xref: /linux/arch/powerpc/mm/numa.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24 
25 static int numa_enabled = 1;
26 
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29 
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33 
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37 
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
41 
42 /*
43  * We need somewhere to store start/end/node for each region until we have
44  * allocated the real node_data structures.
45  */
46 #define MAX_REGIONS	(MAX_LMB_REGIONS*2)
47 static struct {
48 	unsigned long start_pfn;
49 	unsigned long end_pfn;
50 	int nid;
51 } init_node_data[MAX_REGIONS] __initdata;
52 
53 int __init early_pfn_to_nid(unsigned long pfn)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; init_node_data[i].end_pfn; i++) {
58 		unsigned long start_pfn = init_node_data[i].start_pfn;
59 		unsigned long end_pfn = init_node_data[i].end_pfn;
60 
61 		if ((start_pfn <= pfn) && (pfn < end_pfn))
62 			return init_node_data[i].nid;
63 	}
64 
65 	return -1;
66 }
67 
68 void __init add_region(unsigned int nid, unsigned long start_pfn,
69 		       unsigned long pages)
70 {
71 	unsigned int i;
72 
73 	dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 		nid, start_pfn, pages);
75 
76 	for (i = 0; init_node_data[i].end_pfn; i++) {
77 		if (init_node_data[i].nid != nid)
78 			continue;
79 		if (init_node_data[i].end_pfn == start_pfn) {
80 			init_node_data[i].end_pfn += pages;
81 			return;
82 		}
83 		if (init_node_data[i].start_pfn == (start_pfn + pages)) {
84 			init_node_data[i].start_pfn -= pages;
85 			return;
86 		}
87 	}
88 
89 	/*
90 	 * Leave last entry NULL so we dont iterate off the end (we use
91 	 * entry.end_pfn to terminate the walk).
92 	 */
93 	if (i >= (MAX_REGIONS - 1)) {
94 		printk(KERN_ERR "WARNING: too many memory regions in "
95 				"numa code, truncating\n");
96 		return;
97 	}
98 
99 	init_node_data[i].start_pfn = start_pfn;
100 	init_node_data[i].end_pfn = start_pfn + pages;
101 	init_node_data[i].nid = nid;
102 }
103 
104 /* We assume init_node_data has no overlapping regions */
105 void __init get_region(unsigned int nid, unsigned long *start_pfn,
106 		       unsigned long *end_pfn, unsigned long *pages_present)
107 {
108 	unsigned int i;
109 
110 	*start_pfn = -1UL;
111 	*end_pfn = *pages_present = 0;
112 
113 	for (i = 0; init_node_data[i].end_pfn; i++) {
114 		if (init_node_data[i].nid != nid)
115 			continue;
116 
117 		*pages_present += init_node_data[i].end_pfn -
118 			init_node_data[i].start_pfn;
119 
120 		if (init_node_data[i].start_pfn < *start_pfn)
121 			*start_pfn = init_node_data[i].start_pfn;
122 
123 		if (init_node_data[i].end_pfn > *end_pfn)
124 			*end_pfn = init_node_data[i].end_pfn;
125 	}
126 
127 	/* We didnt find a matching region, return start/end as 0 */
128 	if (*start_pfn == -1UL)
129 		*start_pfn = 0;
130 }
131 
132 static void __cpuinit map_cpu_to_node(int cpu, int node)
133 {
134 	numa_cpu_lookup_table[cpu] = node;
135 
136 	dbg("adding cpu %d to node %d\n", cpu, node);
137 
138 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
139 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
140 }
141 
142 #ifdef CONFIG_HOTPLUG_CPU
143 static void unmap_cpu_from_node(unsigned long cpu)
144 {
145 	int node = numa_cpu_lookup_table[cpu];
146 
147 	dbg("removing cpu %lu from node %d\n", cpu, node);
148 
149 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
150 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
151 	} else {
152 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
153 		       cpu, node);
154 	}
155 }
156 #endif /* CONFIG_HOTPLUG_CPU */
157 
158 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
159 {
160 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
161 	struct device_node *cpu_node = NULL;
162 	unsigned int *interrupt_server, *reg;
163 	int len;
164 
165 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
166 		/* Try interrupt server first */
167 		interrupt_server = (unsigned int *)get_property(cpu_node,
168 					"ibm,ppc-interrupt-server#s", &len);
169 
170 		len = len / sizeof(u32);
171 
172 		if (interrupt_server && (len > 0)) {
173 			while (len--) {
174 				if (interrupt_server[len] == hw_cpuid)
175 					return cpu_node;
176 			}
177 		} else {
178 			reg = (unsigned int *)get_property(cpu_node,
179 							   "reg", &len);
180 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
181 				return cpu_node;
182 		}
183 	}
184 
185 	return NULL;
186 }
187 
188 /* must hold reference to node during call */
189 static int *of_get_associativity(struct device_node *dev)
190 {
191 	return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
192 }
193 
194 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
195  * info is found.
196  */
197 static int of_node_to_nid(struct device_node *device)
198 {
199 	int nid = -1;
200 	unsigned int *tmp;
201 
202 	if (min_common_depth == -1)
203 		goto out;
204 
205 	tmp = of_get_associativity(device);
206 	if (!tmp)
207 		goto out;
208 
209 	if (tmp[0] >= min_common_depth)
210 		nid = tmp[min_common_depth];
211 
212 	/* POWER4 LPAR uses 0xffff as invalid node */
213 	if (nid == 0xffff || nid >= MAX_NUMNODES)
214 		nid = -1;
215 out:
216 	return nid;
217 }
218 
219 /*
220  * In theory, the "ibm,associativity" property may contain multiple
221  * associativity lists because a resource may be multiply connected
222  * into the machine.  This resource then has different associativity
223  * characteristics relative to its multiple connections.  We ignore
224  * this for now.  We also assume that all cpu and memory sets have
225  * their distances represented at a common level.  This won't be
226  * true for heirarchical NUMA.
227  *
228  * In any case the ibm,associativity-reference-points should give
229  * the correct depth for a normal NUMA system.
230  *
231  * - Dave Hansen <haveblue@us.ibm.com>
232  */
233 static int __init find_min_common_depth(void)
234 {
235 	int depth;
236 	unsigned int *ref_points;
237 	struct device_node *rtas_root;
238 	unsigned int len;
239 
240 	rtas_root = of_find_node_by_path("/rtas");
241 
242 	if (!rtas_root)
243 		return -1;
244 
245 	/*
246 	 * this property is 2 32-bit integers, each representing a level of
247 	 * depth in the associativity nodes.  The first is for an SMP
248 	 * configuration (should be all 0's) and the second is for a normal
249 	 * NUMA configuration.
250 	 */
251 	ref_points = (unsigned int *)get_property(rtas_root,
252 			"ibm,associativity-reference-points", &len);
253 
254 	if ((len >= 1) && ref_points) {
255 		depth = ref_points[1];
256 	} else {
257 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
258 		depth = -1;
259 	}
260 	of_node_put(rtas_root);
261 
262 	return depth;
263 }
264 
265 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
266 {
267 	struct device_node *memory = NULL;
268 
269 	memory = of_find_node_by_type(memory, "memory");
270 	if (!memory)
271 		panic("numa.c: No memory nodes found!");
272 
273 	*n_addr_cells = prom_n_addr_cells(memory);
274 	*n_size_cells = prom_n_size_cells(memory);
275 	of_node_put(memory);
276 }
277 
278 static unsigned long __devinit read_n_cells(int n, unsigned int **buf)
279 {
280 	unsigned long result = 0;
281 
282 	while (n--) {
283 		result = (result << 32) | **buf;
284 		(*buf)++;
285 	}
286 	return result;
287 }
288 
289 /*
290  * Figure out to which domain a cpu belongs and stick it there.
291  * Return the id of the domain used.
292  */
293 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
294 {
295 	int nid = 0;
296 	struct device_node *cpu = find_cpu_node(lcpu);
297 
298 	if (!cpu) {
299 		WARN_ON(1);
300 		goto out;
301 	}
302 
303 	nid = of_node_to_nid(cpu);
304 
305 	if (nid < 0 || !node_online(nid))
306 		nid = any_online_node(NODE_MASK_ALL);
307 out:
308 	map_cpu_to_node(lcpu, nid);
309 
310 	of_node_put(cpu);
311 
312 	return nid;
313 }
314 
315 static int cpu_numa_callback(struct notifier_block *nfb,
316 			     unsigned long action,
317 			     void *hcpu)
318 {
319 	unsigned long lcpu = (unsigned long)hcpu;
320 	int ret = NOTIFY_DONE;
321 
322 	switch (action) {
323 	case CPU_UP_PREPARE:
324 		numa_setup_cpu(lcpu);
325 		ret = NOTIFY_OK;
326 		break;
327 #ifdef CONFIG_HOTPLUG_CPU
328 	case CPU_DEAD:
329 	case CPU_UP_CANCELED:
330 		unmap_cpu_from_node(lcpu);
331 		break;
332 		ret = NOTIFY_OK;
333 #endif
334 	}
335 	return ret;
336 }
337 
338 /*
339  * Check and possibly modify a memory region to enforce the memory limit.
340  *
341  * Returns the size the region should have to enforce the memory limit.
342  * This will either be the original value of size, a truncated value,
343  * or zero. If the returned value of size is 0 the region should be
344  * discarded as it lies wholy above the memory limit.
345  */
346 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
347 						      unsigned long size)
348 {
349 	/*
350 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
351 	 * we've already adjusted it for the limit and it takes care of
352 	 * having memory holes below the limit.
353 	 */
354 
355 	if (! memory_limit)
356 		return size;
357 
358 	if (start + size <= lmb_end_of_DRAM())
359 		return size;
360 
361 	if (start >= lmb_end_of_DRAM())
362 		return 0;
363 
364 	return lmb_end_of_DRAM() - start;
365 }
366 
367 static int __init parse_numa_properties(void)
368 {
369 	struct device_node *cpu = NULL;
370 	struct device_node *memory = NULL;
371 	int default_nid = 0;
372 	unsigned long i;
373 
374 	if (numa_enabled == 0) {
375 		printk(KERN_WARNING "NUMA disabled by user\n");
376 		return -1;
377 	}
378 
379 	min_common_depth = find_min_common_depth();
380 
381 	if (min_common_depth < 0)
382 		return min_common_depth;
383 
384 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
385 
386 	/*
387 	 * Even though we connect cpus to numa domains later in SMP
388 	 * init, we need to know the node ids now. This is because
389 	 * each node to be onlined must have NODE_DATA etc backing it.
390 	 */
391 	for_each_present_cpu(i) {
392 		int nid;
393 
394 		cpu = find_cpu_node(i);
395 		BUG_ON(!cpu);
396 		nid = of_node_to_nid(cpu);
397 		of_node_put(cpu);
398 
399 		/*
400 		 * Don't fall back to default_nid yet -- we will plug
401 		 * cpus into nodes once the memory scan has discovered
402 		 * the topology.
403 		 */
404 		if (nid < 0)
405 			continue;
406 		node_set_online(nid);
407 	}
408 
409 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
410 	memory = NULL;
411 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
412 		unsigned long start;
413 		unsigned long size;
414 		int nid;
415 		int ranges;
416 		unsigned int *memcell_buf;
417 		unsigned int len;
418 
419 		memcell_buf = (unsigned int *)get_property(memory,
420 			"linux,usable-memory", &len);
421 		if (!memcell_buf || len <= 0)
422 			memcell_buf =
423 				(unsigned int *)get_property(memory, "reg",
424 					&len);
425 		if (!memcell_buf || len <= 0)
426 			continue;
427 
428 		/* ranges in cell */
429 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
430 new_range:
431 		/* these are order-sensitive, and modify the buffer pointer */
432 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
433 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
434 
435 		/*
436 		 * Assumption: either all memory nodes or none will
437 		 * have associativity properties.  If none, then
438 		 * everything goes to default_nid.
439 		 */
440 		nid = of_node_to_nid(memory);
441 		if (nid < 0)
442 			nid = default_nid;
443 		node_set_online(nid);
444 
445 		if (!(size = numa_enforce_memory_limit(start, size))) {
446 			if (--ranges)
447 				goto new_range;
448 			else
449 				continue;
450 		}
451 
452 		add_region(nid, start >> PAGE_SHIFT,
453 			   size >> PAGE_SHIFT);
454 
455 		if (--ranges)
456 			goto new_range;
457 	}
458 
459 	return 0;
460 }
461 
462 static void __init setup_nonnuma(void)
463 {
464 	unsigned long top_of_ram = lmb_end_of_DRAM();
465 	unsigned long total_ram = lmb_phys_mem_size();
466 	unsigned int i;
467 
468 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
469 	       top_of_ram, total_ram);
470 	printk(KERN_INFO "Memory hole size: %ldMB\n",
471 	       (top_of_ram - total_ram) >> 20);
472 
473 	for (i = 0; i < lmb.memory.cnt; ++i)
474 		add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
475 			   lmb_size_pages(&lmb.memory, i));
476 	node_set_online(0);
477 }
478 
479 void __init dump_numa_cpu_topology(void)
480 {
481 	unsigned int node;
482 	unsigned int cpu, count;
483 
484 	if (min_common_depth == -1 || !numa_enabled)
485 		return;
486 
487 	for_each_online_node(node) {
488 		printk(KERN_INFO "Node %d CPUs:", node);
489 
490 		count = 0;
491 		/*
492 		 * If we used a CPU iterator here we would miss printing
493 		 * the holes in the cpumap.
494 		 */
495 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
496 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
497 				if (count == 0)
498 					printk(" %u", cpu);
499 				++count;
500 			} else {
501 				if (count > 1)
502 					printk("-%u", cpu - 1);
503 				count = 0;
504 			}
505 		}
506 
507 		if (count > 1)
508 			printk("-%u", NR_CPUS - 1);
509 		printk("\n");
510 	}
511 }
512 
513 static void __init dump_numa_memory_topology(void)
514 {
515 	unsigned int node;
516 	unsigned int count;
517 
518 	if (min_common_depth == -1 || !numa_enabled)
519 		return;
520 
521 	for_each_online_node(node) {
522 		unsigned long i;
523 
524 		printk(KERN_INFO "Node %d Memory:", node);
525 
526 		count = 0;
527 
528 		for (i = 0; i < lmb_end_of_DRAM();
529 		     i += (1 << SECTION_SIZE_BITS)) {
530 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
531 				if (count == 0)
532 					printk(" 0x%lx", i);
533 				++count;
534 			} else {
535 				if (count > 0)
536 					printk("-0x%lx", i);
537 				count = 0;
538 			}
539 		}
540 
541 		if (count > 0)
542 			printk("-0x%lx", i);
543 		printk("\n");
544 	}
545 }
546 
547 /*
548  * Allocate some memory, satisfying the lmb or bootmem allocator where
549  * required. nid is the preferred node and end is the physical address of
550  * the highest address in the node.
551  *
552  * Returns the physical address of the memory.
553  */
554 static void __init *careful_allocation(int nid, unsigned long size,
555 				       unsigned long align,
556 				       unsigned long end_pfn)
557 {
558 	int new_nid;
559 	unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
560 
561 	/* retry over all memory */
562 	if (!ret)
563 		ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
564 
565 	if (!ret)
566 		panic("numa.c: cannot allocate %lu bytes on node %d",
567 		      size, nid);
568 
569 	/*
570 	 * If the memory came from a previously allocated node, we must
571 	 * retry with the bootmem allocator.
572 	 */
573 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
574 	if (new_nid < nid) {
575 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
576 				size, align, 0);
577 
578 		if (!ret)
579 			panic("numa.c: cannot allocate %lu bytes on node %d",
580 			      size, new_nid);
581 
582 		ret = __pa(ret);
583 
584 		dbg("alloc_bootmem %lx %lx\n", ret, size);
585 	}
586 
587 	return (void *)ret;
588 }
589 
590 void __init do_init_bootmem(void)
591 {
592 	int nid;
593 	unsigned int i;
594 	static struct notifier_block ppc64_numa_nb = {
595 		.notifier_call = cpu_numa_callback,
596 		.priority = 1 /* Must run before sched domains notifier. */
597 	};
598 
599 	min_low_pfn = 0;
600 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
601 	max_pfn = max_low_pfn;
602 
603 	if (parse_numa_properties())
604 		setup_nonnuma();
605 	else
606 		dump_numa_memory_topology();
607 
608 	register_cpu_notifier(&ppc64_numa_nb);
609 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
610 			  (void *)(unsigned long)boot_cpuid);
611 
612 	for_each_online_node(nid) {
613 		unsigned long start_pfn, end_pfn, pages_present;
614 		unsigned long bootmem_paddr;
615 		unsigned long bootmap_pages;
616 
617 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
618 
619 		/* Allocate the node structure node local if possible */
620 		NODE_DATA(nid) = careful_allocation(nid,
621 					sizeof(struct pglist_data),
622 					SMP_CACHE_BYTES, end_pfn);
623 		NODE_DATA(nid) = __va(NODE_DATA(nid));
624 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
625 
626   		dbg("node %d\n", nid);
627 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
628 
629 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
630 		NODE_DATA(nid)->node_start_pfn = start_pfn;
631 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
632 
633 		if (NODE_DATA(nid)->node_spanned_pages == 0)
634   			continue;
635 
636   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
637   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
638 
639 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
640 		bootmem_paddr = (unsigned long)careful_allocation(nid,
641 					bootmap_pages << PAGE_SHIFT,
642 					PAGE_SIZE, end_pfn);
643 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
644 
645 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
646 
647 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
648 				  start_pfn, end_pfn);
649 
650 		/* Add free regions on this node */
651 		for (i = 0; init_node_data[i].end_pfn; i++) {
652 			unsigned long start, end;
653 
654 			if (init_node_data[i].nid != nid)
655 				continue;
656 
657 			start = init_node_data[i].start_pfn << PAGE_SHIFT;
658 			end = init_node_data[i].end_pfn << PAGE_SHIFT;
659 
660 			dbg("free_bootmem %lx %lx\n", start, end - start);
661   			free_bootmem_node(NODE_DATA(nid), start, end - start);
662 		}
663 
664 		/* Mark reserved regions on this node */
665 		for (i = 0; i < lmb.reserved.cnt; i++) {
666 			unsigned long physbase = lmb.reserved.region[i].base;
667 			unsigned long size = lmb.reserved.region[i].size;
668 			unsigned long start_paddr = start_pfn << PAGE_SHIFT;
669 			unsigned long end_paddr = end_pfn << PAGE_SHIFT;
670 
671 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
672 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
673 				continue;
674 
675 			if (physbase < end_paddr &&
676 			    (physbase+size) > start_paddr) {
677 				/* overlaps */
678 				if (physbase < start_paddr) {
679 					size -= start_paddr - physbase;
680 					physbase = start_paddr;
681 				}
682 
683 				if (size > end_paddr - physbase)
684 					size = end_paddr - physbase;
685 
686 				dbg("reserve_bootmem %lx %lx\n", physbase,
687 				    size);
688 				reserve_bootmem_node(NODE_DATA(nid), physbase,
689 						     size);
690 			}
691 		}
692 
693 		/* Add regions into sparsemem */
694 		for (i = 0; init_node_data[i].end_pfn; i++) {
695 			unsigned long start, end;
696 
697 			if (init_node_data[i].nid != nid)
698 				continue;
699 
700 			start = init_node_data[i].start_pfn;
701 			end = init_node_data[i].end_pfn;
702 
703 			memory_present(nid, start, end);
704 		}
705 	}
706 }
707 
708 void __init paging_init(void)
709 {
710 	unsigned long zones_size[MAX_NR_ZONES];
711 	unsigned long zholes_size[MAX_NR_ZONES];
712 	int nid;
713 
714 	memset(zones_size, 0, sizeof(zones_size));
715 	memset(zholes_size, 0, sizeof(zholes_size));
716 
717 	for_each_online_node(nid) {
718 		unsigned long start_pfn, end_pfn, pages_present;
719 
720 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
721 
722 		zones_size[ZONE_DMA] = end_pfn - start_pfn;
723 		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
724 
725 		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
726 		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
727 
728 		free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
729 				    zholes_size);
730 	}
731 }
732 
733 static int __init early_numa(char *p)
734 {
735 	if (!p)
736 		return 0;
737 
738 	if (strstr(p, "off"))
739 		numa_enabled = 0;
740 
741 	if (strstr(p, "debug"))
742 		numa_debug = 1;
743 
744 	return 0;
745 }
746 early_param("numa", early_numa);
747 
748 #ifdef CONFIG_MEMORY_HOTPLUG
749 /*
750  * Find the node associated with a hot added memory section.  Section
751  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
752  * sections are fully contained within a single LMB.
753  */
754 int hot_add_scn_to_nid(unsigned long scn_addr)
755 {
756 	struct device_node *memory = NULL;
757 	nodemask_t nodes;
758 	int default_nid = any_online_node(NODE_MASK_ALL);
759 	int nid;
760 
761 	if (!numa_enabled || (min_common_depth < 0))
762 		return default_nid;
763 
764 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
765 		unsigned long start, size;
766 		int ranges;
767 		unsigned int *memcell_buf;
768 		unsigned int len;
769 
770 		memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
771 		if (!memcell_buf || len <= 0)
772 			continue;
773 
774 		/* ranges in cell */
775 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
776 ha_new_range:
777 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
778 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
779 		nid = of_node_to_nid(memory);
780 
781 		/* Domains not present at boot default to 0 */
782 		if (nid < 0 || !node_online(nid))
783 			nid = default_nid;
784 
785 		if ((scn_addr >= start) && (scn_addr < (start + size))) {
786 			of_node_put(memory);
787 			goto got_nid;
788 		}
789 
790 		if (--ranges)		/* process all ranges in cell */
791 			goto ha_new_range;
792 	}
793 	BUG();	/* section address should be found above */
794 	return 0;
795 
796 	/* Temporary code to ensure that returned node is not empty */
797 got_nid:
798 	nodes_setall(nodes);
799 	while (NODE_DATA(nid)->node_spanned_pages == 0) {
800 		node_clear(nid, nodes);
801 		nid = any_online_node(nodes);
802 	}
803 	return nid;
804 }
805 #endif /* CONFIG_MEMORY_HOTPLUG */
806