xref: /linux/arch/powerpc/mm/numa.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24 
25 static int numa_enabled = 1;
26 
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29 
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33 
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37 
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
41 
42 /*
43  * We need somewhere to store start/end/node for each region until we have
44  * allocated the real node_data structures.
45  */
46 #define MAX_REGIONS	(MAX_LMB_REGIONS*2)
47 static struct {
48 	unsigned long start_pfn;
49 	unsigned long end_pfn;
50 	int nid;
51 } init_node_data[MAX_REGIONS] __initdata;
52 
53 int __init early_pfn_to_nid(unsigned long pfn)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; init_node_data[i].end_pfn; i++) {
58 		unsigned long start_pfn = init_node_data[i].start_pfn;
59 		unsigned long end_pfn = init_node_data[i].end_pfn;
60 
61 		if ((start_pfn <= pfn) && (pfn < end_pfn))
62 			return init_node_data[i].nid;
63 	}
64 
65 	return -1;
66 }
67 
68 void __init add_region(unsigned int nid, unsigned long start_pfn,
69 		       unsigned long pages)
70 {
71 	unsigned int i;
72 
73 	dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 		nid, start_pfn, pages);
75 
76 	for (i = 0; init_node_data[i].end_pfn; i++) {
77 		if (init_node_data[i].nid != nid)
78 			continue;
79 		if (init_node_data[i].end_pfn == start_pfn) {
80 			init_node_data[i].end_pfn += pages;
81 			return;
82 		}
83 		if (init_node_data[i].start_pfn == (start_pfn + pages)) {
84 			init_node_data[i].start_pfn -= pages;
85 			return;
86 		}
87 	}
88 
89 	/*
90 	 * Leave last entry NULL so we dont iterate off the end (we use
91 	 * entry.end_pfn to terminate the walk).
92 	 */
93 	if (i >= (MAX_REGIONS - 1)) {
94 		printk(KERN_ERR "WARNING: too many memory regions in "
95 				"numa code, truncating\n");
96 		return;
97 	}
98 
99 	init_node_data[i].start_pfn = start_pfn;
100 	init_node_data[i].end_pfn = start_pfn + pages;
101 	init_node_data[i].nid = nid;
102 }
103 
104 /* We assume init_node_data has no overlapping regions */
105 void __init get_region(unsigned int nid, unsigned long *start_pfn,
106 		       unsigned long *end_pfn, unsigned long *pages_present)
107 {
108 	unsigned int i;
109 
110 	*start_pfn = -1UL;
111 	*end_pfn = *pages_present = 0;
112 
113 	for (i = 0; init_node_data[i].end_pfn; i++) {
114 		if (init_node_data[i].nid != nid)
115 			continue;
116 
117 		*pages_present += init_node_data[i].end_pfn -
118 			init_node_data[i].start_pfn;
119 
120 		if (init_node_data[i].start_pfn < *start_pfn)
121 			*start_pfn = init_node_data[i].start_pfn;
122 
123 		if (init_node_data[i].end_pfn > *end_pfn)
124 			*end_pfn = init_node_data[i].end_pfn;
125 	}
126 
127 	/* We didnt find a matching region, return start/end as 0 */
128 	if (*start_pfn == -1UL)
129 		*start_pfn = 0;
130 }
131 
132 static void __cpuinit map_cpu_to_node(int cpu, int node)
133 {
134 	numa_cpu_lookup_table[cpu] = node;
135 
136 	dbg("adding cpu %d to node %d\n", cpu, node);
137 
138 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
139 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
140 }
141 
142 #ifdef CONFIG_HOTPLUG_CPU
143 static void unmap_cpu_from_node(unsigned long cpu)
144 {
145 	int node = numa_cpu_lookup_table[cpu];
146 
147 	dbg("removing cpu %lu from node %d\n", cpu, node);
148 
149 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
150 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
151 	} else {
152 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
153 		       cpu, node);
154 	}
155 }
156 #endif /* CONFIG_HOTPLUG_CPU */
157 
158 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
159 {
160 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
161 	struct device_node *cpu_node = NULL;
162 	unsigned int *interrupt_server, *reg;
163 	int len;
164 
165 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
166 		/* Try interrupt server first */
167 		interrupt_server = (unsigned int *)get_property(cpu_node,
168 					"ibm,ppc-interrupt-server#s", &len);
169 
170 		len = len / sizeof(u32);
171 
172 		if (interrupt_server && (len > 0)) {
173 			while (len--) {
174 				if (interrupt_server[len] == hw_cpuid)
175 					return cpu_node;
176 			}
177 		} else {
178 			reg = (unsigned int *)get_property(cpu_node,
179 							   "reg", &len);
180 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
181 				return cpu_node;
182 		}
183 	}
184 
185 	return NULL;
186 }
187 
188 /* must hold reference to node during call */
189 static int *of_get_associativity(struct device_node *dev)
190 {
191 	return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
192 }
193 
194 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
195  * info is found.
196  */
197 static int of_node_to_nid_single(struct device_node *device)
198 {
199 	int nid = -1;
200 	unsigned int *tmp;
201 
202 	if (min_common_depth == -1)
203 		goto out;
204 
205 	tmp = of_get_associativity(device);
206 	if (!tmp)
207 		goto out;
208 
209 	if (tmp[0] >= min_common_depth)
210 		nid = tmp[min_common_depth];
211 
212 	/* POWER4 LPAR uses 0xffff as invalid node */
213 	if (nid == 0xffff || nid >= MAX_NUMNODES)
214 		nid = -1;
215 out:
216 	return nid;
217 }
218 
219 /* Walk the device tree upwards, looking for an associativity id */
220 int of_node_to_nid(struct device_node *device)
221 {
222 	struct device_node *tmp;
223 	int nid = -1;
224 
225 	of_node_get(device);
226 	while (device) {
227 		nid = of_node_to_nid_single(device);
228 		if (nid != -1)
229 			break;
230 
231 	        tmp = device;
232 		device = of_get_parent(tmp);
233 		of_node_put(tmp);
234 	}
235 	of_node_put(device);
236 
237 	return nid;
238 }
239 EXPORT_SYMBOL_GPL(of_node_to_nid);
240 
241 /*
242  * In theory, the "ibm,associativity" property may contain multiple
243  * associativity lists because a resource may be multiply connected
244  * into the machine.  This resource then has different associativity
245  * characteristics relative to its multiple connections.  We ignore
246  * this for now.  We also assume that all cpu and memory sets have
247  * their distances represented at a common level.  This won't be
248  * true for heirarchical NUMA.
249  *
250  * In any case the ibm,associativity-reference-points should give
251  * the correct depth for a normal NUMA system.
252  *
253  * - Dave Hansen <haveblue@us.ibm.com>
254  */
255 static int __init find_min_common_depth(void)
256 {
257 	int depth;
258 	unsigned int *ref_points;
259 	struct device_node *rtas_root;
260 	unsigned int len;
261 
262 	rtas_root = of_find_node_by_path("/rtas");
263 
264 	if (!rtas_root)
265 		return -1;
266 
267 	/*
268 	 * this property is 2 32-bit integers, each representing a level of
269 	 * depth in the associativity nodes.  The first is for an SMP
270 	 * configuration (should be all 0's) and the second is for a normal
271 	 * NUMA configuration.
272 	 */
273 	ref_points = (unsigned int *)get_property(rtas_root,
274 			"ibm,associativity-reference-points", &len);
275 
276 	if ((len >= 1) && ref_points) {
277 		depth = ref_points[1];
278 	} else {
279 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
280 		depth = -1;
281 	}
282 	of_node_put(rtas_root);
283 
284 	return depth;
285 }
286 
287 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
288 {
289 	struct device_node *memory = NULL;
290 
291 	memory = of_find_node_by_type(memory, "memory");
292 	if (!memory)
293 		panic("numa.c: No memory nodes found!");
294 
295 	*n_addr_cells = prom_n_addr_cells(memory);
296 	*n_size_cells = prom_n_size_cells(memory);
297 	of_node_put(memory);
298 }
299 
300 static unsigned long __devinit read_n_cells(int n, unsigned int **buf)
301 {
302 	unsigned long result = 0;
303 
304 	while (n--) {
305 		result = (result << 32) | **buf;
306 		(*buf)++;
307 	}
308 	return result;
309 }
310 
311 /*
312  * Figure out to which domain a cpu belongs and stick it there.
313  * Return the id of the domain used.
314  */
315 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
316 {
317 	int nid = 0;
318 	struct device_node *cpu = find_cpu_node(lcpu);
319 
320 	if (!cpu) {
321 		WARN_ON(1);
322 		goto out;
323 	}
324 
325 	nid = of_node_to_nid_single(cpu);
326 
327 	if (nid < 0 || !node_online(nid))
328 		nid = any_online_node(NODE_MASK_ALL);
329 out:
330 	map_cpu_to_node(lcpu, nid);
331 
332 	of_node_put(cpu);
333 
334 	return nid;
335 }
336 
337 static int cpu_numa_callback(struct notifier_block *nfb,
338 			     unsigned long action,
339 			     void *hcpu)
340 {
341 	unsigned long lcpu = (unsigned long)hcpu;
342 	int ret = NOTIFY_DONE;
343 
344 	switch (action) {
345 	case CPU_UP_PREPARE:
346 		numa_setup_cpu(lcpu);
347 		ret = NOTIFY_OK;
348 		break;
349 #ifdef CONFIG_HOTPLUG_CPU
350 	case CPU_DEAD:
351 	case CPU_UP_CANCELED:
352 		unmap_cpu_from_node(lcpu);
353 		break;
354 		ret = NOTIFY_OK;
355 #endif
356 	}
357 	return ret;
358 }
359 
360 /*
361  * Check and possibly modify a memory region to enforce the memory limit.
362  *
363  * Returns the size the region should have to enforce the memory limit.
364  * This will either be the original value of size, a truncated value,
365  * or zero. If the returned value of size is 0 the region should be
366  * discarded as it lies wholy above the memory limit.
367  */
368 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
369 						      unsigned long size)
370 {
371 	/*
372 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
373 	 * we've already adjusted it for the limit and it takes care of
374 	 * having memory holes below the limit.
375 	 */
376 
377 	if (! memory_limit)
378 		return size;
379 
380 	if (start + size <= lmb_end_of_DRAM())
381 		return size;
382 
383 	if (start >= lmb_end_of_DRAM())
384 		return 0;
385 
386 	return lmb_end_of_DRAM() - start;
387 }
388 
389 static int __init parse_numa_properties(void)
390 {
391 	struct device_node *cpu = NULL;
392 	struct device_node *memory = NULL;
393 	int default_nid = 0;
394 	unsigned long i;
395 
396 	if (numa_enabled == 0) {
397 		printk(KERN_WARNING "NUMA disabled by user\n");
398 		return -1;
399 	}
400 
401 	min_common_depth = find_min_common_depth();
402 
403 	if (min_common_depth < 0)
404 		return min_common_depth;
405 
406 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
407 
408 	/*
409 	 * Even though we connect cpus to numa domains later in SMP
410 	 * init, we need to know the node ids now. This is because
411 	 * each node to be onlined must have NODE_DATA etc backing it.
412 	 */
413 	for_each_present_cpu(i) {
414 		int nid;
415 
416 		cpu = find_cpu_node(i);
417 		BUG_ON(!cpu);
418 		nid = of_node_to_nid_single(cpu);
419 		of_node_put(cpu);
420 
421 		/*
422 		 * Don't fall back to default_nid yet -- we will plug
423 		 * cpus into nodes once the memory scan has discovered
424 		 * the topology.
425 		 */
426 		if (nid < 0)
427 			continue;
428 		node_set_online(nid);
429 	}
430 
431 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
432 	memory = NULL;
433 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
434 		unsigned long start;
435 		unsigned long size;
436 		int nid;
437 		int ranges;
438 		unsigned int *memcell_buf;
439 		unsigned int len;
440 
441 		memcell_buf = (unsigned int *)get_property(memory,
442 			"linux,usable-memory", &len);
443 		if (!memcell_buf || len <= 0)
444 			memcell_buf =
445 				(unsigned int *)get_property(memory, "reg",
446 					&len);
447 		if (!memcell_buf || len <= 0)
448 			continue;
449 
450 		/* ranges in cell */
451 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
452 new_range:
453 		/* these are order-sensitive, and modify the buffer pointer */
454 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
455 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
456 
457 		/*
458 		 * Assumption: either all memory nodes or none will
459 		 * have associativity properties.  If none, then
460 		 * everything goes to default_nid.
461 		 */
462 		nid = of_node_to_nid_single(memory);
463 		if (nid < 0)
464 			nid = default_nid;
465 		node_set_online(nid);
466 
467 		if (!(size = numa_enforce_memory_limit(start, size))) {
468 			if (--ranges)
469 				goto new_range;
470 			else
471 				continue;
472 		}
473 
474 		add_region(nid, start >> PAGE_SHIFT,
475 			   size >> PAGE_SHIFT);
476 
477 		if (--ranges)
478 			goto new_range;
479 	}
480 
481 	return 0;
482 }
483 
484 static void __init setup_nonnuma(void)
485 {
486 	unsigned long top_of_ram = lmb_end_of_DRAM();
487 	unsigned long total_ram = lmb_phys_mem_size();
488 	unsigned int i;
489 
490 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
491 	       top_of_ram, total_ram);
492 	printk(KERN_INFO "Memory hole size: %ldMB\n",
493 	       (top_of_ram - total_ram) >> 20);
494 
495 	for (i = 0; i < lmb.memory.cnt; ++i)
496 		add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
497 			   lmb_size_pages(&lmb.memory, i));
498 	node_set_online(0);
499 }
500 
501 void __init dump_numa_cpu_topology(void)
502 {
503 	unsigned int node;
504 	unsigned int cpu, count;
505 
506 	if (min_common_depth == -1 || !numa_enabled)
507 		return;
508 
509 	for_each_online_node(node) {
510 		printk(KERN_INFO "Node %d CPUs:", node);
511 
512 		count = 0;
513 		/*
514 		 * If we used a CPU iterator here we would miss printing
515 		 * the holes in the cpumap.
516 		 */
517 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
518 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
519 				if (count == 0)
520 					printk(" %u", cpu);
521 				++count;
522 			} else {
523 				if (count > 1)
524 					printk("-%u", cpu - 1);
525 				count = 0;
526 			}
527 		}
528 
529 		if (count > 1)
530 			printk("-%u", NR_CPUS - 1);
531 		printk("\n");
532 	}
533 }
534 
535 static void __init dump_numa_memory_topology(void)
536 {
537 	unsigned int node;
538 	unsigned int count;
539 
540 	if (min_common_depth == -1 || !numa_enabled)
541 		return;
542 
543 	for_each_online_node(node) {
544 		unsigned long i;
545 
546 		printk(KERN_INFO "Node %d Memory:", node);
547 
548 		count = 0;
549 
550 		for (i = 0; i < lmb_end_of_DRAM();
551 		     i += (1 << SECTION_SIZE_BITS)) {
552 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
553 				if (count == 0)
554 					printk(" 0x%lx", i);
555 				++count;
556 			} else {
557 				if (count > 0)
558 					printk("-0x%lx", i);
559 				count = 0;
560 			}
561 		}
562 
563 		if (count > 0)
564 			printk("-0x%lx", i);
565 		printk("\n");
566 	}
567 }
568 
569 /*
570  * Allocate some memory, satisfying the lmb or bootmem allocator where
571  * required. nid is the preferred node and end is the physical address of
572  * the highest address in the node.
573  *
574  * Returns the physical address of the memory.
575  */
576 static void __init *careful_allocation(int nid, unsigned long size,
577 				       unsigned long align,
578 				       unsigned long end_pfn)
579 {
580 	int new_nid;
581 	unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
582 
583 	/* retry over all memory */
584 	if (!ret)
585 		ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
586 
587 	if (!ret)
588 		panic("numa.c: cannot allocate %lu bytes on node %d",
589 		      size, nid);
590 
591 	/*
592 	 * If the memory came from a previously allocated node, we must
593 	 * retry with the bootmem allocator.
594 	 */
595 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
596 	if (new_nid < nid) {
597 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
598 				size, align, 0);
599 
600 		if (!ret)
601 			panic("numa.c: cannot allocate %lu bytes on node %d",
602 			      size, new_nid);
603 
604 		ret = __pa(ret);
605 
606 		dbg("alloc_bootmem %lx %lx\n", ret, size);
607 	}
608 
609 	return (void *)ret;
610 }
611 
612 void __init do_init_bootmem(void)
613 {
614 	int nid;
615 	unsigned int i;
616 	static struct notifier_block ppc64_numa_nb = {
617 		.notifier_call = cpu_numa_callback,
618 		.priority = 1 /* Must run before sched domains notifier. */
619 	};
620 
621 	min_low_pfn = 0;
622 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
623 	max_pfn = max_low_pfn;
624 
625 	if (parse_numa_properties())
626 		setup_nonnuma();
627 	else
628 		dump_numa_memory_topology();
629 
630 	register_cpu_notifier(&ppc64_numa_nb);
631 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
632 			  (void *)(unsigned long)boot_cpuid);
633 
634 	for_each_online_node(nid) {
635 		unsigned long start_pfn, end_pfn, pages_present;
636 		unsigned long bootmem_paddr;
637 		unsigned long bootmap_pages;
638 
639 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
640 
641 		/* Allocate the node structure node local if possible */
642 		NODE_DATA(nid) = careful_allocation(nid,
643 					sizeof(struct pglist_data),
644 					SMP_CACHE_BYTES, end_pfn);
645 		NODE_DATA(nid) = __va(NODE_DATA(nid));
646 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
647 
648   		dbg("node %d\n", nid);
649 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
650 
651 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
652 		NODE_DATA(nid)->node_start_pfn = start_pfn;
653 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
654 
655 		if (NODE_DATA(nid)->node_spanned_pages == 0)
656   			continue;
657 
658   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
659   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
660 
661 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
662 		bootmem_paddr = (unsigned long)careful_allocation(nid,
663 					bootmap_pages << PAGE_SHIFT,
664 					PAGE_SIZE, end_pfn);
665 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
666 
667 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
668 
669 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
670 				  start_pfn, end_pfn);
671 
672 		/* Add free regions on this node */
673 		for (i = 0; init_node_data[i].end_pfn; i++) {
674 			unsigned long start, end;
675 
676 			if (init_node_data[i].nid != nid)
677 				continue;
678 
679 			start = init_node_data[i].start_pfn << PAGE_SHIFT;
680 			end = init_node_data[i].end_pfn << PAGE_SHIFT;
681 
682 			dbg("free_bootmem %lx %lx\n", start, end - start);
683   			free_bootmem_node(NODE_DATA(nid), start, end - start);
684 		}
685 
686 		/* Mark reserved regions on this node */
687 		for (i = 0; i < lmb.reserved.cnt; i++) {
688 			unsigned long physbase = lmb.reserved.region[i].base;
689 			unsigned long size = lmb.reserved.region[i].size;
690 			unsigned long start_paddr = start_pfn << PAGE_SHIFT;
691 			unsigned long end_paddr = end_pfn << PAGE_SHIFT;
692 
693 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
694 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
695 				continue;
696 
697 			if (physbase < end_paddr &&
698 			    (physbase+size) > start_paddr) {
699 				/* overlaps */
700 				if (physbase < start_paddr) {
701 					size -= start_paddr - physbase;
702 					physbase = start_paddr;
703 				}
704 
705 				if (size > end_paddr - physbase)
706 					size = end_paddr - physbase;
707 
708 				dbg("reserve_bootmem %lx %lx\n", physbase,
709 				    size);
710 				reserve_bootmem_node(NODE_DATA(nid), physbase,
711 						     size);
712 			}
713 		}
714 
715 		/* Add regions into sparsemem */
716 		for (i = 0; init_node_data[i].end_pfn; i++) {
717 			unsigned long start, end;
718 
719 			if (init_node_data[i].nid != nid)
720 				continue;
721 
722 			start = init_node_data[i].start_pfn;
723 			end = init_node_data[i].end_pfn;
724 
725 			memory_present(nid, start, end);
726 		}
727 	}
728 }
729 
730 void __init paging_init(void)
731 {
732 	unsigned long zones_size[MAX_NR_ZONES];
733 	unsigned long zholes_size[MAX_NR_ZONES];
734 	int nid;
735 
736 	memset(zones_size, 0, sizeof(zones_size));
737 	memset(zholes_size, 0, sizeof(zholes_size));
738 
739 	for_each_online_node(nid) {
740 		unsigned long start_pfn, end_pfn, pages_present;
741 
742 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
743 
744 		zones_size[ZONE_DMA] = end_pfn - start_pfn;
745 		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
746 
747 		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
748 		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
749 
750 		free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
751 				    zholes_size);
752 	}
753 }
754 
755 static int __init early_numa(char *p)
756 {
757 	if (!p)
758 		return 0;
759 
760 	if (strstr(p, "off"))
761 		numa_enabled = 0;
762 
763 	if (strstr(p, "debug"))
764 		numa_debug = 1;
765 
766 	return 0;
767 }
768 early_param("numa", early_numa);
769 
770 #ifdef CONFIG_MEMORY_HOTPLUG
771 /*
772  * Find the node associated with a hot added memory section.  Section
773  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
774  * sections are fully contained within a single LMB.
775  */
776 int hot_add_scn_to_nid(unsigned long scn_addr)
777 {
778 	struct device_node *memory = NULL;
779 	nodemask_t nodes;
780 	int default_nid = any_online_node(NODE_MASK_ALL);
781 	int nid;
782 
783 	if (!numa_enabled || (min_common_depth < 0))
784 		return default_nid;
785 
786 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
787 		unsigned long start, size;
788 		int ranges;
789 		unsigned int *memcell_buf;
790 		unsigned int len;
791 
792 		memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
793 		if (!memcell_buf || len <= 0)
794 			continue;
795 
796 		/* ranges in cell */
797 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
798 ha_new_range:
799 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
800 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
801 		nid = of_node_to_nid_single(memory);
802 
803 		/* Domains not present at boot default to 0 */
804 		if (nid < 0 || !node_online(nid))
805 			nid = default_nid;
806 
807 		if ((scn_addr >= start) && (scn_addr < (start + size))) {
808 			of_node_put(memory);
809 			goto got_nid;
810 		}
811 
812 		if (--ranges)		/* process all ranges in cell */
813 			goto ha_new_range;
814 	}
815 	BUG();	/* section address should be found above */
816 	return 0;
817 
818 	/* Temporary code to ensure that returned node is not empty */
819 got_nid:
820 	nodes_setall(nodes);
821 	while (NODE_DATA(nid)->node_spanned_pages == 0) {
822 		node_clear(nid, nodes);
823 		nid = any_online_node(nodes);
824 	}
825 	return nid;
826 }
827 #endif /* CONFIG_MEMORY_HOTPLUG */
828