1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/export.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <asm/sparsemem.h> 26 #include <asm/prom.h> 27 #include <asm/smp.h> 28 #include <asm/firmware.h> 29 #include <asm/paca.h> 30 #include <asm/hvcall.h> 31 #include <asm/setup.h> 32 33 static int numa_enabled = 1; 34 35 static char *cmdline __initdata; 36 37 static int numa_debug; 38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 39 40 int numa_cpu_lookup_table[NR_CPUS]; 41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 42 struct pglist_data *node_data[MAX_NUMNODES]; 43 44 EXPORT_SYMBOL(numa_cpu_lookup_table); 45 EXPORT_SYMBOL(node_to_cpumask_map); 46 EXPORT_SYMBOL(node_data); 47 48 static int min_common_depth; 49 static int n_mem_addr_cells, n_mem_size_cells; 50 static int form1_affinity; 51 52 #define MAX_DISTANCE_REF_POINTS 4 53 static int distance_ref_points_depth; 54 static const unsigned int *distance_ref_points; 55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 56 57 /* 58 * Allocate node_to_cpumask_map based on number of available nodes 59 * Requires node_possible_map to be valid. 60 * 61 * Note: cpumask_of_node() is not valid until after this is done. 62 */ 63 static void __init setup_node_to_cpumask_map(void) 64 { 65 unsigned int node, num = 0; 66 67 /* setup nr_node_ids if not done yet */ 68 if (nr_node_ids == MAX_NUMNODES) { 69 for_each_node_mask(node, node_possible_map) 70 num = node; 71 nr_node_ids = num + 1; 72 } 73 74 /* allocate the map */ 75 for (node = 0; node < nr_node_ids; node++) 76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 77 78 /* cpumask_of_node() will now work */ 79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 80 } 81 82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, 83 unsigned int *nid) 84 { 85 unsigned long long mem; 86 char *p = cmdline; 87 static unsigned int fake_nid; 88 static unsigned long long curr_boundary; 89 90 /* 91 * Modify node id, iff we started creating NUMA nodes 92 * We want to continue from where we left of the last time 93 */ 94 if (fake_nid) 95 *nid = fake_nid; 96 /* 97 * In case there are no more arguments to parse, the 98 * node_id should be the same as the last fake node id 99 * (we've handled this above). 100 */ 101 if (!p) 102 return 0; 103 104 mem = memparse(p, &p); 105 if (!mem) 106 return 0; 107 108 if (mem < curr_boundary) 109 return 0; 110 111 curr_boundary = mem; 112 113 if ((end_pfn << PAGE_SHIFT) > mem) { 114 /* 115 * Skip commas and spaces 116 */ 117 while (*p == ',' || *p == ' ' || *p == '\t') 118 p++; 119 120 cmdline = p; 121 fake_nid++; 122 *nid = fake_nid; 123 dbg("created new fake_node with id %d\n", fake_nid); 124 return 1; 125 } 126 return 0; 127 } 128 129 /* 130 * get_node_active_region - Return active region containing pfn 131 * Active range returned is empty if none found. 132 * @pfn: The page to return the region for 133 * @node_ar: Returned set to the active region containing @pfn 134 */ 135 static void __init get_node_active_region(unsigned long pfn, 136 struct node_active_region *node_ar) 137 { 138 unsigned long start_pfn, end_pfn; 139 int i, nid; 140 141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 142 if (pfn >= start_pfn && pfn < end_pfn) { 143 node_ar->nid = nid; 144 node_ar->start_pfn = start_pfn; 145 node_ar->end_pfn = end_pfn; 146 break; 147 } 148 } 149 } 150 151 static void map_cpu_to_node(int cpu, int node) 152 { 153 numa_cpu_lookup_table[cpu] = node; 154 155 dbg("adding cpu %d to node %d\n", cpu, node); 156 157 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 158 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 159 } 160 161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 162 static void unmap_cpu_from_node(unsigned long cpu) 163 { 164 int node = numa_cpu_lookup_table[cpu]; 165 166 dbg("removing cpu %lu from node %d\n", cpu, node); 167 168 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 169 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 170 } else { 171 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 172 cpu, node); 173 } 174 } 175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 176 177 /* must hold reference to node during call */ 178 static const int *of_get_associativity(struct device_node *dev) 179 { 180 return of_get_property(dev, "ibm,associativity", NULL); 181 } 182 183 /* 184 * Returns the property linux,drconf-usable-memory if 185 * it exists (the property exists only in kexec/kdump kernels, 186 * added by kexec-tools) 187 */ 188 static const u32 *of_get_usable_memory(struct device_node *memory) 189 { 190 const u32 *prop; 191 u32 len; 192 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 193 if (!prop || len < sizeof(unsigned int)) 194 return 0; 195 return prop; 196 } 197 198 int __node_distance(int a, int b) 199 { 200 int i; 201 int distance = LOCAL_DISTANCE; 202 203 if (!form1_affinity) 204 return distance; 205 206 for (i = 0; i < distance_ref_points_depth; i++) { 207 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 208 break; 209 210 /* Double the distance for each NUMA level */ 211 distance *= 2; 212 } 213 214 return distance; 215 } 216 217 static void initialize_distance_lookup_table(int nid, 218 const unsigned int *associativity) 219 { 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 distance_lookup_table[nid][i] = 227 associativity[distance_ref_points[i]]; 228 } 229 } 230 231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 232 * info is found. 233 */ 234 static int associativity_to_nid(const unsigned int *associativity) 235 { 236 int nid = -1; 237 238 if (min_common_depth == -1) 239 goto out; 240 241 if (associativity[0] >= min_common_depth) 242 nid = associativity[min_common_depth]; 243 244 /* POWER4 LPAR uses 0xffff as invalid node */ 245 if (nid == 0xffff || nid >= MAX_NUMNODES) 246 nid = -1; 247 248 if (nid > 0 && associativity[0] >= distance_ref_points_depth) 249 initialize_distance_lookup_table(nid, associativity); 250 251 out: 252 return nid; 253 } 254 255 /* Returns the nid associated with the given device tree node, 256 * or -1 if not found. 257 */ 258 static int of_node_to_nid_single(struct device_node *device) 259 { 260 int nid = -1; 261 const unsigned int *tmp; 262 263 tmp = of_get_associativity(device); 264 if (tmp) 265 nid = associativity_to_nid(tmp); 266 return nid; 267 } 268 269 /* Walk the device tree upwards, looking for an associativity id */ 270 int of_node_to_nid(struct device_node *device) 271 { 272 struct device_node *tmp; 273 int nid = -1; 274 275 of_node_get(device); 276 while (device) { 277 nid = of_node_to_nid_single(device); 278 if (nid != -1) 279 break; 280 281 tmp = device; 282 device = of_get_parent(tmp); 283 of_node_put(tmp); 284 } 285 of_node_put(device); 286 287 return nid; 288 } 289 EXPORT_SYMBOL_GPL(of_node_to_nid); 290 291 static int __init find_min_common_depth(void) 292 { 293 int depth; 294 struct device_node *chosen; 295 struct device_node *root; 296 const char *vec5; 297 298 if (firmware_has_feature(FW_FEATURE_OPAL)) 299 root = of_find_node_by_path("/ibm,opal"); 300 else 301 root = of_find_node_by_path("/rtas"); 302 if (!root) 303 root = of_find_node_by_path("/"); 304 305 /* 306 * This property is a set of 32-bit integers, each representing 307 * an index into the ibm,associativity nodes. 308 * 309 * With form 0 affinity the first integer is for an SMP configuration 310 * (should be all 0's) and the second is for a normal NUMA 311 * configuration. We have only one level of NUMA. 312 * 313 * With form 1 affinity the first integer is the most significant 314 * NUMA boundary and the following are progressively less significant 315 * boundaries. There can be more than one level of NUMA. 316 */ 317 distance_ref_points = of_get_property(root, 318 "ibm,associativity-reference-points", 319 &distance_ref_points_depth); 320 321 if (!distance_ref_points) { 322 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 323 goto err; 324 } 325 326 distance_ref_points_depth /= sizeof(int); 327 328 #define VEC5_AFFINITY_BYTE 5 329 #define VEC5_AFFINITY 0x80 330 331 if (firmware_has_feature(FW_FEATURE_OPAL)) 332 form1_affinity = 1; 333 else { 334 chosen = of_find_node_by_path("/chosen"); 335 if (chosen) { 336 vec5 = of_get_property(chosen, 337 "ibm,architecture-vec-5", NULL); 338 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & 339 VEC5_AFFINITY)) { 340 dbg("Using form 1 affinity\n"); 341 form1_affinity = 1; 342 } 343 344 of_node_put(chosen); 345 } 346 } 347 348 if (form1_affinity) { 349 depth = distance_ref_points[0]; 350 } else { 351 if (distance_ref_points_depth < 2) { 352 printk(KERN_WARNING "NUMA: " 353 "short ibm,associativity-reference-points\n"); 354 goto err; 355 } 356 357 depth = distance_ref_points[1]; 358 } 359 360 /* 361 * Warn and cap if the hardware supports more than 362 * MAX_DISTANCE_REF_POINTS domains. 363 */ 364 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 365 printk(KERN_WARNING "NUMA: distance array capped at " 366 "%d entries\n", MAX_DISTANCE_REF_POINTS); 367 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 368 } 369 370 of_node_put(root); 371 return depth; 372 373 err: 374 of_node_put(root); 375 return -1; 376 } 377 378 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 379 { 380 struct device_node *memory = NULL; 381 382 memory = of_find_node_by_type(memory, "memory"); 383 if (!memory) 384 panic("numa.c: No memory nodes found!"); 385 386 *n_addr_cells = of_n_addr_cells(memory); 387 *n_size_cells = of_n_size_cells(memory); 388 of_node_put(memory); 389 } 390 391 static unsigned long read_n_cells(int n, const unsigned int **buf) 392 { 393 unsigned long result = 0; 394 395 while (n--) { 396 result = (result << 32) | **buf; 397 (*buf)++; 398 } 399 return result; 400 } 401 402 struct of_drconf_cell { 403 u64 base_addr; 404 u32 drc_index; 405 u32 reserved; 406 u32 aa_index; 407 u32 flags; 408 }; 409 410 #define DRCONF_MEM_ASSIGNED 0x00000008 411 #define DRCONF_MEM_AI_INVALID 0x00000040 412 #define DRCONF_MEM_RESERVED 0x00000080 413 414 /* 415 * Read the next memblock list entry from the ibm,dynamic-memory property 416 * and return the information in the provided of_drconf_cell structure. 417 */ 418 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 419 { 420 const u32 *cp; 421 422 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 423 424 cp = *cellp; 425 drmem->drc_index = cp[0]; 426 drmem->reserved = cp[1]; 427 drmem->aa_index = cp[2]; 428 drmem->flags = cp[3]; 429 430 *cellp = cp + 4; 431 } 432 433 /* 434 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 435 * 436 * The layout of the ibm,dynamic-memory property is a number N of memblock 437 * list entries followed by N memblock list entries. Each memblock list entry 438 * contains information as laid out in the of_drconf_cell struct above. 439 */ 440 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 441 { 442 const u32 *prop; 443 u32 len, entries; 444 445 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 446 if (!prop || len < sizeof(unsigned int)) 447 return 0; 448 449 entries = *prop++; 450 451 /* Now that we know the number of entries, revalidate the size 452 * of the property read in to ensure we have everything 453 */ 454 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 455 return 0; 456 457 *dm = prop; 458 return entries; 459 } 460 461 /* 462 * Retrieve and validate the ibm,lmb-size property for drconf memory 463 * from the device tree. 464 */ 465 static u64 of_get_lmb_size(struct device_node *memory) 466 { 467 const u32 *prop; 468 u32 len; 469 470 prop = of_get_property(memory, "ibm,lmb-size", &len); 471 if (!prop || len < sizeof(unsigned int)) 472 return 0; 473 474 return read_n_cells(n_mem_size_cells, &prop); 475 } 476 477 struct assoc_arrays { 478 u32 n_arrays; 479 u32 array_sz; 480 const u32 *arrays; 481 }; 482 483 /* 484 * Retrieve and validate the list of associativity arrays for drconf 485 * memory from the ibm,associativity-lookup-arrays property of the 486 * device tree.. 487 * 488 * The layout of the ibm,associativity-lookup-arrays property is a number N 489 * indicating the number of associativity arrays, followed by a number M 490 * indicating the size of each associativity array, followed by a list 491 * of N associativity arrays. 492 */ 493 static int of_get_assoc_arrays(struct device_node *memory, 494 struct assoc_arrays *aa) 495 { 496 const u32 *prop; 497 u32 len; 498 499 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 500 if (!prop || len < 2 * sizeof(unsigned int)) 501 return -1; 502 503 aa->n_arrays = *prop++; 504 aa->array_sz = *prop++; 505 506 /* Now that we know the number of arrays and size of each array, 507 * revalidate the size of the property read in. 508 */ 509 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 510 return -1; 511 512 aa->arrays = prop; 513 return 0; 514 } 515 516 /* 517 * This is like of_node_to_nid_single() for memory represented in the 518 * ibm,dynamic-reconfiguration-memory node. 519 */ 520 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 521 struct assoc_arrays *aa) 522 { 523 int default_nid = 0; 524 int nid = default_nid; 525 int index; 526 527 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 528 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 529 drmem->aa_index < aa->n_arrays) { 530 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 531 nid = aa->arrays[index]; 532 533 if (nid == 0xffff || nid >= MAX_NUMNODES) 534 nid = default_nid; 535 } 536 537 return nid; 538 } 539 540 /* 541 * Figure out to which domain a cpu belongs and stick it there. 542 * Return the id of the domain used. 543 */ 544 static int __cpuinit numa_setup_cpu(unsigned long lcpu) 545 { 546 int nid = 0; 547 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 548 549 if (!cpu) { 550 WARN_ON(1); 551 goto out; 552 } 553 554 nid = of_node_to_nid_single(cpu); 555 556 if (nid < 0 || !node_online(nid)) 557 nid = first_online_node; 558 out: 559 map_cpu_to_node(lcpu, nid); 560 561 of_node_put(cpu); 562 563 return nid; 564 } 565 566 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, 567 unsigned long action, 568 void *hcpu) 569 { 570 unsigned long lcpu = (unsigned long)hcpu; 571 int ret = NOTIFY_DONE; 572 573 switch (action) { 574 case CPU_UP_PREPARE: 575 case CPU_UP_PREPARE_FROZEN: 576 numa_setup_cpu(lcpu); 577 ret = NOTIFY_OK; 578 break; 579 #ifdef CONFIG_HOTPLUG_CPU 580 case CPU_DEAD: 581 case CPU_DEAD_FROZEN: 582 case CPU_UP_CANCELED: 583 case CPU_UP_CANCELED_FROZEN: 584 unmap_cpu_from_node(lcpu); 585 break; 586 ret = NOTIFY_OK; 587 #endif 588 } 589 return ret; 590 } 591 592 /* 593 * Check and possibly modify a memory region to enforce the memory limit. 594 * 595 * Returns the size the region should have to enforce the memory limit. 596 * This will either be the original value of size, a truncated value, 597 * or zero. If the returned value of size is 0 the region should be 598 * discarded as it lies wholly above the memory limit. 599 */ 600 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 601 unsigned long size) 602 { 603 /* 604 * We use memblock_end_of_DRAM() in here instead of memory_limit because 605 * we've already adjusted it for the limit and it takes care of 606 * having memory holes below the limit. Also, in the case of 607 * iommu_is_off, memory_limit is not set but is implicitly enforced. 608 */ 609 610 if (start + size <= memblock_end_of_DRAM()) 611 return size; 612 613 if (start >= memblock_end_of_DRAM()) 614 return 0; 615 616 return memblock_end_of_DRAM() - start; 617 } 618 619 /* 620 * Reads the counter for a given entry in 621 * linux,drconf-usable-memory property 622 */ 623 static inline int __init read_usm_ranges(const u32 **usm) 624 { 625 /* 626 * For each lmb in ibm,dynamic-memory a corresponding 627 * entry in linux,drconf-usable-memory property contains 628 * a counter followed by that many (base, size) duple. 629 * read the counter from linux,drconf-usable-memory 630 */ 631 return read_n_cells(n_mem_size_cells, usm); 632 } 633 634 /* 635 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 636 * node. This assumes n_mem_{addr,size}_cells have been set. 637 */ 638 static void __init parse_drconf_memory(struct device_node *memory) 639 { 640 const u32 *uninitialized_var(dm), *usm; 641 unsigned int n, rc, ranges, is_kexec_kdump = 0; 642 unsigned long lmb_size, base, size, sz; 643 int nid; 644 struct assoc_arrays aa = { .arrays = NULL }; 645 646 n = of_get_drconf_memory(memory, &dm); 647 if (!n) 648 return; 649 650 lmb_size = of_get_lmb_size(memory); 651 if (!lmb_size) 652 return; 653 654 rc = of_get_assoc_arrays(memory, &aa); 655 if (rc) 656 return; 657 658 /* check if this is a kexec/kdump kernel */ 659 usm = of_get_usable_memory(memory); 660 if (usm != NULL) 661 is_kexec_kdump = 1; 662 663 for (; n != 0; --n) { 664 struct of_drconf_cell drmem; 665 666 read_drconf_cell(&drmem, &dm); 667 668 /* skip this block if the reserved bit is set in flags (0x80) 669 or if the block is not assigned to this partition (0x8) */ 670 if ((drmem.flags & DRCONF_MEM_RESERVED) 671 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 672 continue; 673 674 base = drmem.base_addr; 675 size = lmb_size; 676 ranges = 1; 677 678 if (is_kexec_kdump) { 679 ranges = read_usm_ranges(&usm); 680 if (!ranges) /* there are no (base, size) duple */ 681 continue; 682 } 683 do { 684 if (is_kexec_kdump) { 685 base = read_n_cells(n_mem_addr_cells, &usm); 686 size = read_n_cells(n_mem_size_cells, &usm); 687 } 688 nid = of_drconf_to_nid_single(&drmem, &aa); 689 fake_numa_create_new_node( 690 ((base + size) >> PAGE_SHIFT), 691 &nid); 692 node_set_online(nid); 693 sz = numa_enforce_memory_limit(base, size); 694 if (sz) 695 memblock_set_node(base, sz, nid); 696 } while (--ranges); 697 } 698 } 699 700 static int __init parse_numa_properties(void) 701 { 702 struct device_node *memory; 703 int default_nid = 0; 704 unsigned long i; 705 706 if (numa_enabled == 0) { 707 printk(KERN_WARNING "NUMA disabled by user\n"); 708 return -1; 709 } 710 711 min_common_depth = find_min_common_depth(); 712 713 if (min_common_depth < 0) 714 return min_common_depth; 715 716 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 717 718 /* 719 * Even though we connect cpus to numa domains later in SMP 720 * init, we need to know the node ids now. This is because 721 * each node to be onlined must have NODE_DATA etc backing it. 722 */ 723 for_each_present_cpu(i) { 724 struct device_node *cpu; 725 int nid; 726 727 cpu = of_get_cpu_node(i, NULL); 728 BUG_ON(!cpu); 729 nid = of_node_to_nid_single(cpu); 730 of_node_put(cpu); 731 732 /* 733 * Don't fall back to default_nid yet -- we will plug 734 * cpus into nodes once the memory scan has discovered 735 * the topology. 736 */ 737 if (nid < 0) 738 continue; 739 node_set_online(nid); 740 } 741 742 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 743 744 for_each_node_by_type(memory, "memory") { 745 unsigned long start; 746 unsigned long size; 747 int nid; 748 int ranges; 749 const unsigned int *memcell_buf; 750 unsigned int len; 751 752 memcell_buf = of_get_property(memory, 753 "linux,usable-memory", &len); 754 if (!memcell_buf || len <= 0) 755 memcell_buf = of_get_property(memory, "reg", &len); 756 if (!memcell_buf || len <= 0) 757 continue; 758 759 /* ranges in cell */ 760 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 761 new_range: 762 /* these are order-sensitive, and modify the buffer pointer */ 763 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 764 size = read_n_cells(n_mem_size_cells, &memcell_buf); 765 766 /* 767 * Assumption: either all memory nodes or none will 768 * have associativity properties. If none, then 769 * everything goes to default_nid. 770 */ 771 nid = of_node_to_nid_single(memory); 772 if (nid < 0) 773 nid = default_nid; 774 775 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 776 node_set_online(nid); 777 778 if (!(size = numa_enforce_memory_limit(start, size))) { 779 if (--ranges) 780 goto new_range; 781 else 782 continue; 783 } 784 785 memblock_set_node(start, size, nid); 786 787 if (--ranges) 788 goto new_range; 789 } 790 791 /* 792 * Now do the same thing for each MEMBLOCK listed in the 793 * ibm,dynamic-memory property in the 794 * ibm,dynamic-reconfiguration-memory node. 795 */ 796 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 797 if (memory) 798 parse_drconf_memory(memory); 799 800 return 0; 801 } 802 803 static void __init setup_nonnuma(void) 804 { 805 unsigned long top_of_ram = memblock_end_of_DRAM(); 806 unsigned long total_ram = memblock_phys_mem_size(); 807 unsigned long start_pfn, end_pfn; 808 unsigned int nid = 0; 809 struct memblock_region *reg; 810 811 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 812 top_of_ram, total_ram); 813 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 814 (top_of_ram - total_ram) >> 20); 815 816 for_each_memblock(memory, reg) { 817 start_pfn = memblock_region_memory_base_pfn(reg); 818 end_pfn = memblock_region_memory_end_pfn(reg); 819 820 fake_numa_create_new_node(end_pfn, &nid); 821 memblock_set_node(PFN_PHYS(start_pfn), 822 PFN_PHYS(end_pfn - start_pfn), nid); 823 node_set_online(nid); 824 } 825 } 826 827 void __init dump_numa_cpu_topology(void) 828 { 829 unsigned int node; 830 unsigned int cpu, count; 831 832 if (min_common_depth == -1 || !numa_enabled) 833 return; 834 835 for_each_online_node(node) { 836 printk(KERN_DEBUG "Node %d CPUs:", node); 837 838 count = 0; 839 /* 840 * If we used a CPU iterator here we would miss printing 841 * the holes in the cpumap. 842 */ 843 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 844 if (cpumask_test_cpu(cpu, 845 node_to_cpumask_map[node])) { 846 if (count == 0) 847 printk(" %u", cpu); 848 ++count; 849 } else { 850 if (count > 1) 851 printk("-%u", cpu - 1); 852 count = 0; 853 } 854 } 855 856 if (count > 1) 857 printk("-%u", nr_cpu_ids - 1); 858 printk("\n"); 859 } 860 } 861 862 static void __init dump_numa_memory_topology(void) 863 { 864 unsigned int node; 865 unsigned int count; 866 867 if (min_common_depth == -1 || !numa_enabled) 868 return; 869 870 for_each_online_node(node) { 871 unsigned long i; 872 873 printk(KERN_DEBUG "Node %d Memory:", node); 874 875 count = 0; 876 877 for (i = 0; i < memblock_end_of_DRAM(); 878 i += (1 << SECTION_SIZE_BITS)) { 879 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 880 if (count == 0) 881 printk(" 0x%lx", i); 882 ++count; 883 } else { 884 if (count > 0) 885 printk("-0x%lx", i); 886 count = 0; 887 } 888 } 889 890 if (count > 0) 891 printk("-0x%lx", i); 892 printk("\n"); 893 } 894 } 895 896 /* 897 * Allocate some memory, satisfying the memblock or bootmem allocator where 898 * required. nid is the preferred node and end is the physical address of 899 * the highest address in the node. 900 * 901 * Returns the virtual address of the memory. 902 */ 903 static void __init *careful_zallocation(int nid, unsigned long size, 904 unsigned long align, 905 unsigned long end_pfn) 906 { 907 void *ret; 908 int new_nid; 909 unsigned long ret_paddr; 910 911 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 912 913 /* retry over all memory */ 914 if (!ret_paddr) 915 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 916 917 if (!ret_paddr) 918 panic("numa.c: cannot allocate %lu bytes for node %d", 919 size, nid); 920 921 ret = __va(ret_paddr); 922 923 /* 924 * We initialize the nodes in numeric order: 0, 1, 2... 925 * and hand over control from the MEMBLOCK allocator to the 926 * bootmem allocator. If this function is called for 927 * node 5, then we know that all nodes <5 are using the 928 * bootmem allocator instead of the MEMBLOCK allocator. 929 * 930 * So, check the nid from which this allocation came 931 * and double check to see if we need to use bootmem 932 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 933 * since it would be useless. 934 */ 935 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 936 if (new_nid < nid) { 937 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 938 size, align, 0); 939 940 dbg("alloc_bootmem %p %lx\n", ret, size); 941 } 942 943 memset(ret, 0, size); 944 return ret; 945 } 946 947 static struct notifier_block __cpuinitdata ppc64_numa_nb = { 948 .notifier_call = cpu_numa_callback, 949 .priority = 1 /* Must run before sched domains notifier. */ 950 }; 951 952 static void __init mark_reserved_regions_for_nid(int nid) 953 { 954 struct pglist_data *node = NODE_DATA(nid); 955 struct memblock_region *reg; 956 957 for_each_memblock(reserved, reg) { 958 unsigned long physbase = reg->base; 959 unsigned long size = reg->size; 960 unsigned long start_pfn = physbase >> PAGE_SHIFT; 961 unsigned long end_pfn = PFN_UP(physbase + size); 962 struct node_active_region node_ar; 963 unsigned long node_end_pfn = node->node_start_pfn + 964 node->node_spanned_pages; 965 966 /* 967 * Check to make sure that this memblock.reserved area is 968 * within the bounds of the node that we care about. 969 * Checking the nid of the start and end points is not 970 * sufficient because the reserved area could span the 971 * entire node. 972 */ 973 if (end_pfn <= node->node_start_pfn || 974 start_pfn >= node_end_pfn) 975 continue; 976 977 get_node_active_region(start_pfn, &node_ar); 978 while (start_pfn < end_pfn && 979 node_ar.start_pfn < node_ar.end_pfn) { 980 unsigned long reserve_size = size; 981 /* 982 * if reserved region extends past active region 983 * then trim size to active region 984 */ 985 if (end_pfn > node_ar.end_pfn) 986 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 987 - physbase; 988 /* 989 * Only worry about *this* node, others may not 990 * yet have valid NODE_DATA(). 991 */ 992 if (node_ar.nid == nid) { 993 dbg("reserve_bootmem %lx %lx nid=%d\n", 994 physbase, reserve_size, node_ar.nid); 995 reserve_bootmem_node(NODE_DATA(node_ar.nid), 996 physbase, reserve_size, 997 BOOTMEM_DEFAULT); 998 } 999 /* 1000 * if reserved region is contained in the active region 1001 * then done. 1002 */ 1003 if (end_pfn <= node_ar.end_pfn) 1004 break; 1005 1006 /* 1007 * reserved region extends past the active region 1008 * get next active region that contains this 1009 * reserved region 1010 */ 1011 start_pfn = node_ar.end_pfn; 1012 physbase = start_pfn << PAGE_SHIFT; 1013 size = size - reserve_size; 1014 get_node_active_region(start_pfn, &node_ar); 1015 } 1016 } 1017 } 1018 1019 1020 void __init do_init_bootmem(void) 1021 { 1022 int nid; 1023 1024 min_low_pfn = 0; 1025 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1026 max_pfn = max_low_pfn; 1027 1028 if (parse_numa_properties()) 1029 setup_nonnuma(); 1030 else 1031 dump_numa_memory_topology(); 1032 1033 for_each_online_node(nid) { 1034 unsigned long start_pfn, end_pfn; 1035 void *bootmem_vaddr; 1036 unsigned long bootmap_pages; 1037 1038 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1039 1040 /* 1041 * Allocate the node structure node local if possible 1042 * 1043 * Be careful moving this around, as it relies on all 1044 * previous nodes' bootmem to be initialized and have 1045 * all reserved areas marked. 1046 */ 1047 NODE_DATA(nid) = careful_zallocation(nid, 1048 sizeof(struct pglist_data), 1049 SMP_CACHE_BYTES, end_pfn); 1050 1051 dbg("node %d\n", nid); 1052 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1053 1054 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1055 NODE_DATA(nid)->node_start_pfn = start_pfn; 1056 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1057 1058 if (NODE_DATA(nid)->node_spanned_pages == 0) 1059 continue; 1060 1061 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1062 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1063 1064 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1065 bootmem_vaddr = careful_zallocation(nid, 1066 bootmap_pages << PAGE_SHIFT, 1067 PAGE_SIZE, end_pfn); 1068 1069 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1070 1071 init_bootmem_node(NODE_DATA(nid), 1072 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1073 start_pfn, end_pfn); 1074 1075 free_bootmem_with_active_regions(nid, end_pfn); 1076 /* 1077 * Be very careful about moving this around. Future 1078 * calls to careful_zallocation() depend on this getting 1079 * done correctly. 1080 */ 1081 mark_reserved_regions_for_nid(nid); 1082 sparse_memory_present_with_active_regions(nid); 1083 } 1084 1085 init_bootmem_done = 1; 1086 1087 /* 1088 * Now bootmem is initialised we can create the node to cpumask 1089 * lookup tables and setup the cpu callback to populate them. 1090 */ 1091 setup_node_to_cpumask_map(); 1092 1093 register_cpu_notifier(&ppc64_numa_nb); 1094 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1095 (void *)(unsigned long)boot_cpuid); 1096 } 1097 1098 void __init paging_init(void) 1099 { 1100 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1101 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1102 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1103 free_area_init_nodes(max_zone_pfns); 1104 } 1105 1106 static int __init early_numa(char *p) 1107 { 1108 if (!p) 1109 return 0; 1110 1111 if (strstr(p, "off")) 1112 numa_enabled = 0; 1113 1114 if (strstr(p, "debug")) 1115 numa_debug = 1; 1116 1117 p = strstr(p, "fake="); 1118 if (p) 1119 cmdline = p + strlen("fake="); 1120 1121 return 0; 1122 } 1123 early_param("numa", early_numa); 1124 1125 #ifdef CONFIG_MEMORY_HOTPLUG 1126 /* 1127 * Find the node associated with a hot added memory section for 1128 * memory represented in the device tree by the property 1129 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1130 */ 1131 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1132 unsigned long scn_addr) 1133 { 1134 const u32 *dm; 1135 unsigned int drconf_cell_cnt, rc; 1136 unsigned long lmb_size; 1137 struct assoc_arrays aa; 1138 int nid = -1; 1139 1140 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1141 if (!drconf_cell_cnt) 1142 return -1; 1143 1144 lmb_size = of_get_lmb_size(memory); 1145 if (!lmb_size) 1146 return -1; 1147 1148 rc = of_get_assoc_arrays(memory, &aa); 1149 if (rc) 1150 return -1; 1151 1152 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1153 struct of_drconf_cell drmem; 1154 1155 read_drconf_cell(&drmem, &dm); 1156 1157 /* skip this block if it is reserved or not assigned to 1158 * this partition */ 1159 if ((drmem.flags & DRCONF_MEM_RESERVED) 1160 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1161 continue; 1162 1163 if ((scn_addr < drmem.base_addr) 1164 || (scn_addr >= (drmem.base_addr + lmb_size))) 1165 continue; 1166 1167 nid = of_drconf_to_nid_single(&drmem, &aa); 1168 break; 1169 } 1170 1171 return nid; 1172 } 1173 1174 /* 1175 * Find the node associated with a hot added memory section for memory 1176 * represented in the device tree as a node (i.e. memory@XXXX) for 1177 * each memblock. 1178 */ 1179 int hot_add_node_scn_to_nid(unsigned long scn_addr) 1180 { 1181 struct device_node *memory; 1182 int nid = -1; 1183 1184 for_each_node_by_type(memory, "memory") { 1185 unsigned long start, size; 1186 int ranges; 1187 const unsigned int *memcell_buf; 1188 unsigned int len; 1189 1190 memcell_buf = of_get_property(memory, "reg", &len); 1191 if (!memcell_buf || len <= 0) 1192 continue; 1193 1194 /* ranges in cell */ 1195 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1196 1197 while (ranges--) { 1198 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1199 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1200 1201 if ((scn_addr < start) || (scn_addr >= (start + size))) 1202 continue; 1203 1204 nid = of_node_to_nid_single(memory); 1205 break; 1206 } 1207 1208 if (nid >= 0) 1209 break; 1210 } 1211 1212 of_node_put(memory); 1213 1214 return nid; 1215 } 1216 1217 /* 1218 * Find the node associated with a hot added memory section. Section 1219 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1220 * sections are fully contained within a single MEMBLOCK. 1221 */ 1222 int hot_add_scn_to_nid(unsigned long scn_addr) 1223 { 1224 struct device_node *memory = NULL; 1225 int nid, found = 0; 1226 1227 if (!numa_enabled || (min_common_depth < 0)) 1228 return first_online_node; 1229 1230 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1231 if (memory) { 1232 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1233 of_node_put(memory); 1234 } else { 1235 nid = hot_add_node_scn_to_nid(scn_addr); 1236 } 1237 1238 if (nid < 0 || !node_online(nid)) 1239 nid = first_online_node; 1240 1241 if (NODE_DATA(nid)->node_spanned_pages) 1242 return nid; 1243 1244 for_each_online_node(nid) { 1245 if (NODE_DATA(nid)->node_spanned_pages) { 1246 found = 1; 1247 break; 1248 } 1249 } 1250 1251 BUG_ON(!found); 1252 return nid; 1253 } 1254 1255 static u64 hot_add_drconf_memory_max(void) 1256 { 1257 struct device_node *memory = NULL; 1258 unsigned int drconf_cell_cnt = 0; 1259 u64 lmb_size = 0; 1260 const u32 *dm = 0; 1261 1262 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1263 if (memory) { 1264 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1265 lmb_size = of_get_lmb_size(memory); 1266 of_node_put(memory); 1267 } 1268 return lmb_size * drconf_cell_cnt; 1269 } 1270 1271 /* 1272 * memory_hotplug_max - return max address of memory that may be added 1273 * 1274 * This is currently only used on systems that support drconfig memory 1275 * hotplug. 1276 */ 1277 u64 memory_hotplug_max(void) 1278 { 1279 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1280 } 1281 #endif /* CONFIG_MEMORY_HOTPLUG */ 1282 1283 /* Virtual Processor Home Node (VPHN) support */ 1284 #ifdef CONFIG_PPC_SPLPAR 1285 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1286 static cpumask_t cpu_associativity_changes_mask; 1287 static int vphn_enabled; 1288 static void set_topology_timer(void); 1289 1290 /* 1291 * Store the current values of the associativity change counters in the 1292 * hypervisor. 1293 */ 1294 static void setup_cpu_associativity_change_counters(void) 1295 { 1296 int cpu; 1297 1298 /* The VPHN feature supports a maximum of 8 reference points */ 1299 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1300 1301 for_each_possible_cpu(cpu) { 1302 int i; 1303 u8 *counts = vphn_cpu_change_counts[cpu]; 1304 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1305 1306 for (i = 0; i < distance_ref_points_depth; i++) 1307 counts[i] = hypervisor_counts[i]; 1308 } 1309 } 1310 1311 /* 1312 * The hypervisor maintains a set of 8 associativity change counters in 1313 * the VPA of each cpu that correspond to the associativity levels in the 1314 * ibm,associativity-reference-points property. When an associativity 1315 * level changes, the corresponding counter is incremented. 1316 * 1317 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1318 * node associativity levels have changed. 1319 * 1320 * Returns the number of cpus with unhandled associativity changes. 1321 */ 1322 static int update_cpu_associativity_changes_mask(void) 1323 { 1324 int cpu, nr_cpus = 0; 1325 cpumask_t *changes = &cpu_associativity_changes_mask; 1326 1327 cpumask_clear(changes); 1328 1329 for_each_possible_cpu(cpu) { 1330 int i, changed = 0; 1331 u8 *counts = vphn_cpu_change_counts[cpu]; 1332 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1333 1334 for (i = 0; i < distance_ref_points_depth; i++) { 1335 if (hypervisor_counts[i] != counts[i]) { 1336 counts[i] = hypervisor_counts[i]; 1337 changed = 1; 1338 } 1339 } 1340 if (changed) { 1341 cpumask_set_cpu(cpu, changes); 1342 nr_cpus++; 1343 } 1344 } 1345 1346 return nr_cpus; 1347 } 1348 1349 /* 1350 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1351 * the complete property we have to add the length in the first cell. 1352 */ 1353 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1354 1355 /* 1356 * Convert the associativity domain numbers returned from the hypervisor 1357 * to the sequence they would appear in the ibm,associativity property. 1358 */ 1359 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) 1360 { 1361 int i, nr_assoc_doms = 0; 1362 const u16 *field = (const u16*) packed; 1363 1364 #define VPHN_FIELD_UNUSED (0xffff) 1365 #define VPHN_FIELD_MSB (0x8000) 1366 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1367 1368 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1369 if (*field == VPHN_FIELD_UNUSED) { 1370 /* All significant fields processed, and remaining 1371 * fields contain the reserved value of all 1's. 1372 * Just store them. 1373 */ 1374 unpacked[i] = *((u32*)field); 1375 field += 2; 1376 } else if (*field & VPHN_FIELD_MSB) { 1377 /* Data is in the lower 15 bits of this field */ 1378 unpacked[i] = *field & VPHN_FIELD_MASK; 1379 field++; 1380 nr_assoc_doms++; 1381 } else { 1382 /* Data is in the lower 15 bits of this field 1383 * concatenated with the next 16 bit field 1384 */ 1385 unpacked[i] = *((u32*)field); 1386 field += 2; 1387 nr_assoc_doms++; 1388 } 1389 } 1390 1391 /* The first cell contains the length of the property */ 1392 unpacked[0] = nr_assoc_doms; 1393 1394 return nr_assoc_doms; 1395 } 1396 1397 /* 1398 * Retrieve the new associativity information for a virtual processor's 1399 * home node. 1400 */ 1401 static long hcall_vphn(unsigned long cpu, unsigned int *associativity) 1402 { 1403 long rc; 1404 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1405 u64 flags = 1; 1406 int hwcpu = get_hard_smp_processor_id(cpu); 1407 1408 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1409 vphn_unpack_associativity(retbuf, associativity); 1410 1411 return rc; 1412 } 1413 1414 static long vphn_get_associativity(unsigned long cpu, 1415 unsigned int *associativity) 1416 { 1417 long rc; 1418 1419 rc = hcall_vphn(cpu, associativity); 1420 1421 switch (rc) { 1422 case H_FUNCTION: 1423 printk(KERN_INFO 1424 "VPHN is not supported. Disabling polling...\n"); 1425 stop_topology_update(); 1426 break; 1427 case H_HARDWARE: 1428 printk(KERN_ERR 1429 "hcall_vphn() experienced a hardware fault " 1430 "preventing VPHN. Disabling polling...\n"); 1431 stop_topology_update(); 1432 } 1433 1434 return rc; 1435 } 1436 1437 /* 1438 * Update the node maps and sysfs entries for each cpu whose home node 1439 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1440 */ 1441 int arch_update_cpu_topology(void) 1442 { 1443 int cpu, nid, old_nid, changed = 0; 1444 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1445 struct device *dev; 1446 1447 for_each_cpu(cpu,&cpu_associativity_changes_mask) { 1448 vphn_get_associativity(cpu, associativity); 1449 nid = associativity_to_nid(associativity); 1450 1451 if (nid < 0 || !node_online(nid)) 1452 nid = first_online_node; 1453 1454 old_nid = numa_cpu_lookup_table[cpu]; 1455 1456 /* Disable hotplug while we update the cpu 1457 * masks and sysfs. 1458 */ 1459 get_online_cpus(); 1460 unregister_cpu_under_node(cpu, old_nid); 1461 unmap_cpu_from_node(cpu); 1462 map_cpu_to_node(cpu, nid); 1463 register_cpu_under_node(cpu, nid); 1464 put_online_cpus(); 1465 1466 dev = get_cpu_device(cpu); 1467 if (dev) 1468 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1469 changed = 1; 1470 } 1471 1472 return changed; 1473 } 1474 1475 static void topology_work_fn(struct work_struct *work) 1476 { 1477 rebuild_sched_domains(); 1478 } 1479 static DECLARE_WORK(topology_work, topology_work_fn); 1480 1481 void topology_schedule_update(void) 1482 { 1483 schedule_work(&topology_work); 1484 } 1485 1486 static void topology_timer_fn(unsigned long ignored) 1487 { 1488 if (!vphn_enabled) 1489 return; 1490 if (update_cpu_associativity_changes_mask() > 0) 1491 topology_schedule_update(); 1492 set_topology_timer(); 1493 } 1494 static struct timer_list topology_timer = 1495 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1496 1497 static void set_topology_timer(void) 1498 { 1499 topology_timer.data = 0; 1500 topology_timer.expires = jiffies + 60 * HZ; 1501 add_timer(&topology_timer); 1502 } 1503 1504 /* 1505 * Start polling for VPHN associativity changes. 1506 */ 1507 int start_topology_update(void) 1508 { 1509 int rc = 0; 1510 1511 /* Disabled until races with load balancing are fixed */ 1512 if (0 && firmware_has_feature(FW_FEATURE_VPHN) && 1513 get_lppaca()->shared_proc) { 1514 vphn_enabled = 1; 1515 setup_cpu_associativity_change_counters(); 1516 init_timer_deferrable(&topology_timer); 1517 set_topology_timer(); 1518 rc = 1; 1519 } 1520 1521 return rc; 1522 } 1523 __initcall(start_topology_update); 1524 1525 /* 1526 * Disable polling for VPHN associativity changes. 1527 */ 1528 int stop_topology_update(void) 1529 { 1530 vphn_enabled = 0; 1531 return del_timer_sync(&topology_timer); 1532 } 1533 #endif /* CONFIG_PPC_SPLPAR */ 1534