points[i]) - 1;
315
316 /*
317 * broken hierarchy, return with broken distance table
318 */
319 if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
320 return;
321
322 entry = &associativity[index];
323 distance_lookup_table[nid][i] = of_read_number(entry, 1);
324 }
325 }
326 }
327
initialize_form1_numa_distance(const __be32 * associativity)328 static void initialize_form1_numa_distance(const __be32 *associativity)
329 {
330 int array_sz;
331
332 array_sz = of_read_number(associativity, 1);
333 /* Skip the first element in the associativity array */
334 __initialize_form1_numa_distance(associativity + 1, array_sz);
335 }
336
337 /*
338 * Used to update distance information w.r.t newly added node.
339 */
update_numa_distance(struct device_node * node)340 void update_numa_distance(struct device_node *node)
341 {
342 int nid;
343
344 if (affinity_form == FORM0_AFFINITY)
345 return;
346 else if (affinity_form == FORM1_AFFINITY) {
347 const __be32 *associativity;
348
349 associativity = of_get_associativity(node);
350 if (!associativity)
351 return;
352
353 initialize_form1_numa_distance(associativity);
354 return;
355 }
356
357 /* FORM2 affinity */
358 nid = of_node_to_nid_single(node);
359 if (nid == NUMA_NO_NODE)
360 return;
361
362 /*
363 * With FORM2 we expect NUMA distance of all possible NUMA
364 * nodes to be provided during boot.
365 */
366 WARN(numa_distance_table[nid][nid] == -1,
367 "NUMA distance details for node %d not provided\n", nid);
368 }
369 EXPORT_SYMBOL_GPL(update_numa_distance);
370
371 /*
372 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
373 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
374 */
initialize_form2_numa_distance_lookup_table(void)375 static void __init initialize_form2_numa_distance_lookup_table(void)
376 {
377 int i, j;
378 struct device_node *root;
379 const __u8 *form2_distances;
380 const __be32 *numa_lookup_index;
381 int form2_distances_length;
382 int max_numa_index, distance_index;
383
384 if (firmware_has_feature(FW_FEATURE_OPAL))
385 root = of_find_node_by_path("/ibm,opal");
386 else
387 root = of_find_node_by_path("/rtas");
388 if (!root)
389 root = of_find_node_by_path("/");
390
391 numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
392 max_numa_index = of_read_number(&numa_lookup_index[0], 1);
393
394 /* first element of the array is the size and is encode-int */
395 form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
396 form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
397 /* Skip the size which is encoded int */
398 form2_distances += sizeof(__be32);
399
400 pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
401 form2_distances_length, max_numa_index);
402
403 for (i = 0; i < max_numa_index; i++)
404 /* +1 skip the max_numa_index in the property */
405 numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
406
407
408 if (form2_distances_length != max_numa_index * max_numa_index) {
409 WARN(1, "Wrong NUMA distance information\n");
410 form2_distances = NULL; // don't use it
411 }
412 distance_index = 0;
413 for (i = 0; i < max_numa_index; i++) {
414 for (j = 0; j < max_numa_index; j++) {
415 int nodeA = numa_id_index_table[i];
416 int nodeB = numa_id_index_table[j];
417 int dist;
418
419 if (form2_distances)
420 dist = form2_distances[distance_index++];
421 else if (nodeA == nodeB)
422 dist = LOCAL_DISTANCE;
423 else
424 dist = REMOTE_DISTANCE;
425 numa_distance_table[nodeA][nodeB] = dist;
426 pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
427 }
428 }
429
430 of_node_put(root);
431 }
432
find_primary_domain_index(void)433 static int __init find_primary_domain_index(void)
434 {
435 int index;
436 struct device_node *root;
437
438 /*
439 * Check for which form of affinity.
440 */
441 if (firmware_has_feature(FW_FEATURE_OPAL)) {
442 affinity_form = FORM1_AFFINITY;
443 } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
444 pr_debug("Using form 2 affinity\n");
445 affinity_form = FORM2_AFFINITY;
446 } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
447 pr_debug("Using form 1 affinity\n");
448 affinity_form = FORM1_AFFINITY;
449 } else
450 affinity_form = FORM0_AFFINITY;
451
452 if (firmware_has_feature(FW_FEATURE_OPAL))
453 root = of_find_node_by_path("/ibm,opal");
454 else
455 root = of_find_node_by_path("/rtas");
456 if (!root)
457 root = of_find_node_by_path("/");
458
459 /*
460 * This property is a set of 32-bit integers, each representing
461 * an index into the ibm,associativity nodes.
462 *
463 * With form 0 affinity the first integer is for an SMP configuration
464 * (should be all 0's) and the second is for a normal NUMA
465 * configuration. We have only one level of NUMA.
466 *
467 * With form 1 affinity the first integer is the most significant
468 * NUMA boundary and the following are progressively less significant
469 * boundaries. There can be more than one level of NUMA.
470 */
471 distance_ref_points = of_get_property(root,
472 "ibm,associativity-reference-points",
473 &distance_ref_points_depth);
474
475 if (!distance_ref_points) {
476 pr_debug("ibm,associativity-reference-points not found.\n");
477 goto err;
478 }
479
480 distance_ref_points_depth /= sizeof(int);
481 if (affinity_form == FORM0_AFFINITY) {
482 if (distance_ref_points_depth < 2) {
483 pr_warn("short ibm,associativity-reference-points\n");
484 goto err;
485 }
486
487 index = of_read_number(&distance_ref_points[1], 1);
488 } else {
489 /*
490 * Both FORM1 and FORM2 affinity find the primary domain details
491 * at the same offset.
492 */
493 index = of_read_number(distance_ref_points, 1);
494 }
495 /*
496 * Warn and cap if the hardware supports more than
497 * MAX_DISTANCE_REF_POINTS domains.
498 */
499 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
500 pr_warn("distance array capped at %d entries\n",
501 MAX_DISTANCE_REF_POINTS);
502 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
503 }
504
505 of_node_put(root);
506 return index;
507
508 err:
509 of_node_put(root);
510 return -1;
511 }
512
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)513 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
514 {
515 struct device_node *memory = NULL;
516
517 memory = of_find_node_by_type(memory, "memory");
518 if (!memory)
519 panic("numa.c: No memory nodes found!");
520
521 *n_addr_cells = of_n_addr_cells(memory);
522 *n_size_cells = of_n_size_cells(memory);
523 of_node_put(memory);
524 }
525
read_n_cells(int n,const __be32 ** buf)526 static unsigned long read_n_cells(int n, const __be32 **buf)
527 {
528 unsigned long result = 0;
529
530 while (n--) {
531 result = (result << 32) | of_read_number(*buf, 1);
532 (*buf)++;
533 }
534 return result;
535 }
536
537 struct assoc_arrays {
538 u32 n_arrays;
539 u32 array_sz;
540 const __be32 *arrays;
541 };
542
543 /*
544 * Retrieve and validate the list of associativity arrays for drconf
545 * memory from the ibm,associativity-lookup-arrays property of the
546 * device tree..
547 *
548 * The layout of the ibm,associativity-lookup-arrays property is a number N
549 * indicating the number of associativity arrays, followed by a number M
550 * indicating the size of each associativity array, followed by a list
551 * of N associativity arrays.
552 */
of_get_assoc_arrays(struct assoc_arrays * aa)553 static int of_get_assoc_arrays(struct assoc_arrays *aa)
554 {
555 struct device_node *memory;
556 const __be32 *prop;
557 u32 len;
558
559 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
560 if (!memory)
561 return -1;
562
563 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
564 if (!prop || len < 2 * sizeof(unsigned int)) {
565 of_node_put(memory);
566 return -1;
567 }
568
569 aa->n_arrays = of_read_number(prop++, 1);
570 aa->array_sz = of_read_number(prop++, 1);
571
572 of_node_put(memory);
573
574 /* Now that we know the number of arrays and size of each array,
575 * revalidate the size of the property read in.
576 */
577 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
578 return -1;
579
580 aa->arrays = prop;
581 return 0;
582 }
583
get_nid_and_numa_distance(struct drmem_lmb * lmb)584 static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
585 {
586 struct assoc_arrays aa = { .arrays = NULL };
587 int default_nid = NUMA_NO_NODE;
588 int nid = default_nid;
589 int rc, index;
590
591 if ((primary_domain_index < 0) || !numa_enabled)
592 return default_nid;
593
594 rc = of_get_assoc_arrays(&aa);
595 if (rc)
596 return default_nid;
597
598 if (primary_domain_index <= aa.array_sz &&
599 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
600 const __be32 *associativity;
601
602 index = lmb->aa_index * aa.array_sz;
603 associativity = &aa.arrays[index];
604 nid = __associativity_to_nid(associativity, aa.array_sz);
605 if (nid > 0 && affinity_form == FORM1_AFFINITY) {
606 /*
607 * lookup array associativity entries have
608 * no length of the array as the first element.
609 */
610 __initialize_form1_numa_distance(associativity, aa.array_sz);
611 }
612 }
613 return nid;
614 }
615
616 /*
617 * This is like of_node_to_nid_single() for memory represented in the
618 * ibm,dynamic-reconfiguration-memory node.
619 */
of_drconf_to_nid_single(struct drmem_lmb * lmb)620 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
621 {
622 struct assoc_arrays aa = { .arrays = NULL };
623 int default_nid = NUMA_NO_NODE;
624 int nid = default_nid;
625 int rc, index;
626
627 if ((primary_domain_index < 0) || !numa_enabled)
628 return default_nid;
629
630 rc = of_get_assoc_arrays(&aa);
631 if (rc)
632 return default_nid;
633
634 if (primary_domain_index <= aa.array_sz &&
635 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
636 const __be32 *associativity;
637
638 index = lmb->aa_index * aa.array_sz;
639 associativity = &aa.arrays[index];
640 nid = __associativity_to_nid(associativity, aa.array_sz);
641 }
642 return nid;
643 }
644
645 #ifdef CONFIG_PPC_SPLPAR
646
__vphn_get_associativity(long lcpu,__be32 * associativity)647 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
648 {
649 long rc, hwid;
650
651 /*
652 * On a shared lpar, device tree will not have node associativity.
653 * At this time lppaca, or its __old_status field may not be
654 * updated. Hence kernel cannot detect if its on a shared lpar. So
655 * request an explicit associativity irrespective of whether the
656 * lpar is shared or dedicated. Use the device tree property as a
657 * fallback. cpu_to_phys_id is only valid between
658 * smp_setup_cpu_maps() and smp_setup_pacas().
659 */
660 if (firmware_has_feature(FW_FEATURE_VPHN)) {
661 if (cpu_to_phys_id)
662 hwid = cpu_to_phys_id[lcpu];
663 else
664 hwid = get_hard_smp_processor_id(lcpu);
665
666 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
667 if (rc == H_SUCCESS)
668 return 0;
669 }
670
671 return -1;
672 }
673
vphn_get_nid(long lcpu)674 static int vphn_get_nid(long lcpu)
675 {
676 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
677
678
679 if (!__vphn_get_associativity(lcpu, associativity))
680 return associativity_to_nid(associativity);
681
682 return NUMA_NO_NODE;
683
684 }
685 #else
686
__vphn_get_associativity(long lcpu,__be32 * associativity)687 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
688 {
689 return -1;
690 }
691
vphn_get_nid(long unused)692 static int vphn_get_nid(long unused)
693 {
694 return NUMA_NO_NODE;
695 }
696 #endif /* CONFIG_PPC_SPLPAR */
697
698 /*
699 * Figure out to which domain a cpu belongs and stick it there.
700 * Return the id of the domain used.
701 */
numa_setup_cpu(unsigned long lcpu)702 static int numa_setup_cpu(unsigned long lcpu)
703 {
704 struct device_node *cpu;
705 int fcpu = cpu_first_thread_sibling(lcpu);
706 int nid = NUMA_NO_NODE;
707
708 if (!cpu_present(lcpu)) {
709 set_cpu_numa_node(lcpu, first_online_node);
710 return first_online_node;
711 }
712
713 /*
714 * If a valid cpu-to-node mapping is already available, use it
715 * directly instead of querying the firmware, since it represents
716 * the most recent mapping notified to us by the platform (eg: VPHN).
717 * Since cpu_to_node binding remains the same for all threads in the
718 * core. If a valid cpu-to-node mapping is already available, for
719 * the first thread in the core, use it.
720 */
721 nid = numa_cpu_lookup_table[fcpu];
722 if (nid >= 0) {
723 map_cpu_to_node(lcpu, nid);
724 return nid;
725 }
726
727 nid = vphn_get_nid(lcpu);
728 if (nid != NUMA_NO_NODE)
729 goto out_present;
730
731 cpu = of_get_cpu_node(lcpu, NULL);
732
733 if (!cpu) {
734 WARN_ON(1);
735 if (cpu_present(lcpu))
736 goto out_present;
737 else
738 goto out;
739 }
740
741 nid = of_node_to_nid_single(cpu);
742 of_node_put(cpu);
743
744 out_present:
745 if (nid < 0 || !node_possible(nid))
746 nid = first_online_node;
747
748 /*
749 * Update for the first thread of the core. All threads of a core
750 * have to be part of the same node. This not only avoids querying
751 * for every other thread in the core, but always avoids a case
752 * where virtual node associativity change causes subsequent threads
753 * of a core to be associated with different nid. However if first
754 * thread is already online, expect it to have a valid mapping.
755 */
756 if (fcpu != lcpu) {
757 WARN_ON(cpu_online(fcpu));
758 map_cpu_to_node(fcpu, nid);
759 }
760
761 map_cpu_to_node(lcpu, nid);
762 out:
763 return nid;
764 }
765
verify_cpu_node_mapping(int cpu,int node)766 static void verify_cpu_node_mapping(int cpu, int node)
767 {
768 int base, sibling, i;
769
770 /* Verify that all the threads in the core belong to the same node */
771 base = cpu_first_thread_sibling(cpu);
772
773 for (i = 0; i < threads_per_core; i++) {
774 sibling = base + i;
775
776 if (sibling == cpu || cpu_is_offline(sibling))
777 continue;
778
779 if (cpu_to_node(sibling) != node) {
780 WARN(1, "CPU thread siblings %d and %d don't belong"
781 " to the same node!\n", cpu, sibling);
782 break;
783 }
784 }
785 }
786
787 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)788 static int ppc_numa_cpu_prepare(unsigned int cpu)
789 {
790 int nid;
791
792 nid = numa_setup_cpu(cpu);
793 verify_cpu_node_mapping(cpu, nid);
794 return 0;
795 }
796
ppc_numa_cpu_dead(unsigned int cpu)797 static int ppc_numa_cpu_dead(unsigned int cpu)
798 {
799 return 0;
800 }
801
802 /*
803 * Check and possibly modify a memory region to enforce the memory limit.
804 *
805 * Returns the size the region should have to enforce the memory limit.
806 * This will either be the original value of size, a truncated value,
807 * or zero. If the returned value of size is 0 the region should be
808 * discarded as it lies wholly above the memory limit.
809 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)810 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
811 unsigned long size)
812 {
813 /*
814 * We use memblock_end_of_DRAM() in here instead of memory_limit because
815 * we've already adjusted it for the limit and it takes care of
816 * having memory holes below the limit. Also, in the case of
817 * iommu_is_off, memory_limit is not set but is implicitly enforced.
818 */
819
820 if (start + size <= memblock_end_of_DRAM())
821 return size;
822
823 if (start >= memblock_end_of_DRAM())
824 return 0;
825
826 return memblock_end_of_DRAM() - start;
827 }
828
829 /*
830 * Reads the counter for a given entry in
831 * linux,drconf-usable-memory property
832 */
read_usm_ranges(const __be32 ** usm)833 static inline int __init read_usm_ranges(const __be32 **usm)
834 {
835 /*
836 * For each lmb in ibm,dynamic-memory a corresponding
837 * entry in linux,drconf-usable-memory property contains
838 * a counter followed by that many (base, size) duple.
839 * read the counter from linux,drconf-usable-memory
840 */
841 return read_n_cells(n_mem_size_cells, usm);
842 }
843
844 /*
845 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
846 * node. This assumes n_mem_{addr,size}_cells have been set.
847 */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)848 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
849 const __be32 **usm,
850 void *data)
851 {
852 unsigned int ranges, is_kexec_kdump = 0;
853 unsigned long base, size, sz;
854 int nid;
855
856 /*
857 * Skip this block if the reserved bit is set in flags (0x80)
858 * or if the block is not assigned to this partition (0x8)
859 */
860 if ((lmb->flags & DRCONF_MEM_RESERVED)
861 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
862 return 0;
863
864 if (*usm)
865 is_kexec_kdump = 1;
866
867 base = lmb->base_addr;
868 size = drmem_lmb_size();
869 ranges = 1;
870
871 if (is_kexec_kdump) {
872 ranges = read_usm_ranges(usm);
873 if (!ranges) /* there are no (base, size) duple */
874 return 0;
875 }
876
877 do {
878 if (is_kexec_kdump) {
879 base = read_n_cells(n_mem_addr_cells, usm);
880 size = read_n_cells(n_mem_size_cells, usm);
881 }
882
883 nid = get_nid_and_numa_distance(lmb);
884 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
885 &nid);
886 node_set_online(nid);
887 sz = numa_enforce_memory_limit(base, size);
888 if (sz)
889 memblock_set_node(base, sz, &memblock.memory, nid);
890 } while (--ranges);
891
892 return 0;
893 }
894
parse_numa_properties(void)895 static int __init parse_numa_properties(void)
896 {
897 struct device_node *memory, *pci;
898 int default_nid = 0;
899 unsigned long i;
900 const __be32 *associativity;
901
902 if (numa_enabled == 0) {
903 pr_warn("disabled by user\n");
904 return -1;
905 }
906
907 primary_domain_index = find_primary_domain_index();
908
909 if (primary_domain_index < 0) {
910 /*
911 * if we fail to parse primary_domain_index from device tree
912 * mark the numa disabled, boot with numa disabled.
913 */
914 numa_enabled = false;
915 return primary_domain_index;
916 }
917
918 pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
919
920 /*
921 * If it is FORM2 initialize the distance table here.
922 */
923 if (affinity_form == FORM2_AFFINITY)
924 initialize_form2_numa_distance_lookup_table();
925
926 /*
927 * Even though we connect cpus to numa domains later in SMP
928 * init, we need to know the node ids now. This is because
929 * each node to be onlined must have NODE_DATA etc backing it.
930 */
931 for_each_present_cpu(i) {
932 __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
933 struct device_node *cpu;
934 int nid = NUMA_NO_NODE;
935
936 memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
937
938 if (__vphn_get_associativity(i, vphn_assoc) == 0) {
939 nid = associativity_to_nid(vphn_assoc);
940 initialize_form1_numa_distance(vphn_assoc);
941 } else {
942
943 /*
944 * Don't fall back to default_nid yet -- we will plug
945 * cpus into nodes once the memory scan has discovered
946 * the topology.
947 */
948 cpu = of_get_cpu_node(i, NULL);
949 BUG_ON(!cpu);
950
951 associativity = of_get_associativity(cpu);
952 if (associativity) {
953 nid = associativity_to_nid(associativity);
954 initialize_form1_numa_distance(associativity);
955 }
956 of_node_put(cpu);
957 }
958
959 /* node_set_online() is an UB if 'nid' is negative */
960 if (likely(nid >= 0))
961 node_set_online(nid);
962 }
963
964 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
965
966 for_each_node_by_type(memory, "memory") {
967 unsigned long start;
968 unsigned long size;
969 int nid;
970 int ranges;
971 const __be32 *memcell_buf;
972 unsigned int len;
973
974 memcell_buf = of_get_property(memory,
975 "linux,usable-memory", &len);
976 if (!memcell_buf || len <= 0)
977 memcell_buf = of_get_property(memory, "reg", &len);
978 if (!memcell_buf || len <= 0)
979 continue;
980
981 /* ranges in cell */
982 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
983 new_range:
984 /* these are order-sensitive, and modify the buffer pointer */
985 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
986 size = read_n_cells(n_mem_size_cells, &memcell_buf);
987
988 /*
989 * Assumption: either all memory nodes or none will
990 * have associativity properties. If none, then
991 * everything goes to default_nid.
992 */
993 associativity = of_get_associativity(memory);
994 if (associativity) {
995 nid = associativity_to_nid(associativity);
996 initialize_form1_numa_distance(associativity);
997 } else
998 nid = default_nid;
999
1000 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1001 node_set_online(nid);
1002
1003 size = numa_enforce_memory_limit(start, size);
1004 if (size)
1005 memblock_set_node(start, size, &memblock.memory, nid);
1006
1007 if (--ranges)
1008 goto new_range;
1009 }
1010
1011 for_each_node_by_name(pci, "pci") {
1012 int nid = NUMA_NO_NODE;
1013
1014 associativity = of_get_associativity(pci);
1015 if (associativity) {
1016 nid = associativity_to_nid(associativity);
1017 initialize_form1_numa_distance(associativity);
1018 }
1019 if (likely(nid >= 0) && !node_online(nid))
1020 node_set_online(nid);
1021 }
1022
1023 /*
1024 * Now do the same thing for each MEMBLOCK listed in the
1025 * ibm,dynamic-memory property in the
1026 * ibm,dynamic-reconfiguration-memory node.
1027 */
1028 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1029 if (memory) {
1030 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1031 of_node_put(memory);
1032 }
1033
1034 return 0;
1035 }
1036
setup_nonnuma(void)1037 static void __init setup_nonnuma(void)
1038 {
1039 unsigned long top_of_ram = memblock_end_of_DRAM();
1040 unsigned long total_ram = memblock_phys_mem_size();
1041 unsigned long start_pfn, end_pfn;
1042 unsigned int nid = 0;
1043 int i;
1044
1045 pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1046 pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1047
1048 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1049 fake_numa_create_new_node(end_pfn, &nid);
1050 memblock_set_node(PFN_PHYS(start_pfn),
1051 PFN_PHYS(end_pfn - start_pfn),
1052 &memblock.memory, nid);
1053 node_set_online(nid);
1054 }
1055 }
1056
dump_numa_cpu_topology(void)1057 void __init dump_numa_cpu_topology(void)
1058 {
1059 unsigned int node;
1060 unsigned int cpu, count;
1061
1062 if (!numa_enabled)
1063 return;
1064
1065 for_each_online_node(node) {
1066 pr_info("Node %d CPUs:", node);
1067
1068 count = 0;
1069 /*
1070 * If we used a CPU iterator here we would miss printing
1071 * the holes in the cpumap.
1072 */
1073 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1074 if (cpumask_test_cpu(cpu,
1075 node_to_cpumask_map[node])) {
1076 if (count == 0)
1077 pr_cont(" %u", cpu);
1078 ++count;
1079 } else {
1080 if (count > 1)
1081 pr_cont("-%u", cpu - 1);
1082 count = 0;
1083 }
1084 }
1085
1086 if (count > 1)
1087 pr_cont("-%u", nr_cpu_ids - 1);
1088 pr_cont("\n");
1089 }
1090 }
1091
1092 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)1093 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1094 {
1095 u64 spanned_pages = end_pfn - start_pfn;
1096
1097 alloc_node_data(nid);
1098
1099 NODE_DATA(nid)->node_id = nid;
1100 NODE_DATA(nid)->node_start_pfn = start_pfn;
1101 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1102 }
1103
find_possible_nodes(void)1104 static void __init find_possible_nodes(void)
1105 {
1106 struct device_node *rtas, *root;
1107 const __be32 *domains = NULL;
1108 int prop_length, max_nodes;
1109 u32 i;
1110
1111 if (!numa_enabled)
1112 return;
1113
1114 rtas = of_find_node_by_path("/rtas");
1115 if (!rtas)
1116 return;
1117
1118 /*
1119 * ibm,current-associativity-domains is a fairly recent property. If
1120 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1121 * Current denotes what the platform can support compared to max
1122 * which denotes what the Hypervisor can support.
1123 *
1124 * If the LPAR is migratable, new nodes might be activated after a LPM,
1125 * so we should consider the max number in that case.
1126 */
1127 root = of_find_node_by_path("/");
1128 if (!of_get_property(root, "ibm,migratable-partition", NULL))
1129 domains = of_get_property(rtas,
1130 "ibm,current-associativity-domains",
1131 &prop_length);
1132 of_node_put(root);
1133 if (!domains) {
1134 domains = of_get_property(rtas, "ibm,max-associativity-domains",
1135 &prop_length);
1136 if (!domains)
1137 goto out;
1138 }
1139
1140 max_nodes = of_read_number(&domains[primary_domain_index], 1);
1141 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1142
1143 for (i = 0; i < max_nodes; i++) {
1144 if (!node_possible(i))
1145 node_set(i, node_possible_map);
1146 }
1147
1148 prop_length /= sizeof(int);
1149 if (prop_length > primary_domain_index + 2)
1150 coregroup_enabled = 1;
1151
1152 out:
1153 of_node_put(rtas);
1154 }
1155
mem_topology_setup(void)1156 void __init mem_topology_setup(void)
1157 {
1158 int cpu;
1159
1160 max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1161 min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1162
1163 /*
1164 * Linux/mm assumes node 0 to be online at boot. However this is not
1165 * true on PowerPC, where node 0 is similar to any other node, it
1166 * could be cpuless, memoryless node. So force node 0 to be offline
1167 * for now. This will prevent cpuless, memoryless node 0 showing up
1168 * unnecessarily as online. If a node has cpus or memory that need
1169 * to be online, then node will anyway be marked online.
1170 */
1171 node_set_offline(0);
1172
1173 if (parse_numa_properties())
1174 setup_nonnuma();
1175
1176 /*
1177 * Modify the set of possible NUMA nodes to reflect information
1178 * available about the set of online nodes, and the set of nodes
1179 * that we expect to make use of for this platform's affinity
1180 * calculations.
1181 */
1182 nodes_and(node_possible_map, node_possible_map, node_online_map);
1183
1184 find_possible_nodes();
1185
1186 setup_node_to_cpumask_map();
1187
1188 reset_numa_cpu_lookup_table();
1189
1190 for_each_possible_cpu(cpu) {
1191 /*
1192 * Powerpc with CONFIG_NUMA always used to have a node 0,
1193 * even if it was memoryless or cpuless. For all cpus that
1194 * are possible but not present, cpu_to_node() would point
1195 * to node 0. To remove a cpuless, memoryless dummy node,
1196 * powerpc need to make sure all possible but not present
1197 * cpu_to_node are set to a proper node.
1198 */
1199 numa_setup_cpu(cpu);
1200 }
1201 }
1202
initmem_init(void)1203 void __init initmem_init(void)
1204 {
1205 int nid;
1206
1207 memblock_dump_all();
1208
1209 for_each_online_node(nid) {
1210 unsigned long start_pfn, end_pfn;
1211
1212 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1213 setup_node_data(nid, start_pfn, end_pfn);
1214 }
1215
1216 sparse_init();
1217
1218 /*
1219 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1220 * even before we online them, so that we can use cpu_to_{node,mem}
1221 * early in boot, cf. smp_prepare_cpus().
1222 * _nocalls() + manual invocation is used because cpuhp is not yet
1223 * initialized for the boot CPU.
1224 */
1225 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1226 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1227 }
1228
early_numa(char * p)1229 static int __init early_numa(char *p)
1230 {
1231 if (!p)
1232 return 0;
1233
1234 if (strstr(p, "off"))
1235 numa_enabled = 0;
1236
1237 p = strstr(p, "fake=");
1238 if (p)
1239 cmdline = p + strlen("fake=");
1240
1241 return 0;
1242 }
1243 early_param("numa", early_numa);
1244
1245 #ifdef CONFIG_MEMORY_HOTPLUG
1246 /*
1247 * Find the node associated with a hot added memory section for
1248 * memory represented in the device tree by the property
1249 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1250 */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1251 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1252 {
1253 struct drmem_lmb *lmb;
1254 unsigned long lmb_size;
1255 int nid = NUMA_NO_NODE;
1256
1257 lmb_size = drmem_lmb_size();
1258
1259 for_each_drmem_lmb(lmb) {
1260 /* skip this block if it is reserved or not assigned to
1261 * this partition */
1262 if ((lmb->flags & DRCONF_MEM_RESERVED)
1263 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1264 continue;
1265
1266 if ((scn_addr < lmb->base_addr)
1267 || (scn_addr >= (lmb->base_addr + lmb_size)))
1268 continue;
1269
1270 nid = of_drconf_to_nid_single(lmb);
1271 break;
1272 }
1273
1274 return nid;
1275 }
1276
1277 /*
1278 * Find the node associated with a hot added memory section for memory
1279 * represented in the device tree as a node (i.e. memory@XXXX) for
1280 * each memblock.
1281 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1282 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1283 {
1284 struct device_node *memory;
1285 int nid = NUMA_NO_NODE;
1286
1287 for_each_node_by_type(memory, "memory") {
1288 int i = 0;
1289
1290 while (1) {
1291 struct resource res;
1292
1293 if (of_address_to_resource(memory, i++, &res))
1294 break;
1295
1296 if ((scn_addr < res.start) || (scn_addr > res.end))
1297 continue;
1298
1299 nid = of_node_to_nid_single(memory);
1300 break;
1301 }
1302
1303 if (nid >= 0)
1304 break;
1305 }
1306
1307 of_node_put(memory);
1308
1309 return nid;
1310 }
1311
1312 /*
1313 * Find the node associated with a hot added memory section. Section
1314 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1315 * sections are fully contained within a single MEMBLOCK.
1316 */
hot_add_scn_to_nid(unsigned long scn_addr)1317 int hot_add_scn_to_nid(unsigned long scn_addr)
1318 {
1319 struct device_node *memory = NULL;
1320 int nid;
1321
1322 if (!numa_enabled)
1323 return first_online_node;
1324
1325 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1326 if (memory) {
1327 nid = hot_add_drconf_scn_to_nid(scn_addr);
1328 of_node_put(memory);
1329 } else {
1330 nid = hot_add_node_scn_to_nid(scn_addr);
1331 }
1332
1333 if (nid < 0 || !node_possible(nid))
1334 nid = first_online_node;
1335
1336 return nid;
1337 }
1338
hot_add_drconf_memory_max(void)1339 static u64 hot_add_drconf_memory_max(void)
1340 {
1341 struct device_node *memory = NULL;
1342 struct device_node *dn = NULL;
1343 const __be64 *lrdr = NULL;
1344
1345 dn = of_find_node_by_path("/rtas");
1346 if (dn) {
1347 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1348 of_node_put(dn);
1349 if (lrdr)
1350 return be64_to_cpup(lrdr);
1351 }
1352
1353 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1354 if (memory) {
1355 of_node_put(memory);
1356 return drmem_lmb_memory_max();
1357 }
1358 return 0;
1359 }
1360
1361 /*
1362 * memory_hotplug_max - return max address of memory that may be added
1363 *
1364 * This is currently only used on systems that support drconfig memory
1365 * hotplug.
1366 */
memory_hotplug_max(void)1367 u64 memory_hotplug_max(void)
1368 {
1369 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1370 }
1371 #endif /* CONFIG_MEMORY_HOTPLUG */
1372
1373 /* Virtual Processor Home Node (VPHN) support */
1374 #ifdef CONFIG_PPC_SPLPAR
1375 static int topology_inited;
1376
1377 /*
1378 * Retrieve the new associativity information for a virtual processor's
1379 * home node.
1380 */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1381 static long vphn_get_associativity(unsigned long cpu,
1382 __be32 *associativity)
1383 {
1384 long rc;
1385
1386 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1387 VPHN_FLAG_VCPU, associativity);
1388
1389 switch (rc) {
1390 case H_SUCCESS:
1391 pr_debug("VPHN hcall succeeded. Reset polling...\n");
1392 goto out;
1393
1394 case H_FUNCTION:
1395 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1396 break;
1397 case H_HARDWARE:
1398 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1399 "preventing VPHN. Disabling polling...\n");
1400 break;
1401 case H_PARAMETER:
1402 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1403 "Disabling polling...\n");
1404 break;
1405 default:
1406 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1407 , rc);
1408 break;
1409 }
1410 out:
1411 return rc;
1412 }
1413
find_and_update_cpu_nid(int cpu)1414 void find_and_update_cpu_nid(int cpu)
1415 {
1416 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1417 int new_nid;
1418
1419 /* Use associativity from first thread for all siblings */
1420 if (vphn_get_associativity(cpu, associativity))
1421 return;
1422
1423 /* Do not have previous associativity, so find it now. */
1424 new_nid = associativity_to_nid(associativity);
1425
1426 if (new_nid < 0 || !node_possible(new_nid))
1427 new_nid = first_online_node;
1428 else
1429 // Associate node <-> cpu, so cpu_up() calls
1430 // try_online_node() on the right node.
1431 set_cpu_numa_node(cpu, new_nid);
1432
1433 pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1434 }
1435
cpu_to_coregroup_id(int cpu)1436 int cpu_to_coregroup_id(int cpu)
1437 {
1438 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1439 int index;
1440
1441 if (cpu < 0 || cpu > nr_cpu_ids)
1442 return -1;
1443
1444 if (!coregroup_enabled)
1445 goto out;
1446
1447 if (!firmware_has_feature(FW_FEATURE_VPHN))
1448 goto out;
1449
1450 if (vphn_get_associativity(cpu, associativity))
1451 goto out;
1452
1453 index = of_read_number(associativity, 1);
1454 if (index > primary_domain_index + 1)
1455 return of_read_number(&associativity[index - 1], 1);
1456
1457 out:
1458 return cpu_to_core_id(cpu);
1459 }
1460
topology_update_init(void)1461 static int topology_update_init(void)
1462 {
1463 topology_inited = 1;
1464 return 0;
1465 }
1466 device_initcall(topology_update_init);
1467 #endif /* CONFIG_PPC_SPLPAR */
1468