xref: /linux/arch/powerpc/mm/numa.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24 
25 static int numa_enabled = 1;
26 
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29 
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33 
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37 
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
41 
42 /*
43  * We need somewhere to store start/end/node for each region until we have
44  * allocated the real node_data structures.
45  */
46 #define MAX_REGIONS	(MAX_LMB_REGIONS*2)
47 static struct {
48 	unsigned long start_pfn;
49 	unsigned long end_pfn;
50 	int nid;
51 } init_node_data[MAX_REGIONS] __initdata;
52 
53 int __init early_pfn_to_nid(unsigned long pfn)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; init_node_data[i].end_pfn; i++) {
58 		unsigned long start_pfn = init_node_data[i].start_pfn;
59 		unsigned long end_pfn = init_node_data[i].end_pfn;
60 
61 		if ((start_pfn <= pfn) && (pfn < end_pfn))
62 			return init_node_data[i].nid;
63 	}
64 
65 	return -1;
66 }
67 
68 void __init add_region(unsigned int nid, unsigned long start_pfn,
69 		       unsigned long pages)
70 {
71 	unsigned int i;
72 
73 	dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 		nid, start_pfn, pages);
75 
76 	for (i = 0; init_node_data[i].end_pfn; i++) {
77 		if (init_node_data[i].nid != nid)
78 			continue;
79 		if (init_node_data[i].end_pfn == start_pfn) {
80 			init_node_data[i].end_pfn += pages;
81 			return;
82 		}
83 		if (init_node_data[i].start_pfn == (start_pfn + pages)) {
84 			init_node_data[i].start_pfn -= pages;
85 			return;
86 		}
87 	}
88 
89 	/*
90 	 * Leave last entry NULL so we dont iterate off the end (we use
91 	 * entry.end_pfn to terminate the walk).
92 	 */
93 	if (i >= (MAX_REGIONS - 1)) {
94 		printk(KERN_ERR "WARNING: too many memory regions in "
95 				"numa code, truncating\n");
96 		return;
97 	}
98 
99 	init_node_data[i].start_pfn = start_pfn;
100 	init_node_data[i].end_pfn = start_pfn + pages;
101 	init_node_data[i].nid = nid;
102 }
103 
104 /* We assume init_node_data has no overlapping regions */
105 void __init get_region(unsigned int nid, unsigned long *start_pfn,
106 		       unsigned long *end_pfn, unsigned long *pages_present)
107 {
108 	unsigned int i;
109 
110 	*start_pfn = -1UL;
111 	*end_pfn = *pages_present = 0;
112 
113 	for (i = 0; init_node_data[i].end_pfn; i++) {
114 		if (init_node_data[i].nid != nid)
115 			continue;
116 
117 		*pages_present += init_node_data[i].end_pfn -
118 			init_node_data[i].start_pfn;
119 
120 		if (init_node_data[i].start_pfn < *start_pfn)
121 			*start_pfn = init_node_data[i].start_pfn;
122 
123 		if (init_node_data[i].end_pfn > *end_pfn)
124 			*end_pfn = init_node_data[i].end_pfn;
125 	}
126 
127 	/* We didnt find a matching region, return start/end as 0 */
128 	if (*start_pfn == -1UL)
129 		*start_pfn = 0;
130 }
131 
132 static void __cpuinit map_cpu_to_node(int cpu, int node)
133 {
134 	numa_cpu_lookup_table[cpu] = node;
135 
136 	dbg("adding cpu %d to node %d\n", cpu, node);
137 
138 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
139 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
140 }
141 
142 #ifdef CONFIG_HOTPLUG_CPU
143 static void unmap_cpu_from_node(unsigned long cpu)
144 {
145 	int node = numa_cpu_lookup_table[cpu];
146 
147 	dbg("removing cpu %lu from node %d\n", cpu, node);
148 
149 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
150 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
151 	} else {
152 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
153 		       cpu, node);
154 	}
155 }
156 #endif /* CONFIG_HOTPLUG_CPU */
157 
158 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
159 {
160 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
161 	struct device_node *cpu_node = NULL;
162 	const unsigned int *interrupt_server, *reg;
163 	int len;
164 
165 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
166 		/* Try interrupt server first */
167 		interrupt_server = get_property(cpu_node,
168 					"ibm,ppc-interrupt-server#s", &len);
169 
170 		len = len / sizeof(u32);
171 
172 		if (interrupt_server && (len > 0)) {
173 			while (len--) {
174 				if (interrupt_server[len] == hw_cpuid)
175 					return cpu_node;
176 			}
177 		} else {
178 			reg = get_property(cpu_node, "reg", &len);
179 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
180 				return cpu_node;
181 		}
182 	}
183 
184 	return NULL;
185 }
186 
187 /* must hold reference to node during call */
188 static const int *of_get_associativity(struct device_node *dev)
189 {
190 	return get_property(dev, "ibm,associativity", NULL);
191 }
192 
193 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
194  * info is found.
195  */
196 static int of_node_to_nid_single(struct device_node *device)
197 {
198 	int nid = -1;
199 	const unsigned int *tmp;
200 
201 	if (min_common_depth == -1)
202 		goto out;
203 
204 	tmp = of_get_associativity(device);
205 	if (!tmp)
206 		goto out;
207 
208 	if (tmp[0] >= min_common_depth)
209 		nid = tmp[min_common_depth];
210 
211 	/* POWER4 LPAR uses 0xffff as invalid node */
212 	if (nid == 0xffff || nid >= MAX_NUMNODES)
213 		nid = -1;
214 out:
215 	return nid;
216 }
217 
218 /* Walk the device tree upwards, looking for an associativity id */
219 int of_node_to_nid(struct device_node *device)
220 {
221 	struct device_node *tmp;
222 	int nid = -1;
223 
224 	of_node_get(device);
225 	while (device) {
226 		nid = of_node_to_nid_single(device);
227 		if (nid != -1)
228 			break;
229 
230 	        tmp = device;
231 		device = of_get_parent(tmp);
232 		of_node_put(tmp);
233 	}
234 	of_node_put(device);
235 
236 	return nid;
237 }
238 EXPORT_SYMBOL_GPL(of_node_to_nid);
239 
240 /*
241  * In theory, the "ibm,associativity" property may contain multiple
242  * associativity lists because a resource may be multiply connected
243  * into the machine.  This resource then has different associativity
244  * characteristics relative to its multiple connections.  We ignore
245  * this for now.  We also assume that all cpu and memory sets have
246  * their distances represented at a common level.  This won't be
247  * true for heirarchical NUMA.
248  *
249  * In any case the ibm,associativity-reference-points should give
250  * the correct depth for a normal NUMA system.
251  *
252  * - Dave Hansen <haveblue@us.ibm.com>
253  */
254 static int __init find_min_common_depth(void)
255 {
256 	int depth;
257 	const unsigned int *ref_points;
258 	struct device_node *rtas_root;
259 	unsigned int len;
260 
261 	rtas_root = of_find_node_by_path("/rtas");
262 
263 	if (!rtas_root)
264 		return -1;
265 
266 	/*
267 	 * this property is 2 32-bit integers, each representing a level of
268 	 * depth in the associativity nodes.  The first is for an SMP
269 	 * configuration (should be all 0's) and the second is for a normal
270 	 * NUMA configuration.
271 	 */
272 	ref_points = get_property(rtas_root,
273 			"ibm,associativity-reference-points", &len);
274 
275 	if ((len >= 1) && ref_points) {
276 		depth = ref_points[1];
277 	} else {
278 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
279 		depth = -1;
280 	}
281 	of_node_put(rtas_root);
282 
283 	return depth;
284 }
285 
286 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
287 {
288 	struct device_node *memory = NULL;
289 
290 	memory = of_find_node_by_type(memory, "memory");
291 	if (!memory)
292 		panic("numa.c: No memory nodes found!");
293 
294 	*n_addr_cells = prom_n_addr_cells(memory);
295 	*n_size_cells = prom_n_size_cells(memory);
296 	of_node_put(memory);
297 }
298 
299 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
300 {
301 	unsigned long result = 0;
302 
303 	while (n--) {
304 		result = (result << 32) | **buf;
305 		(*buf)++;
306 	}
307 	return result;
308 }
309 
310 /*
311  * Figure out to which domain a cpu belongs and stick it there.
312  * Return the id of the domain used.
313  */
314 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
315 {
316 	int nid = 0;
317 	struct device_node *cpu = find_cpu_node(lcpu);
318 
319 	if (!cpu) {
320 		WARN_ON(1);
321 		goto out;
322 	}
323 
324 	nid = of_node_to_nid_single(cpu);
325 
326 	if (nid < 0 || !node_online(nid))
327 		nid = any_online_node(NODE_MASK_ALL);
328 out:
329 	map_cpu_to_node(lcpu, nid);
330 
331 	of_node_put(cpu);
332 
333 	return nid;
334 }
335 
336 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
337 			     unsigned long action,
338 			     void *hcpu)
339 {
340 	unsigned long lcpu = (unsigned long)hcpu;
341 	int ret = NOTIFY_DONE;
342 
343 	switch (action) {
344 	case CPU_UP_PREPARE:
345 		numa_setup_cpu(lcpu);
346 		ret = NOTIFY_OK;
347 		break;
348 #ifdef CONFIG_HOTPLUG_CPU
349 	case CPU_DEAD:
350 	case CPU_UP_CANCELED:
351 		unmap_cpu_from_node(lcpu);
352 		break;
353 		ret = NOTIFY_OK;
354 #endif
355 	}
356 	return ret;
357 }
358 
359 /*
360  * Check and possibly modify a memory region to enforce the memory limit.
361  *
362  * Returns the size the region should have to enforce the memory limit.
363  * This will either be the original value of size, a truncated value,
364  * or zero. If the returned value of size is 0 the region should be
365  * discarded as it lies wholy above the memory limit.
366  */
367 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
368 						      unsigned long size)
369 {
370 	/*
371 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
372 	 * we've already adjusted it for the limit and it takes care of
373 	 * having memory holes below the limit.
374 	 */
375 
376 	if (! memory_limit)
377 		return size;
378 
379 	if (start + size <= lmb_end_of_DRAM())
380 		return size;
381 
382 	if (start >= lmb_end_of_DRAM())
383 		return 0;
384 
385 	return lmb_end_of_DRAM() - start;
386 }
387 
388 static int __init parse_numa_properties(void)
389 {
390 	struct device_node *cpu = NULL;
391 	struct device_node *memory = NULL;
392 	int default_nid = 0;
393 	unsigned long i;
394 
395 	if (numa_enabled == 0) {
396 		printk(KERN_WARNING "NUMA disabled by user\n");
397 		return -1;
398 	}
399 
400 	min_common_depth = find_min_common_depth();
401 
402 	if (min_common_depth < 0)
403 		return min_common_depth;
404 
405 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
406 
407 	/*
408 	 * Even though we connect cpus to numa domains later in SMP
409 	 * init, we need to know the node ids now. This is because
410 	 * each node to be onlined must have NODE_DATA etc backing it.
411 	 */
412 	for_each_present_cpu(i) {
413 		int nid;
414 
415 		cpu = find_cpu_node(i);
416 		BUG_ON(!cpu);
417 		nid = of_node_to_nid_single(cpu);
418 		of_node_put(cpu);
419 
420 		/*
421 		 * Don't fall back to default_nid yet -- we will plug
422 		 * cpus into nodes once the memory scan has discovered
423 		 * the topology.
424 		 */
425 		if (nid < 0)
426 			continue;
427 		node_set_online(nid);
428 	}
429 
430 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
431 	memory = NULL;
432 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
433 		unsigned long start;
434 		unsigned long size;
435 		int nid;
436 		int ranges;
437 		const unsigned int *memcell_buf;
438 		unsigned int len;
439 
440 		memcell_buf = get_property(memory,
441 			"linux,usable-memory", &len);
442 		if (!memcell_buf || len <= 0)
443 			memcell_buf = get_property(memory, "reg", &len);
444 		if (!memcell_buf || len <= 0)
445 			continue;
446 
447 		/* ranges in cell */
448 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
449 new_range:
450 		/* these are order-sensitive, and modify the buffer pointer */
451 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
452 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
453 
454 		/*
455 		 * Assumption: either all memory nodes or none will
456 		 * have associativity properties.  If none, then
457 		 * everything goes to default_nid.
458 		 */
459 		nid = of_node_to_nid_single(memory);
460 		if (nid < 0)
461 			nid = default_nid;
462 		node_set_online(nid);
463 
464 		if (!(size = numa_enforce_memory_limit(start, size))) {
465 			if (--ranges)
466 				goto new_range;
467 			else
468 				continue;
469 		}
470 
471 		add_region(nid, start >> PAGE_SHIFT,
472 			   size >> PAGE_SHIFT);
473 
474 		if (--ranges)
475 			goto new_range;
476 	}
477 
478 	return 0;
479 }
480 
481 static void __init setup_nonnuma(void)
482 {
483 	unsigned long top_of_ram = lmb_end_of_DRAM();
484 	unsigned long total_ram = lmb_phys_mem_size();
485 	unsigned int i;
486 
487 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
488 	       top_of_ram, total_ram);
489 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
490 	       (top_of_ram - total_ram) >> 20);
491 
492 	for (i = 0; i < lmb.memory.cnt; ++i)
493 		add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
494 			   lmb_size_pages(&lmb.memory, i));
495 	node_set_online(0);
496 }
497 
498 void __init dump_numa_cpu_topology(void)
499 {
500 	unsigned int node;
501 	unsigned int cpu, count;
502 
503 	if (min_common_depth == -1 || !numa_enabled)
504 		return;
505 
506 	for_each_online_node(node) {
507 		printk(KERN_DEBUG "Node %d CPUs:", node);
508 
509 		count = 0;
510 		/*
511 		 * If we used a CPU iterator here we would miss printing
512 		 * the holes in the cpumap.
513 		 */
514 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
515 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
516 				if (count == 0)
517 					printk(" %u", cpu);
518 				++count;
519 			} else {
520 				if (count > 1)
521 					printk("-%u", cpu - 1);
522 				count = 0;
523 			}
524 		}
525 
526 		if (count > 1)
527 			printk("-%u", NR_CPUS - 1);
528 		printk("\n");
529 	}
530 }
531 
532 static void __init dump_numa_memory_topology(void)
533 {
534 	unsigned int node;
535 	unsigned int count;
536 
537 	if (min_common_depth == -1 || !numa_enabled)
538 		return;
539 
540 	for_each_online_node(node) {
541 		unsigned long i;
542 
543 		printk(KERN_DEBUG "Node %d Memory:", node);
544 
545 		count = 0;
546 
547 		for (i = 0; i < lmb_end_of_DRAM();
548 		     i += (1 << SECTION_SIZE_BITS)) {
549 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
550 				if (count == 0)
551 					printk(" 0x%lx", i);
552 				++count;
553 			} else {
554 				if (count > 0)
555 					printk("-0x%lx", i);
556 				count = 0;
557 			}
558 		}
559 
560 		if (count > 0)
561 			printk("-0x%lx", i);
562 		printk("\n");
563 	}
564 }
565 
566 /*
567  * Allocate some memory, satisfying the lmb or bootmem allocator where
568  * required. nid is the preferred node and end is the physical address of
569  * the highest address in the node.
570  *
571  * Returns the physical address of the memory.
572  */
573 static void __init *careful_allocation(int nid, unsigned long size,
574 				       unsigned long align,
575 				       unsigned long end_pfn)
576 {
577 	int new_nid;
578 	unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
579 
580 	/* retry over all memory */
581 	if (!ret)
582 		ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
583 
584 	if (!ret)
585 		panic("numa.c: cannot allocate %lu bytes on node %d",
586 		      size, nid);
587 
588 	/*
589 	 * If the memory came from a previously allocated node, we must
590 	 * retry with the bootmem allocator.
591 	 */
592 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
593 	if (new_nid < nid) {
594 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
595 				size, align, 0);
596 
597 		if (!ret)
598 			panic("numa.c: cannot allocate %lu bytes on node %d",
599 			      size, new_nid);
600 
601 		ret = __pa(ret);
602 
603 		dbg("alloc_bootmem %lx %lx\n", ret, size);
604 	}
605 
606 	return (void *)ret;
607 }
608 
609 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
610 	.notifier_call = cpu_numa_callback,
611 	.priority = 1 /* Must run before sched domains notifier. */
612 };
613 
614 void __init do_init_bootmem(void)
615 {
616 	int nid;
617 	unsigned int i;
618 
619 	min_low_pfn = 0;
620 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
621 	max_pfn = max_low_pfn;
622 
623 	if (parse_numa_properties())
624 		setup_nonnuma();
625 	else
626 		dump_numa_memory_topology();
627 
628 	register_cpu_notifier(&ppc64_numa_nb);
629 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
630 			  (void *)(unsigned long)boot_cpuid);
631 
632 	for_each_online_node(nid) {
633 		unsigned long start_pfn, end_pfn, pages_present;
634 		unsigned long bootmem_paddr;
635 		unsigned long bootmap_pages;
636 
637 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
638 
639 		/* Allocate the node structure node local if possible */
640 		NODE_DATA(nid) = careful_allocation(nid,
641 					sizeof(struct pglist_data),
642 					SMP_CACHE_BYTES, end_pfn);
643 		NODE_DATA(nid) = __va(NODE_DATA(nid));
644 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
645 
646   		dbg("node %d\n", nid);
647 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
648 
649 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
650 		NODE_DATA(nid)->node_start_pfn = start_pfn;
651 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
652 
653 		if (NODE_DATA(nid)->node_spanned_pages == 0)
654   			continue;
655 
656   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
657   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
658 
659 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
660 		bootmem_paddr = (unsigned long)careful_allocation(nid,
661 					bootmap_pages << PAGE_SHIFT,
662 					PAGE_SIZE, end_pfn);
663 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
664 
665 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
666 
667 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
668 				  start_pfn, end_pfn);
669 
670 		/* Add free regions on this node */
671 		for (i = 0; init_node_data[i].end_pfn; i++) {
672 			unsigned long start, end;
673 
674 			if (init_node_data[i].nid != nid)
675 				continue;
676 
677 			start = init_node_data[i].start_pfn << PAGE_SHIFT;
678 			end = init_node_data[i].end_pfn << PAGE_SHIFT;
679 
680 			dbg("free_bootmem %lx %lx\n", start, end - start);
681   			free_bootmem_node(NODE_DATA(nid), start, end - start);
682 		}
683 
684 		/* Mark reserved regions on this node */
685 		for (i = 0; i < lmb.reserved.cnt; i++) {
686 			unsigned long physbase = lmb.reserved.region[i].base;
687 			unsigned long size = lmb.reserved.region[i].size;
688 			unsigned long start_paddr = start_pfn << PAGE_SHIFT;
689 			unsigned long end_paddr = end_pfn << PAGE_SHIFT;
690 
691 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
692 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
693 				continue;
694 
695 			if (physbase < end_paddr &&
696 			    (physbase+size) > start_paddr) {
697 				/* overlaps */
698 				if (physbase < start_paddr) {
699 					size -= start_paddr - physbase;
700 					physbase = start_paddr;
701 				}
702 
703 				if (size > end_paddr - physbase)
704 					size = end_paddr - physbase;
705 
706 				dbg("reserve_bootmem %lx %lx\n", physbase,
707 				    size);
708 				reserve_bootmem_node(NODE_DATA(nid), physbase,
709 						     size);
710 			}
711 		}
712 
713 		/* Add regions into sparsemem */
714 		for (i = 0; init_node_data[i].end_pfn; i++) {
715 			unsigned long start, end;
716 
717 			if (init_node_data[i].nid != nid)
718 				continue;
719 
720 			start = init_node_data[i].start_pfn;
721 			end = init_node_data[i].end_pfn;
722 
723 			memory_present(nid, start, end);
724 		}
725 	}
726 }
727 
728 void __init paging_init(void)
729 {
730 	unsigned long zones_size[MAX_NR_ZONES];
731 	unsigned long zholes_size[MAX_NR_ZONES];
732 	int nid;
733 
734 	memset(zones_size, 0, sizeof(zones_size));
735 	memset(zholes_size, 0, sizeof(zholes_size));
736 
737 	for_each_online_node(nid) {
738 		unsigned long start_pfn, end_pfn, pages_present;
739 
740 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
741 
742 		zones_size[ZONE_DMA] = end_pfn - start_pfn;
743 		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
744 
745 		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
746 		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
747 
748 		free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
749 				    zholes_size);
750 	}
751 }
752 
753 static int __init early_numa(char *p)
754 {
755 	if (!p)
756 		return 0;
757 
758 	if (strstr(p, "off"))
759 		numa_enabled = 0;
760 
761 	if (strstr(p, "debug"))
762 		numa_debug = 1;
763 
764 	return 0;
765 }
766 early_param("numa", early_numa);
767 
768 #ifdef CONFIG_MEMORY_HOTPLUG
769 /*
770  * Find the node associated with a hot added memory section.  Section
771  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
772  * sections are fully contained within a single LMB.
773  */
774 int hot_add_scn_to_nid(unsigned long scn_addr)
775 {
776 	struct device_node *memory = NULL;
777 	nodemask_t nodes;
778 	int default_nid = any_online_node(NODE_MASK_ALL);
779 	int nid;
780 
781 	if (!numa_enabled || (min_common_depth < 0))
782 		return default_nid;
783 
784 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
785 		unsigned long start, size;
786 		int ranges;
787 		const unsigned int *memcell_buf;
788 		unsigned int len;
789 
790 		memcell_buf = get_property(memory, "reg", &len);
791 		if (!memcell_buf || len <= 0)
792 			continue;
793 
794 		/* ranges in cell */
795 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
796 ha_new_range:
797 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
798 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
799 		nid = of_node_to_nid_single(memory);
800 
801 		/* Domains not present at boot default to 0 */
802 		if (nid < 0 || !node_online(nid))
803 			nid = default_nid;
804 
805 		if ((scn_addr >= start) && (scn_addr < (start + size))) {
806 			of_node_put(memory);
807 			goto got_nid;
808 		}
809 
810 		if (--ranges)		/* process all ranges in cell */
811 			goto ha_new_range;
812 	}
813 	BUG();	/* section address should be found above */
814 	return 0;
815 
816 	/* Temporary code to ensure that returned node is not empty */
817 got_nid:
818 	nodes_setall(nodes);
819 	while (NODE_DATA(nid)->node_spanned_pages == 0) {
820 		node_clear(nid, nodes);
821 		nid = any_online_node(nodes);
822 	}
823 	return nid;
824 }
825 #endif /* CONFIG_MEMORY_HOTPLUG */
826