xref: /linux/arch/powerpc/mm/numa.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
26 #include <asm/prom.h>
27 #include <asm/smp.h>
28 #include <asm/firmware.h>
29 #include <asm/paca.h>
30 #include <asm/hvcall.h>
31 #include <asm/setup.h>
32 
33 static int numa_enabled = 1;
34 
35 static char *cmdline __initdata;
36 
37 static int numa_debug;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39 
40 int numa_cpu_lookup_table[NR_CPUS];
41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
42 struct pglist_data *node_data[MAX_NUMNODES];
43 
44 EXPORT_SYMBOL(numa_cpu_lookup_table);
45 EXPORT_SYMBOL(node_to_cpumask_map);
46 EXPORT_SYMBOL(node_data);
47 
48 static int min_common_depth;
49 static int n_mem_addr_cells, n_mem_size_cells;
50 static int form1_affinity;
51 
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth;
54 static const unsigned int *distance_ref_points;
55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
56 
57 /*
58  * Allocate node_to_cpumask_map based on number of available nodes
59  * Requires node_possible_map to be valid.
60  *
61  * Note: cpumask_of_node() is not valid until after this is done.
62  */
63 static void __init setup_node_to_cpumask_map(void)
64 {
65 	unsigned int node, num = 0;
66 
67 	/* setup nr_node_ids if not done yet */
68 	if (nr_node_ids == MAX_NUMNODES) {
69 		for_each_node_mask(node, node_possible_map)
70 			num = node;
71 		nr_node_ids = num + 1;
72 	}
73 
74 	/* allocate the map */
75 	for (node = 0; node < nr_node_ids; node++)
76 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77 
78 	/* cpumask_of_node() will now work */
79 	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80 }
81 
82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 						unsigned int *nid)
84 {
85 	unsigned long long mem;
86 	char *p = cmdline;
87 	static unsigned int fake_nid;
88 	static unsigned long long curr_boundary;
89 
90 	/*
91 	 * Modify node id, iff we started creating NUMA nodes
92 	 * We want to continue from where we left of the last time
93 	 */
94 	if (fake_nid)
95 		*nid = fake_nid;
96 	/*
97 	 * In case there are no more arguments to parse, the
98 	 * node_id should be the same as the last fake node id
99 	 * (we've handled this above).
100 	 */
101 	if (!p)
102 		return 0;
103 
104 	mem = memparse(p, &p);
105 	if (!mem)
106 		return 0;
107 
108 	if (mem < curr_boundary)
109 		return 0;
110 
111 	curr_boundary = mem;
112 
113 	if ((end_pfn << PAGE_SHIFT) > mem) {
114 		/*
115 		 * Skip commas and spaces
116 		 */
117 		while (*p == ',' || *p == ' ' || *p == '\t')
118 			p++;
119 
120 		cmdline = p;
121 		fake_nid++;
122 		*nid = fake_nid;
123 		dbg("created new fake_node with id %d\n", fake_nid);
124 		return 1;
125 	}
126 	return 0;
127 }
128 
129 /*
130  * get_node_active_region - Return active region containing pfn
131  * Active range returned is empty if none found.
132  * @pfn: The page to return the region for
133  * @node_ar: Returned set to the active region containing @pfn
134  */
135 static void __init get_node_active_region(unsigned long pfn,
136 					  struct node_active_region *node_ar)
137 {
138 	unsigned long start_pfn, end_pfn;
139 	int i, nid;
140 
141 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
142 		if (pfn >= start_pfn && pfn < end_pfn) {
143 			node_ar->nid = nid;
144 			node_ar->start_pfn = start_pfn;
145 			node_ar->end_pfn = end_pfn;
146 			break;
147 		}
148 	}
149 }
150 
151 static void map_cpu_to_node(int cpu, int node)
152 {
153 	numa_cpu_lookup_table[cpu] = node;
154 
155 	dbg("adding cpu %d to node %d\n", cpu, node);
156 
157 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
158 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
159 }
160 
161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
162 static void unmap_cpu_from_node(unsigned long cpu)
163 {
164 	int node = numa_cpu_lookup_table[cpu];
165 
166 	dbg("removing cpu %lu from node %d\n", cpu, node);
167 
168 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
169 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
170 	} else {
171 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
172 		       cpu, node);
173 	}
174 }
175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
176 
177 /* must hold reference to node during call */
178 static const int *of_get_associativity(struct device_node *dev)
179 {
180 	return of_get_property(dev, "ibm,associativity", NULL);
181 }
182 
183 /*
184  * Returns the property linux,drconf-usable-memory if
185  * it exists (the property exists only in kexec/kdump kernels,
186  * added by kexec-tools)
187  */
188 static const u32 *of_get_usable_memory(struct device_node *memory)
189 {
190 	const u32 *prop;
191 	u32 len;
192 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
193 	if (!prop || len < sizeof(unsigned int))
194 		return 0;
195 	return prop;
196 }
197 
198 int __node_distance(int a, int b)
199 {
200 	int i;
201 	int distance = LOCAL_DISTANCE;
202 
203 	if (!form1_affinity)
204 		return distance;
205 
206 	for (i = 0; i < distance_ref_points_depth; i++) {
207 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
208 			break;
209 
210 		/* Double the distance for each NUMA level */
211 		distance *= 2;
212 	}
213 
214 	return distance;
215 }
216 
217 static void initialize_distance_lookup_table(int nid,
218 		const unsigned int *associativity)
219 {
220 	int i;
221 
222 	if (!form1_affinity)
223 		return;
224 
225 	for (i = 0; i < distance_ref_points_depth; i++) {
226 		distance_lookup_table[nid][i] =
227 			associativity[distance_ref_points[i]];
228 	}
229 }
230 
231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
232  * info is found.
233  */
234 static int associativity_to_nid(const unsigned int *associativity)
235 {
236 	int nid = -1;
237 
238 	if (min_common_depth == -1)
239 		goto out;
240 
241 	if (associativity[0] >= min_common_depth)
242 		nid = associativity[min_common_depth];
243 
244 	/* POWER4 LPAR uses 0xffff as invalid node */
245 	if (nid == 0xffff || nid >= MAX_NUMNODES)
246 		nid = -1;
247 
248 	if (nid > 0 && associativity[0] >= distance_ref_points_depth)
249 		initialize_distance_lookup_table(nid, associativity);
250 
251 out:
252 	return nid;
253 }
254 
255 /* Returns the nid associated with the given device tree node,
256  * or -1 if not found.
257  */
258 static int of_node_to_nid_single(struct device_node *device)
259 {
260 	int nid = -1;
261 	const unsigned int *tmp;
262 
263 	tmp = of_get_associativity(device);
264 	if (tmp)
265 		nid = associativity_to_nid(tmp);
266 	return nid;
267 }
268 
269 /* Walk the device tree upwards, looking for an associativity id */
270 int of_node_to_nid(struct device_node *device)
271 {
272 	struct device_node *tmp;
273 	int nid = -1;
274 
275 	of_node_get(device);
276 	while (device) {
277 		nid = of_node_to_nid_single(device);
278 		if (nid != -1)
279 			break;
280 
281 	        tmp = device;
282 		device = of_get_parent(tmp);
283 		of_node_put(tmp);
284 	}
285 	of_node_put(device);
286 
287 	return nid;
288 }
289 EXPORT_SYMBOL_GPL(of_node_to_nid);
290 
291 static int __init find_min_common_depth(void)
292 {
293 	int depth;
294 	struct device_node *chosen;
295 	struct device_node *root;
296 	const char *vec5;
297 
298 	if (firmware_has_feature(FW_FEATURE_OPAL))
299 		root = of_find_node_by_path("/ibm,opal");
300 	else
301 		root = of_find_node_by_path("/rtas");
302 	if (!root)
303 		root = of_find_node_by_path("/");
304 
305 	/*
306 	 * This property is a set of 32-bit integers, each representing
307 	 * an index into the ibm,associativity nodes.
308 	 *
309 	 * With form 0 affinity the first integer is for an SMP configuration
310 	 * (should be all 0's) and the second is for a normal NUMA
311 	 * configuration. We have only one level of NUMA.
312 	 *
313 	 * With form 1 affinity the first integer is the most significant
314 	 * NUMA boundary and the following are progressively less significant
315 	 * boundaries. There can be more than one level of NUMA.
316 	 */
317 	distance_ref_points = of_get_property(root,
318 					"ibm,associativity-reference-points",
319 					&distance_ref_points_depth);
320 
321 	if (!distance_ref_points) {
322 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
323 		goto err;
324 	}
325 
326 	distance_ref_points_depth /= sizeof(int);
327 
328 #define VEC5_AFFINITY_BYTE	5
329 #define VEC5_AFFINITY		0x80
330 
331 	if (firmware_has_feature(FW_FEATURE_OPAL))
332 		form1_affinity = 1;
333 	else {
334 		chosen = of_find_node_by_path("/chosen");
335 		if (chosen) {
336 			vec5 = of_get_property(chosen,
337 					       "ibm,architecture-vec-5", NULL);
338 			if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
339 							VEC5_AFFINITY)) {
340 				dbg("Using form 1 affinity\n");
341 				form1_affinity = 1;
342 			}
343 
344 			of_node_put(chosen);
345 		}
346 	}
347 
348 	if (form1_affinity) {
349 		depth = distance_ref_points[0];
350 	} else {
351 		if (distance_ref_points_depth < 2) {
352 			printk(KERN_WARNING "NUMA: "
353 				"short ibm,associativity-reference-points\n");
354 			goto err;
355 		}
356 
357 		depth = distance_ref_points[1];
358 	}
359 
360 	/*
361 	 * Warn and cap if the hardware supports more than
362 	 * MAX_DISTANCE_REF_POINTS domains.
363 	 */
364 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
365 		printk(KERN_WARNING "NUMA: distance array capped at "
366 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
367 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
368 	}
369 
370 	of_node_put(root);
371 	return depth;
372 
373 err:
374 	of_node_put(root);
375 	return -1;
376 }
377 
378 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
379 {
380 	struct device_node *memory = NULL;
381 
382 	memory = of_find_node_by_type(memory, "memory");
383 	if (!memory)
384 		panic("numa.c: No memory nodes found!");
385 
386 	*n_addr_cells = of_n_addr_cells(memory);
387 	*n_size_cells = of_n_size_cells(memory);
388 	of_node_put(memory);
389 }
390 
391 static unsigned long read_n_cells(int n, const unsigned int **buf)
392 {
393 	unsigned long result = 0;
394 
395 	while (n--) {
396 		result = (result << 32) | **buf;
397 		(*buf)++;
398 	}
399 	return result;
400 }
401 
402 struct of_drconf_cell {
403 	u64	base_addr;
404 	u32	drc_index;
405 	u32	reserved;
406 	u32	aa_index;
407 	u32	flags;
408 };
409 
410 #define DRCONF_MEM_ASSIGNED	0x00000008
411 #define DRCONF_MEM_AI_INVALID	0x00000040
412 #define DRCONF_MEM_RESERVED	0x00000080
413 
414 /*
415  * Read the next memblock list entry from the ibm,dynamic-memory property
416  * and return the information in the provided of_drconf_cell structure.
417  */
418 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
419 {
420 	const u32 *cp;
421 
422 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
423 
424 	cp = *cellp;
425 	drmem->drc_index = cp[0];
426 	drmem->reserved = cp[1];
427 	drmem->aa_index = cp[2];
428 	drmem->flags = cp[3];
429 
430 	*cellp = cp + 4;
431 }
432 
433 /*
434  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
435  *
436  * The layout of the ibm,dynamic-memory property is a number N of memblock
437  * list entries followed by N memblock list entries.  Each memblock list entry
438  * contains information as laid out in the of_drconf_cell struct above.
439  */
440 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
441 {
442 	const u32 *prop;
443 	u32 len, entries;
444 
445 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
446 	if (!prop || len < sizeof(unsigned int))
447 		return 0;
448 
449 	entries = *prop++;
450 
451 	/* Now that we know the number of entries, revalidate the size
452 	 * of the property read in to ensure we have everything
453 	 */
454 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
455 		return 0;
456 
457 	*dm = prop;
458 	return entries;
459 }
460 
461 /*
462  * Retrieve and validate the ibm,lmb-size property for drconf memory
463  * from the device tree.
464  */
465 static u64 of_get_lmb_size(struct device_node *memory)
466 {
467 	const u32 *prop;
468 	u32 len;
469 
470 	prop = of_get_property(memory, "ibm,lmb-size", &len);
471 	if (!prop || len < sizeof(unsigned int))
472 		return 0;
473 
474 	return read_n_cells(n_mem_size_cells, &prop);
475 }
476 
477 struct assoc_arrays {
478 	u32	n_arrays;
479 	u32	array_sz;
480 	const u32 *arrays;
481 };
482 
483 /*
484  * Retrieve and validate the list of associativity arrays for drconf
485  * memory from the ibm,associativity-lookup-arrays property of the
486  * device tree..
487  *
488  * The layout of the ibm,associativity-lookup-arrays property is a number N
489  * indicating the number of associativity arrays, followed by a number M
490  * indicating the size of each associativity array, followed by a list
491  * of N associativity arrays.
492  */
493 static int of_get_assoc_arrays(struct device_node *memory,
494 			       struct assoc_arrays *aa)
495 {
496 	const u32 *prop;
497 	u32 len;
498 
499 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
500 	if (!prop || len < 2 * sizeof(unsigned int))
501 		return -1;
502 
503 	aa->n_arrays = *prop++;
504 	aa->array_sz = *prop++;
505 
506 	/* Now that we know the number of arrays and size of each array,
507 	 * revalidate the size of the property read in.
508 	 */
509 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
510 		return -1;
511 
512 	aa->arrays = prop;
513 	return 0;
514 }
515 
516 /*
517  * This is like of_node_to_nid_single() for memory represented in the
518  * ibm,dynamic-reconfiguration-memory node.
519  */
520 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
521 				   struct assoc_arrays *aa)
522 {
523 	int default_nid = 0;
524 	int nid = default_nid;
525 	int index;
526 
527 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
528 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
529 	    drmem->aa_index < aa->n_arrays) {
530 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
531 		nid = aa->arrays[index];
532 
533 		if (nid == 0xffff || nid >= MAX_NUMNODES)
534 			nid = default_nid;
535 	}
536 
537 	return nid;
538 }
539 
540 /*
541  * Figure out to which domain a cpu belongs and stick it there.
542  * Return the id of the domain used.
543  */
544 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
545 {
546 	int nid = 0;
547 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
548 
549 	if (!cpu) {
550 		WARN_ON(1);
551 		goto out;
552 	}
553 
554 	nid = of_node_to_nid_single(cpu);
555 
556 	if (nid < 0 || !node_online(nid))
557 		nid = first_online_node;
558 out:
559 	map_cpu_to_node(lcpu, nid);
560 
561 	of_node_put(cpu);
562 
563 	return nid;
564 }
565 
566 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
567 			     unsigned long action,
568 			     void *hcpu)
569 {
570 	unsigned long lcpu = (unsigned long)hcpu;
571 	int ret = NOTIFY_DONE;
572 
573 	switch (action) {
574 	case CPU_UP_PREPARE:
575 	case CPU_UP_PREPARE_FROZEN:
576 		numa_setup_cpu(lcpu);
577 		ret = NOTIFY_OK;
578 		break;
579 #ifdef CONFIG_HOTPLUG_CPU
580 	case CPU_DEAD:
581 	case CPU_DEAD_FROZEN:
582 	case CPU_UP_CANCELED:
583 	case CPU_UP_CANCELED_FROZEN:
584 		unmap_cpu_from_node(lcpu);
585 		break;
586 		ret = NOTIFY_OK;
587 #endif
588 	}
589 	return ret;
590 }
591 
592 /*
593  * Check and possibly modify a memory region to enforce the memory limit.
594  *
595  * Returns the size the region should have to enforce the memory limit.
596  * This will either be the original value of size, a truncated value,
597  * or zero. If the returned value of size is 0 the region should be
598  * discarded as it lies wholly above the memory limit.
599  */
600 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
601 						      unsigned long size)
602 {
603 	/*
604 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
605 	 * we've already adjusted it for the limit and it takes care of
606 	 * having memory holes below the limit.  Also, in the case of
607 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
608 	 */
609 
610 	if (start + size <= memblock_end_of_DRAM())
611 		return size;
612 
613 	if (start >= memblock_end_of_DRAM())
614 		return 0;
615 
616 	return memblock_end_of_DRAM() - start;
617 }
618 
619 /*
620  * Reads the counter for a given entry in
621  * linux,drconf-usable-memory property
622  */
623 static inline int __init read_usm_ranges(const u32 **usm)
624 {
625 	/*
626 	 * For each lmb in ibm,dynamic-memory a corresponding
627 	 * entry in linux,drconf-usable-memory property contains
628 	 * a counter followed by that many (base, size) duple.
629 	 * read the counter from linux,drconf-usable-memory
630 	 */
631 	return read_n_cells(n_mem_size_cells, usm);
632 }
633 
634 /*
635  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
636  * node.  This assumes n_mem_{addr,size}_cells have been set.
637  */
638 static void __init parse_drconf_memory(struct device_node *memory)
639 {
640 	const u32 *uninitialized_var(dm), *usm;
641 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
642 	unsigned long lmb_size, base, size, sz;
643 	int nid;
644 	struct assoc_arrays aa = { .arrays = NULL };
645 
646 	n = of_get_drconf_memory(memory, &dm);
647 	if (!n)
648 		return;
649 
650 	lmb_size = of_get_lmb_size(memory);
651 	if (!lmb_size)
652 		return;
653 
654 	rc = of_get_assoc_arrays(memory, &aa);
655 	if (rc)
656 		return;
657 
658 	/* check if this is a kexec/kdump kernel */
659 	usm = of_get_usable_memory(memory);
660 	if (usm != NULL)
661 		is_kexec_kdump = 1;
662 
663 	for (; n != 0; --n) {
664 		struct of_drconf_cell drmem;
665 
666 		read_drconf_cell(&drmem, &dm);
667 
668 		/* skip this block if the reserved bit is set in flags (0x80)
669 		   or if the block is not assigned to this partition (0x8) */
670 		if ((drmem.flags & DRCONF_MEM_RESERVED)
671 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
672 			continue;
673 
674 		base = drmem.base_addr;
675 		size = lmb_size;
676 		ranges = 1;
677 
678 		if (is_kexec_kdump) {
679 			ranges = read_usm_ranges(&usm);
680 			if (!ranges) /* there are no (base, size) duple */
681 				continue;
682 		}
683 		do {
684 			if (is_kexec_kdump) {
685 				base = read_n_cells(n_mem_addr_cells, &usm);
686 				size = read_n_cells(n_mem_size_cells, &usm);
687 			}
688 			nid = of_drconf_to_nid_single(&drmem, &aa);
689 			fake_numa_create_new_node(
690 				((base + size) >> PAGE_SHIFT),
691 					   &nid);
692 			node_set_online(nid);
693 			sz = numa_enforce_memory_limit(base, size);
694 			if (sz)
695 				memblock_set_node(base, sz, nid);
696 		} while (--ranges);
697 	}
698 }
699 
700 static int __init parse_numa_properties(void)
701 {
702 	struct device_node *memory;
703 	int default_nid = 0;
704 	unsigned long i;
705 
706 	if (numa_enabled == 0) {
707 		printk(KERN_WARNING "NUMA disabled by user\n");
708 		return -1;
709 	}
710 
711 	min_common_depth = find_min_common_depth();
712 
713 	if (min_common_depth < 0)
714 		return min_common_depth;
715 
716 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
717 
718 	/*
719 	 * Even though we connect cpus to numa domains later in SMP
720 	 * init, we need to know the node ids now. This is because
721 	 * each node to be onlined must have NODE_DATA etc backing it.
722 	 */
723 	for_each_present_cpu(i) {
724 		struct device_node *cpu;
725 		int nid;
726 
727 		cpu = of_get_cpu_node(i, NULL);
728 		BUG_ON(!cpu);
729 		nid = of_node_to_nid_single(cpu);
730 		of_node_put(cpu);
731 
732 		/*
733 		 * Don't fall back to default_nid yet -- we will plug
734 		 * cpus into nodes once the memory scan has discovered
735 		 * the topology.
736 		 */
737 		if (nid < 0)
738 			continue;
739 		node_set_online(nid);
740 	}
741 
742 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
743 
744 	for_each_node_by_type(memory, "memory") {
745 		unsigned long start;
746 		unsigned long size;
747 		int nid;
748 		int ranges;
749 		const unsigned int *memcell_buf;
750 		unsigned int len;
751 
752 		memcell_buf = of_get_property(memory,
753 			"linux,usable-memory", &len);
754 		if (!memcell_buf || len <= 0)
755 			memcell_buf = of_get_property(memory, "reg", &len);
756 		if (!memcell_buf || len <= 0)
757 			continue;
758 
759 		/* ranges in cell */
760 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
761 new_range:
762 		/* these are order-sensitive, and modify the buffer pointer */
763 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
764 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
765 
766 		/*
767 		 * Assumption: either all memory nodes or none will
768 		 * have associativity properties.  If none, then
769 		 * everything goes to default_nid.
770 		 */
771 		nid = of_node_to_nid_single(memory);
772 		if (nid < 0)
773 			nid = default_nid;
774 
775 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
776 		node_set_online(nid);
777 
778 		if (!(size = numa_enforce_memory_limit(start, size))) {
779 			if (--ranges)
780 				goto new_range;
781 			else
782 				continue;
783 		}
784 
785 		memblock_set_node(start, size, nid);
786 
787 		if (--ranges)
788 			goto new_range;
789 	}
790 
791 	/*
792 	 * Now do the same thing for each MEMBLOCK listed in the
793 	 * ibm,dynamic-memory property in the
794 	 * ibm,dynamic-reconfiguration-memory node.
795 	 */
796 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
797 	if (memory)
798 		parse_drconf_memory(memory);
799 
800 	return 0;
801 }
802 
803 static void __init setup_nonnuma(void)
804 {
805 	unsigned long top_of_ram = memblock_end_of_DRAM();
806 	unsigned long total_ram = memblock_phys_mem_size();
807 	unsigned long start_pfn, end_pfn;
808 	unsigned int nid = 0;
809 	struct memblock_region *reg;
810 
811 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
812 	       top_of_ram, total_ram);
813 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
814 	       (top_of_ram - total_ram) >> 20);
815 
816 	for_each_memblock(memory, reg) {
817 		start_pfn = memblock_region_memory_base_pfn(reg);
818 		end_pfn = memblock_region_memory_end_pfn(reg);
819 
820 		fake_numa_create_new_node(end_pfn, &nid);
821 		memblock_set_node(PFN_PHYS(start_pfn),
822 				  PFN_PHYS(end_pfn - start_pfn), nid);
823 		node_set_online(nid);
824 	}
825 }
826 
827 void __init dump_numa_cpu_topology(void)
828 {
829 	unsigned int node;
830 	unsigned int cpu, count;
831 
832 	if (min_common_depth == -1 || !numa_enabled)
833 		return;
834 
835 	for_each_online_node(node) {
836 		printk(KERN_DEBUG "Node %d CPUs:", node);
837 
838 		count = 0;
839 		/*
840 		 * If we used a CPU iterator here we would miss printing
841 		 * the holes in the cpumap.
842 		 */
843 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
844 			if (cpumask_test_cpu(cpu,
845 					node_to_cpumask_map[node])) {
846 				if (count == 0)
847 					printk(" %u", cpu);
848 				++count;
849 			} else {
850 				if (count > 1)
851 					printk("-%u", cpu - 1);
852 				count = 0;
853 			}
854 		}
855 
856 		if (count > 1)
857 			printk("-%u", nr_cpu_ids - 1);
858 		printk("\n");
859 	}
860 }
861 
862 static void __init dump_numa_memory_topology(void)
863 {
864 	unsigned int node;
865 	unsigned int count;
866 
867 	if (min_common_depth == -1 || !numa_enabled)
868 		return;
869 
870 	for_each_online_node(node) {
871 		unsigned long i;
872 
873 		printk(KERN_DEBUG "Node %d Memory:", node);
874 
875 		count = 0;
876 
877 		for (i = 0; i < memblock_end_of_DRAM();
878 		     i += (1 << SECTION_SIZE_BITS)) {
879 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
880 				if (count == 0)
881 					printk(" 0x%lx", i);
882 				++count;
883 			} else {
884 				if (count > 0)
885 					printk("-0x%lx", i);
886 				count = 0;
887 			}
888 		}
889 
890 		if (count > 0)
891 			printk("-0x%lx", i);
892 		printk("\n");
893 	}
894 }
895 
896 /*
897  * Allocate some memory, satisfying the memblock or bootmem allocator where
898  * required. nid is the preferred node and end is the physical address of
899  * the highest address in the node.
900  *
901  * Returns the virtual address of the memory.
902  */
903 static void __init *careful_zallocation(int nid, unsigned long size,
904 				       unsigned long align,
905 				       unsigned long end_pfn)
906 {
907 	void *ret;
908 	int new_nid;
909 	unsigned long ret_paddr;
910 
911 	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
912 
913 	/* retry over all memory */
914 	if (!ret_paddr)
915 		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
916 
917 	if (!ret_paddr)
918 		panic("numa.c: cannot allocate %lu bytes for node %d",
919 		      size, nid);
920 
921 	ret = __va(ret_paddr);
922 
923 	/*
924 	 * We initialize the nodes in numeric order: 0, 1, 2...
925 	 * and hand over control from the MEMBLOCK allocator to the
926 	 * bootmem allocator.  If this function is called for
927 	 * node 5, then we know that all nodes <5 are using the
928 	 * bootmem allocator instead of the MEMBLOCK allocator.
929 	 *
930 	 * So, check the nid from which this allocation came
931 	 * and double check to see if we need to use bootmem
932 	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
933 	 * since it would be useless.
934 	 */
935 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
936 	if (new_nid < nid) {
937 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
938 				size, align, 0);
939 
940 		dbg("alloc_bootmem %p %lx\n", ret, size);
941 	}
942 
943 	memset(ret, 0, size);
944 	return ret;
945 }
946 
947 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
948 	.notifier_call = cpu_numa_callback,
949 	.priority = 1 /* Must run before sched domains notifier. */
950 };
951 
952 static void __init mark_reserved_regions_for_nid(int nid)
953 {
954 	struct pglist_data *node = NODE_DATA(nid);
955 	struct memblock_region *reg;
956 
957 	for_each_memblock(reserved, reg) {
958 		unsigned long physbase = reg->base;
959 		unsigned long size = reg->size;
960 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
961 		unsigned long end_pfn = PFN_UP(physbase + size);
962 		struct node_active_region node_ar;
963 		unsigned long node_end_pfn = node->node_start_pfn +
964 					     node->node_spanned_pages;
965 
966 		/*
967 		 * Check to make sure that this memblock.reserved area is
968 		 * within the bounds of the node that we care about.
969 		 * Checking the nid of the start and end points is not
970 		 * sufficient because the reserved area could span the
971 		 * entire node.
972 		 */
973 		if (end_pfn <= node->node_start_pfn ||
974 		    start_pfn >= node_end_pfn)
975 			continue;
976 
977 		get_node_active_region(start_pfn, &node_ar);
978 		while (start_pfn < end_pfn &&
979 			node_ar.start_pfn < node_ar.end_pfn) {
980 			unsigned long reserve_size = size;
981 			/*
982 			 * if reserved region extends past active region
983 			 * then trim size to active region
984 			 */
985 			if (end_pfn > node_ar.end_pfn)
986 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
987 					- physbase;
988 			/*
989 			 * Only worry about *this* node, others may not
990 			 * yet have valid NODE_DATA().
991 			 */
992 			if (node_ar.nid == nid) {
993 				dbg("reserve_bootmem %lx %lx nid=%d\n",
994 					physbase, reserve_size, node_ar.nid);
995 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
996 						physbase, reserve_size,
997 						BOOTMEM_DEFAULT);
998 			}
999 			/*
1000 			 * if reserved region is contained in the active region
1001 			 * then done.
1002 			 */
1003 			if (end_pfn <= node_ar.end_pfn)
1004 				break;
1005 
1006 			/*
1007 			 * reserved region extends past the active region
1008 			 *   get next active region that contains this
1009 			 *   reserved region
1010 			 */
1011 			start_pfn = node_ar.end_pfn;
1012 			physbase = start_pfn << PAGE_SHIFT;
1013 			size = size - reserve_size;
1014 			get_node_active_region(start_pfn, &node_ar);
1015 		}
1016 	}
1017 }
1018 
1019 
1020 void __init do_init_bootmem(void)
1021 {
1022 	int nid;
1023 
1024 	min_low_pfn = 0;
1025 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1026 	max_pfn = max_low_pfn;
1027 
1028 	if (parse_numa_properties())
1029 		setup_nonnuma();
1030 	else
1031 		dump_numa_memory_topology();
1032 
1033 	for_each_online_node(nid) {
1034 		unsigned long start_pfn, end_pfn;
1035 		void *bootmem_vaddr;
1036 		unsigned long bootmap_pages;
1037 
1038 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1039 
1040 		/*
1041 		 * Allocate the node structure node local if possible
1042 		 *
1043 		 * Be careful moving this around, as it relies on all
1044 		 * previous nodes' bootmem to be initialized and have
1045 		 * all reserved areas marked.
1046 		 */
1047 		NODE_DATA(nid) = careful_zallocation(nid,
1048 					sizeof(struct pglist_data),
1049 					SMP_CACHE_BYTES, end_pfn);
1050 
1051   		dbg("node %d\n", nid);
1052 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1053 
1054 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1055 		NODE_DATA(nid)->node_start_pfn = start_pfn;
1056 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1057 
1058 		if (NODE_DATA(nid)->node_spanned_pages == 0)
1059   			continue;
1060 
1061   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1062   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1063 
1064 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1065 		bootmem_vaddr = careful_zallocation(nid,
1066 					bootmap_pages << PAGE_SHIFT,
1067 					PAGE_SIZE, end_pfn);
1068 
1069 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1070 
1071 		init_bootmem_node(NODE_DATA(nid),
1072 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1073 				  start_pfn, end_pfn);
1074 
1075 		free_bootmem_with_active_regions(nid, end_pfn);
1076 		/*
1077 		 * Be very careful about moving this around.  Future
1078 		 * calls to careful_zallocation() depend on this getting
1079 		 * done correctly.
1080 		 */
1081 		mark_reserved_regions_for_nid(nid);
1082 		sparse_memory_present_with_active_regions(nid);
1083 	}
1084 
1085 	init_bootmem_done = 1;
1086 
1087 	/*
1088 	 * Now bootmem is initialised we can create the node to cpumask
1089 	 * lookup tables and setup the cpu callback to populate them.
1090 	 */
1091 	setup_node_to_cpumask_map();
1092 
1093 	register_cpu_notifier(&ppc64_numa_nb);
1094 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1095 			  (void *)(unsigned long)boot_cpuid);
1096 }
1097 
1098 void __init paging_init(void)
1099 {
1100 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1101 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1102 	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1103 	free_area_init_nodes(max_zone_pfns);
1104 }
1105 
1106 static int __init early_numa(char *p)
1107 {
1108 	if (!p)
1109 		return 0;
1110 
1111 	if (strstr(p, "off"))
1112 		numa_enabled = 0;
1113 
1114 	if (strstr(p, "debug"))
1115 		numa_debug = 1;
1116 
1117 	p = strstr(p, "fake=");
1118 	if (p)
1119 		cmdline = p + strlen("fake=");
1120 
1121 	return 0;
1122 }
1123 early_param("numa", early_numa);
1124 
1125 #ifdef CONFIG_MEMORY_HOTPLUG
1126 /*
1127  * Find the node associated with a hot added memory section for
1128  * memory represented in the device tree by the property
1129  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1130  */
1131 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1132 				     unsigned long scn_addr)
1133 {
1134 	const u32 *dm;
1135 	unsigned int drconf_cell_cnt, rc;
1136 	unsigned long lmb_size;
1137 	struct assoc_arrays aa;
1138 	int nid = -1;
1139 
1140 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1141 	if (!drconf_cell_cnt)
1142 		return -1;
1143 
1144 	lmb_size = of_get_lmb_size(memory);
1145 	if (!lmb_size)
1146 		return -1;
1147 
1148 	rc = of_get_assoc_arrays(memory, &aa);
1149 	if (rc)
1150 		return -1;
1151 
1152 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1153 		struct of_drconf_cell drmem;
1154 
1155 		read_drconf_cell(&drmem, &dm);
1156 
1157 		/* skip this block if it is reserved or not assigned to
1158 		 * this partition */
1159 		if ((drmem.flags & DRCONF_MEM_RESERVED)
1160 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1161 			continue;
1162 
1163 		if ((scn_addr < drmem.base_addr)
1164 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1165 			continue;
1166 
1167 		nid = of_drconf_to_nid_single(&drmem, &aa);
1168 		break;
1169 	}
1170 
1171 	return nid;
1172 }
1173 
1174 /*
1175  * Find the node associated with a hot added memory section for memory
1176  * represented in the device tree as a node (i.e. memory@XXXX) for
1177  * each memblock.
1178  */
1179 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1180 {
1181 	struct device_node *memory;
1182 	int nid = -1;
1183 
1184 	for_each_node_by_type(memory, "memory") {
1185 		unsigned long start, size;
1186 		int ranges;
1187 		const unsigned int *memcell_buf;
1188 		unsigned int len;
1189 
1190 		memcell_buf = of_get_property(memory, "reg", &len);
1191 		if (!memcell_buf || len <= 0)
1192 			continue;
1193 
1194 		/* ranges in cell */
1195 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1196 
1197 		while (ranges--) {
1198 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1199 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1200 
1201 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1202 				continue;
1203 
1204 			nid = of_node_to_nid_single(memory);
1205 			break;
1206 		}
1207 
1208 		if (nid >= 0)
1209 			break;
1210 	}
1211 
1212 	of_node_put(memory);
1213 
1214 	return nid;
1215 }
1216 
1217 /*
1218  * Find the node associated with a hot added memory section.  Section
1219  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1220  * sections are fully contained within a single MEMBLOCK.
1221  */
1222 int hot_add_scn_to_nid(unsigned long scn_addr)
1223 {
1224 	struct device_node *memory = NULL;
1225 	int nid, found = 0;
1226 
1227 	if (!numa_enabled || (min_common_depth < 0))
1228 		return first_online_node;
1229 
1230 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1231 	if (memory) {
1232 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1233 		of_node_put(memory);
1234 	} else {
1235 		nid = hot_add_node_scn_to_nid(scn_addr);
1236 	}
1237 
1238 	if (nid < 0 || !node_online(nid))
1239 		nid = first_online_node;
1240 
1241 	if (NODE_DATA(nid)->node_spanned_pages)
1242 		return nid;
1243 
1244 	for_each_online_node(nid) {
1245 		if (NODE_DATA(nid)->node_spanned_pages) {
1246 			found = 1;
1247 			break;
1248 		}
1249 	}
1250 
1251 	BUG_ON(!found);
1252 	return nid;
1253 }
1254 
1255 static u64 hot_add_drconf_memory_max(void)
1256 {
1257         struct device_node *memory = NULL;
1258         unsigned int drconf_cell_cnt = 0;
1259         u64 lmb_size = 0;
1260         const u32 *dm = 0;
1261 
1262         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1263         if (memory) {
1264                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1265                 lmb_size = of_get_lmb_size(memory);
1266                 of_node_put(memory);
1267         }
1268         return lmb_size * drconf_cell_cnt;
1269 }
1270 
1271 /*
1272  * memory_hotplug_max - return max address of memory that may be added
1273  *
1274  * This is currently only used on systems that support drconfig memory
1275  * hotplug.
1276  */
1277 u64 memory_hotplug_max(void)
1278 {
1279         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1280 }
1281 #endif /* CONFIG_MEMORY_HOTPLUG */
1282 
1283 /* Virtual Processor Home Node (VPHN) support */
1284 #ifdef CONFIG_PPC_SPLPAR
1285 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1286 static cpumask_t cpu_associativity_changes_mask;
1287 static int vphn_enabled;
1288 static void set_topology_timer(void);
1289 
1290 /*
1291  * Store the current values of the associativity change counters in the
1292  * hypervisor.
1293  */
1294 static void setup_cpu_associativity_change_counters(void)
1295 {
1296 	int cpu;
1297 
1298 	/* The VPHN feature supports a maximum of 8 reference points */
1299 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1300 
1301 	for_each_possible_cpu(cpu) {
1302 		int i;
1303 		u8 *counts = vphn_cpu_change_counts[cpu];
1304 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1305 
1306 		for (i = 0; i < distance_ref_points_depth; i++)
1307 			counts[i] = hypervisor_counts[i];
1308 	}
1309 }
1310 
1311 /*
1312  * The hypervisor maintains a set of 8 associativity change counters in
1313  * the VPA of each cpu that correspond to the associativity levels in the
1314  * ibm,associativity-reference-points property. When an associativity
1315  * level changes, the corresponding counter is incremented.
1316  *
1317  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1318  * node associativity levels have changed.
1319  *
1320  * Returns the number of cpus with unhandled associativity changes.
1321  */
1322 static int update_cpu_associativity_changes_mask(void)
1323 {
1324 	int cpu, nr_cpus = 0;
1325 	cpumask_t *changes = &cpu_associativity_changes_mask;
1326 
1327 	cpumask_clear(changes);
1328 
1329 	for_each_possible_cpu(cpu) {
1330 		int i, changed = 0;
1331 		u8 *counts = vphn_cpu_change_counts[cpu];
1332 		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1333 
1334 		for (i = 0; i < distance_ref_points_depth; i++) {
1335 			if (hypervisor_counts[i] != counts[i]) {
1336 				counts[i] = hypervisor_counts[i];
1337 				changed = 1;
1338 			}
1339 		}
1340 		if (changed) {
1341 			cpumask_set_cpu(cpu, changes);
1342 			nr_cpus++;
1343 		}
1344 	}
1345 
1346 	return nr_cpus;
1347 }
1348 
1349 /*
1350  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1351  * the complete property we have to add the length in the first cell.
1352  */
1353 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1354 
1355 /*
1356  * Convert the associativity domain numbers returned from the hypervisor
1357  * to the sequence they would appear in the ibm,associativity property.
1358  */
1359 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1360 {
1361 	int i, nr_assoc_doms = 0;
1362 	const u16 *field = (const u16*) packed;
1363 
1364 #define VPHN_FIELD_UNUSED	(0xffff)
1365 #define VPHN_FIELD_MSB		(0x8000)
1366 #define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)
1367 
1368 	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1369 		if (*field == VPHN_FIELD_UNUSED) {
1370 			/* All significant fields processed, and remaining
1371 			 * fields contain the reserved value of all 1's.
1372 			 * Just store them.
1373 			 */
1374 			unpacked[i] = *((u32*)field);
1375 			field += 2;
1376 		} else if (*field & VPHN_FIELD_MSB) {
1377 			/* Data is in the lower 15 bits of this field */
1378 			unpacked[i] = *field & VPHN_FIELD_MASK;
1379 			field++;
1380 			nr_assoc_doms++;
1381 		} else {
1382 			/* Data is in the lower 15 bits of this field
1383 			 * concatenated with the next 16 bit field
1384 			 */
1385 			unpacked[i] = *((u32*)field);
1386 			field += 2;
1387 			nr_assoc_doms++;
1388 		}
1389 	}
1390 
1391 	/* The first cell contains the length of the property */
1392 	unpacked[0] = nr_assoc_doms;
1393 
1394 	return nr_assoc_doms;
1395 }
1396 
1397 /*
1398  * Retrieve the new associativity information for a virtual processor's
1399  * home node.
1400  */
1401 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1402 {
1403 	long rc;
1404 	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1405 	u64 flags = 1;
1406 	int hwcpu = get_hard_smp_processor_id(cpu);
1407 
1408 	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1409 	vphn_unpack_associativity(retbuf, associativity);
1410 
1411 	return rc;
1412 }
1413 
1414 static long vphn_get_associativity(unsigned long cpu,
1415 					unsigned int *associativity)
1416 {
1417 	long rc;
1418 
1419 	rc = hcall_vphn(cpu, associativity);
1420 
1421 	switch (rc) {
1422 	case H_FUNCTION:
1423 		printk(KERN_INFO
1424 			"VPHN is not supported. Disabling polling...\n");
1425 		stop_topology_update();
1426 		break;
1427 	case H_HARDWARE:
1428 		printk(KERN_ERR
1429 			"hcall_vphn() experienced a hardware fault "
1430 			"preventing VPHN. Disabling polling...\n");
1431 		stop_topology_update();
1432 	}
1433 
1434 	return rc;
1435 }
1436 
1437 /*
1438  * Update the node maps and sysfs entries for each cpu whose home node
1439  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1440  */
1441 int arch_update_cpu_topology(void)
1442 {
1443 	int cpu, nid, old_nid, changed = 0;
1444 	unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1445 	struct device *dev;
1446 
1447 	for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1448 		vphn_get_associativity(cpu, associativity);
1449 		nid = associativity_to_nid(associativity);
1450 
1451 		if (nid < 0 || !node_online(nid))
1452 			nid = first_online_node;
1453 
1454 		old_nid = numa_cpu_lookup_table[cpu];
1455 
1456 		/* Disable hotplug while we update the cpu
1457 		 * masks and sysfs.
1458 		 */
1459 		get_online_cpus();
1460 		unregister_cpu_under_node(cpu, old_nid);
1461 		unmap_cpu_from_node(cpu);
1462 		map_cpu_to_node(cpu, nid);
1463 		register_cpu_under_node(cpu, nid);
1464 		put_online_cpus();
1465 
1466 		dev = get_cpu_device(cpu);
1467 		if (dev)
1468 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1469 		changed = 1;
1470 	}
1471 
1472 	return changed;
1473 }
1474 
1475 static void topology_work_fn(struct work_struct *work)
1476 {
1477 	rebuild_sched_domains();
1478 }
1479 static DECLARE_WORK(topology_work, topology_work_fn);
1480 
1481 void topology_schedule_update(void)
1482 {
1483 	schedule_work(&topology_work);
1484 }
1485 
1486 static void topology_timer_fn(unsigned long ignored)
1487 {
1488 	if (!vphn_enabled)
1489 		return;
1490 	if (update_cpu_associativity_changes_mask() > 0)
1491 		topology_schedule_update();
1492 	set_topology_timer();
1493 }
1494 static struct timer_list topology_timer =
1495 	TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1496 
1497 static void set_topology_timer(void)
1498 {
1499 	topology_timer.data = 0;
1500 	topology_timer.expires = jiffies + 60 * HZ;
1501 	add_timer(&topology_timer);
1502 }
1503 
1504 /*
1505  * Start polling for VPHN associativity changes.
1506  */
1507 int start_topology_update(void)
1508 {
1509 	int rc = 0;
1510 
1511 	/* Disabled until races with load balancing are fixed */
1512 	if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1513 	    get_lppaca()->shared_proc) {
1514 		vphn_enabled = 1;
1515 		setup_cpu_associativity_change_counters();
1516 		init_timer_deferrable(&topology_timer);
1517 		set_topology_timer();
1518 		rc = 1;
1519 	}
1520 
1521 	return rc;
1522 }
1523 __initcall(start_topology_update);
1524 
1525 /*
1526  * Disable polling for VPHN associativity changes.
1527  */
1528 int stop_topology_update(void)
1529 {
1530 	vphn_enabled = 0;
1531 	return del_timer_sync(&topology_timer);
1532 }
1533 #endif /* CONFIG_PPC_SPLPAR */
1534