1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #define pr_fmt(fmt) "numa: " fmt 12 13 #include <linux/threads.h> 14 #include <linux/bootmem.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/mmzone.h> 18 #include <linux/export.h> 19 #include <linux/nodemask.h> 20 #include <linux/cpu.h> 21 #include <linux/notifier.h> 22 #include <linux/memblock.h> 23 #include <linux/of.h> 24 #include <linux/pfn.h> 25 #include <linux/cpuset.h> 26 #include <linux/node.h> 27 #include <linux/stop_machine.h> 28 #include <linux/proc_fs.h> 29 #include <linux/seq_file.h> 30 #include <linux/uaccess.h> 31 #include <linux/slab.h> 32 #include <asm/cputhreads.h> 33 #include <asm/sparsemem.h> 34 #include <asm/prom.h> 35 #include <asm/smp.h> 36 #include <asm/cputhreads.h> 37 #include <asm/topology.h> 38 #include <asm/firmware.h> 39 #include <asm/paca.h> 40 #include <asm/hvcall.h> 41 #include <asm/setup.h> 42 #include <asm/vdso.h> 43 44 static int numa_enabled = 1; 45 46 static char *cmdline __initdata; 47 48 static int numa_debug; 49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 50 51 int numa_cpu_lookup_table[NR_CPUS]; 52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 53 struct pglist_data *node_data[MAX_NUMNODES]; 54 55 EXPORT_SYMBOL(numa_cpu_lookup_table); 56 EXPORT_SYMBOL(node_to_cpumask_map); 57 EXPORT_SYMBOL(node_data); 58 59 static int min_common_depth; 60 static int n_mem_addr_cells, n_mem_size_cells; 61 static int form1_affinity; 62 63 #define MAX_DISTANCE_REF_POINTS 4 64 static int distance_ref_points_depth; 65 static const __be32 *distance_ref_points; 66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 67 68 /* 69 * Allocate node_to_cpumask_map based on number of available nodes 70 * Requires node_possible_map to be valid. 71 * 72 * Note: cpumask_of_node() is not valid until after this is done. 73 */ 74 static void __init setup_node_to_cpumask_map(void) 75 { 76 unsigned int node; 77 78 /* setup nr_node_ids if not done yet */ 79 if (nr_node_ids == MAX_NUMNODES) 80 setup_nr_node_ids(); 81 82 /* allocate the map */ 83 for (node = 0; node < nr_node_ids; node++) 84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 85 86 /* cpumask_of_node() will now work */ 87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 88 } 89 90 static int __init fake_numa_create_new_node(unsigned long end_pfn, 91 unsigned int *nid) 92 { 93 unsigned long long mem; 94 char *p = cmdline; 95 static unsigned int fake_nid; 96 static unsigned long long curr_boundary; 97 98 /* 99 * Modify node id, iff we started creating NUMA nodes 100 * We want to continue from where we left of the last time 101 */ 102 if (fake_nid) 103 *nid = fake_nid; 104 /* 105 * In case there are no more arguments to parse, the 106 * node_id should be the same as the last fake node id 107 * (we've handled this above). 108 */ 109 if (!p) 110 return 0; 111 112 mem = memparse(p, &p); 113 if (!mem) 114 return 0; 115 116 if (mem < curr_boundary) 117 return 0; 118 119 curr_boundary = mem; 120 121 if ((end_pfn << PAGE_SHIFT) > mem) { 122 /* 123 * Skip commas and spaces 124 */ 125 while (*p == ',' || *p == ' ' || *p == '\t') 126 p++; 127 128 cmdline = p; 129 fake_nid++; 130 *nid = fake_nid; 131 dbg("created new fake_node with id %d\n", fake_nid); 132 return 1; 133 } 134 return 0; 135 } 136 137 static void reset_numa_cpu_lookup_table(void) 138 { 139 unsigned int cpu; 140 141 for_each_possible_cpu(cpu) 142 numa_cpu_lookup_table[cpu] = -1; 143 } 144 145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node) 146 { 147 numa_cpu_lookup_table[cpu] = node; 148 } 149 150 static void map_cpu_to_node(int cpu, int node) 151 { 152 update_numa_cpu_lookup_table(cpu, node); 153 154 dbg("adding cpu %d to node %d\n", cpu, node); 155 156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 158 } 159 160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 161 static void unmap_cpu_from_node(unsigned long cpu) 162 { 163 int node = numa_cpu_lookup_table[cpu]; 164 165 dbg("removing cpu %lu from node %d\n", cpu, node); 166 167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 169 } else { 170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 171 cpu, node); 172 } 173 } 174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 175 176 /* must hold reference to node during call */ 177 static const __be32 *of_get_associativity(struct device_node *dev) 178 { 179 return of_get_property(dev, "ibm,associativity", NULL); 180 } 181 182 /* 183 * Returns the property linux,drconf-usable-memory if 184 * it exists (the property exists only in kexec/kdump kernels, 185 * added by kexec-tools) 186 */ 187 static const __be32 *of_get_usable_memory(struct device_node *memory) 188 { 189 const __be32 *prop; 190 u32 len; 191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 192 if (!prop || len < sizeof(unsigned int)) 193 return NULL; 194 return prop; 195 } 196 197 int __node_distance(int a, int b) 198 { 199 int i; 200 int distance = LOCAL_DISTANCE; 201 202 if (!form1_affinity) 203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 204 205 for (i = 0; i < distance_ref_points_depth; i++) { 206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 207 break; 208 209 /* Double the distance for each NUMA level */ 210 distance *= 2; 211 } 212 213 return distance; 214 } 215 EXPORT_SYMBOL(__node_distance); 216 217 static void initialize_distance_lookup_table(int nid, 218 const __be32 *associativity) 219 { 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 const __be32 *entry; 227 228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 229 distance_lookup_table[nid][i] = of_read_number(entry, 1); 230 } 231 } 232 233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 234 * info is found. 235 */ 236 static int associativity_to_nid(const __be32 *associativity) 237 { 238 int nid = -1; 239 240 if (min_common_depth == -1) 241 goto out; 242 243 if (of_read_number(associativity, 1) >= min_common_depth) 244 nid = of_read_number(&associativity[min_common_depth], 1); 245 246 /* POWER4 LPAR uses 0xffff as invalid node */ 247 if (nid == 0xffff || nid >= MAX_NUMNODES) 248 nid = -1; 249 250 if (nid > 0 && 251 of_read_number(associativity, 1) >= distance_ref_points_depth) { 252 /* 253 * Skip the length field and send start of associativity array 254 */ 255 initialize_distance_lookup_table(nid, associativity + 1); 256 } 257 258 out: 259 return nid; 260 } 261 262 /* Returns the nid associated with the given device tree node, 263 * or -1 if not found. 264 */ 265 static int of_node_to_nid_single(struct device_node *device) 266 { 267 int nid = -1; 268 const __be32 *tmp; 269 270 tmp = of_get_associativity(device); 271 if (tmp) 272 nid = associativity_to_nid(tmp); 273 return nid; 274 } 275 276 /* Walk the device tree upwards, looking for an associativity id */ 277 int of_node_to_nid(struct device_node *device) 278 { 279 struct device_node *tmp; 280 int nid = -1; 281 282 of_node_get(device); 283 while (device) { 284 nid = of_node_to_nid_single(device); 285 if (nid != -1) 286 break; 287 288 tmp = device; 289 device = of_get_parent(tmp); 290 of_node_put(tmp); 291 } 292 of_node_put(device); 293 294 return nid; 295 } 296 EXPORT_SYMBOL_GPL(of_node_to_nid); 297 298 static int __init find_min_common_depth(void) 299 { 300 int depth; 301 struct device_node *root; 302 303 if (firmware_has_feature(FW_FEATURE_OPAL)) 304 root = of_find_node_by_path("/ibm,opal"); 305 else 306 root = of_find_node_by_path("/rtas"); 307 if (!root) 308 root = of_find_node_by_path("/"); 309 310 /* 311 * This property is a set of 32-bit integers, each representing 312 * an index into the ibm,associativity nodes. 313 * 314 * With form 0 affinity the first integer is for an SMP configuration 315 * (should be all 0's) and the second is for a normal NUMA 316 * configuration. We have only one level of NUMA. 317 * 318 * With form 1 affinity the first integer is the most significant 319 * NUMA boundary and the following are progressively less significant 320 * boundaries. There can be more than one level of NUMA. 321 */ 322 distance_ref_points = of_get_property(root, 323 "ibm,associativity-reference-points", 324 &distance_ref_points_depth); 325 326 if (!distance_ref_points) { 327 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 328 goto err; 329 } 330 331 distance_ref_points_depth /= sizeof(int); 332 333 if (firmware_has_feature(FW_FEATURE_OPAL) || 334 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 335 dbg("Using form 1 affinity\n"); 336 form1_affinity = 1; 337 } 338 339 if (form1_affinity) { 340 depth = of_read_number(distance_ref_points, 1); 341 } else { 342 if (distance_ref_points_depth < 2) { 343 printk(KERN_WARNING "NUMA: " 344 "short ibm,associativity-reference-points\n"); 345 goto err; 346 } 347 348 depth = of_read_number(&distance_ref_points[1], 1); 349 } 350 351 /* 352 * Warn and cap if the hardware supports more than 353 * MAX_DISTANCE_REF_POINTS domains. 354 */ 355 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 356 printk(KERN_WARNING "NUMA: distance array capped at " 357 "%d entries\n", MAX_DISTANCE_REF_POINTS); 358 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 359 } 360 361 of_node_put(root); 362 return depth; 363 364 err: 365 of_node_put(root); 366 return -1; 367 } 368 369 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 370 { 371 struct device_node *memory = NULL; 372 373 memory = of_find_node_by_type(memory, "memory"); 374 if (!memory) 375 panic("numa.c: No memory nodes found!"); 376 377 *n_addr_cells = of_n_addr_cells(memory); 378 *n_size_cells = of_n_size_cells(memory); 379 of_node_put(memory); 380 } 381 382 static unsigned long read_n_cells(int n, const __be32 **buf) 383 { 384 unsigned long result = 0; 385 386 while (n--) { 387 result = (result << 32) | of_read_number(*buf, 1); 388 (*buf)++; 389 } 390 return result; 391 } 392 393 /* 394 * Read the next memblock list entry from the ibm,dynamic-memory property 395 * and return the information in the provided of_drconf_cell structure. 396 */ 397 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) 398 { 399 const __be32 *cp; 400 401 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 402 403 cp = *cellp; 404 drmem->drc_index = of_read_number(cp, 1); 405 drmem->reserved = of_read_number(&cp[1], 1); 406 drmem->aa_index = of_read_number(&cp[2], 1); 407 drmem->flags = of_read_number(&cp[3], 1); 408 409 *cellp = cp + 4; 410 } 411 412 /* 413 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 414 * 415 * The layout of the ibm,dynamic-memory property is a number N of memblock 416 * list entries followed by N memblock list entries. Each memblock list entry 417 * contains information as laid out in the of_drconf_cell struct above. 418 */ 419 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) 420 { 421 const __be32 *prop; 422 u32 len, entries; 423 424 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 425 if (!prop || len < sizeof(unsigned int)) 426 return 0; 427 428 entries = of_read_number(prop++, 1); 429 430 /* Now that we know the number of entries, revalidate the size 431 * of the property read in to ensure we have everything 432 */ 433 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 434 return 0; 435 436 *dm = prop; 437 return entries; 438 } 439 440 /* 441 * Retrieve and validate the ibm,lmb-size property for drconf memory 442 * from the device tree. 443 */ 444 static u64 of_get_lmb_size(struct device_node *memory) 445 { 446 const __be32 *prop; 447 u32 len; 448 449 prop = of_get_property(memory, "ibm,lmb-size", &len); 450 if (!prop || len < sizeof(unsigned int)) 451 return 0; 452 453 return read_n_cells(n_mem_size_cells, &prop); 454 } 455 456 struct assoc_arrays { 457 u32 n_arrays; 458 u32 array_sz; 459 const __be32 *arrays; 460 }; 461 462 /* 463 * Retrieve and validate the list of associativity arrays for drconf 464 * memory from the ibm,associativity-lookup-arrays property of the 465 * device tree.. 466 * 467 * The layout of the ibm,associativity-lookup-arrays property is a number N 468 * indicating the number of associativity arrays, followed by a number M 469 * indicating the size of each associativity array, followed by a list 470 * of N associativity arrays. 471 */ 472 static int of_get_assoc_arrays(struct device_node *memory, 473 struct assoc_arrays *aa) 474 { 475 const __be32 *prop; 476 u32 len; 477 478 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 479 if (!prop || len < 2 * sizeof(unsigned int)) 480 return -1; 481 482 aa->n_arrays = of_read_number(prop++, 1); 483 aa->array_sz = of_read_number(prop++, 1); 484 485 /* Now that we know the number of arrays and size of each array, 486 * revalidate the size of the property read in. 487 */ 488 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 489 return -1; 490 491 aa->arrays = prop; 492 return 0; 493 } 494 495 /* 496 * This is like of_node_to_nid_single() for memory represented in the 497 * ibm,dynamic-reconfiguration-memory node. 498 */ 499 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 500 struct assoc_arrays *aa) 501 { 502 int default_nid = 0; 503 int nid = default_nid; 504 int index; 505 506 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 507 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 508 drmem->aa_index < aa->n_arrays) { 509 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 510 nid = of_read_number(&aa->arrays[index], 1); 511 512 if (nid == 0xffff || nid >= MAX_NUMNODES) 513 nid = default_nid; 514 515 if (nid > 0) { 516 index = drmem->aa_index * aa->array_sz; 517 initialize_distance_lookup_table(nid, 518 &aa->arrays[index]); 519 } 520 } 521 522 return nid; 523 } 524 525 /* 526 * Figure out to which domain a cpu belongs and stick it there. 527 * Return the id of the domain used. 528 */ 529 static int numa_setup_cpu(unsigned long lcpu) 530 { 531 int nid = -1; 532 struct device_node *cpu; 533 534 /* 535 * If a valid cpu-to-node mapping is already available, use it 536 * directly instead of querying the firmware, since it represents 537 * the most recent mapping notified to us by the platform (eg: VPHN). 538 */ 539 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { 540 map_cpu_to_node(lcpu, nid); 541 return nid; 542 } 543 544 cpu = of_get_cpu_node(lcpu, NULL); 545 546 if (!cpu) { 547 WARN_ON(1); 548 if (cpu_present(lcpu)) 549 goto out_present; 550 else 551 goto out; 552 } 553 554 nid = of_node_to_nid_single(cpu); 555 556 out_present: 557 if (nid < 0 || !node_online(nid)) 558 nid = first_online_node; 559 560 map_cpu_to_node(lcpu, nid); 561 of_node_put(cpu); 562 out: 563 return nid; 564 } 565 566 static void verify_cpu_node_mapping(int cpu, int node) 567 { 568 int base, sibling, i; 569 570 /* Verify that all the threads in the core belong to the same node */ 571 base = cpu_first_thread_sibling(cpu); 572 573 for (i = 0; i < threads_per_core; i++) { 574 sibling = base + i; 575 576 if (sibling == cpu || cpu_is_offline(sibling)) 577 continue; 578 579 if (cpu_to_node(sibling) != node) { 580 WARN(1, "CPU thread siblings %d and %d don't belong" 581 " to the same node!\n", cpu, sibling); 582 break; 583 } 584 } 585 } 586 587 static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, 588 void *hcpu) 589 { 590 unsigned long lcpu = (unsigned long)hcpu; 591 int ret = NOTIFY_DONE, nid; 592 593 switch (action) { 594 case CPU_UP_PREPARE: 595 case CPU_UP_PREPARE_FROZEN: 596 nid = numa_setup_cpu(lcpu); 597 verify_cpu_node_mapping((int)lcpu, nid); 598 ret = NOTIFY_OK; 599 break; 600 #ifdef CONFIG_HOTPLUG_CPU 601 case CPU_DEAD: 602 case CPU_DEAD_FROZEN: 603 case CPU_UP_CANCELED: 604 case CPU_UP_CANCELED_FROZEN: 605 unmap_cpu_from_node(lcpu); 606 ret = NOTIFY_OK; 607 break; 608 #endif 609 } 610 return ret; 611 } 612 613 /* 614 * Check and possibly modify a memory region to enforce the memory limit. 615 * 616 * Returns the size the region should have to enforce the memory limit. 617 * This will either be the original value of size, a truncated value, 618 * or zero. If the returned value of size is 0 the region should be 619 * discarded as it lies wholly above the memory limit. 620 */ 621 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 622 unsigned long size) 623 { 624 /* 625 * We use memblock_end_of_DRAM() in here instead of memory_limit because 626 * we've already adjusted it for the limit and it takes care of 627 * having memory holes below the limit. Also, in the case of 628 * iommu_is_off, memory_limit is not set but is implicitly enforced. 629 */ 630 631 if (start + size <= memblock_end_of_DRAM()) 632 return size; 633 634 if (start >= memblock_end_of_DRAM()) 635 return 0; 636 637 return memblock_end_of_DRAM() - start; 638 } 639 640 /* 641 * Reads the counter for a given entry in 642 * linux,drconf-usable-memory property 643 */ 644 static inline int __init read_usm_ranges(const __be32 **usm) 645 { 646 /* 647 * For each lmb in ibm,dynamic-memory a corresponding 648 * entry in linux,drconf-usable-memory property contains 649 * a counter followed by that many (base, size) duple. 650 * read the counter from linux,drconf-usable-memory 651 */ 652 return read_n_cells(n_mem_size_cells, usm); 653 } 654 655 /* 656 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 657 * node. This assumes n_mem_{addr,size}_cells have been set. 658 */ 659 static void __init parse_drconf_memory(struct device_node *memory) 660 { 661 const __be32 *uninitialized_var(dm), *usm; 662 unsigned int n, rc, ranges, is_kexec_kdump = 0; 663 unsigned long lmb_size, base, size, sz; 664 int nid; 665 struct assoc_arrays aa = { .arrays = NULL }; 666 667 n = of_get_drconf_memory(memory, &dm); 668 if (!n) 669 return; 670 671 lmb_size = of_get_lmb_size(memory); 672 if (!lmb_size) 673 return; 674 675 rc = of_get_assoc_arrays(memory, &aa); 676 if (rc) 677 return; 678 679 /* check if this is a kexec/kdump kernel */ 680 usm = of_get_usable_memory(memory); 681 if (usm != NULL) 682 is_kexec_kdump = 1; 683 684 for (; n != 0; --n) { 685 struct of_drconf_cell drmem; 686 687 read_drconf_cell(&drmem, &dm); 688 689 /* skip this block if the reserved bit is set in flags (0x80) 690 or if the block is not assigned to this partition (0x8) */ 691 if ((drmem.flags & DRCONF_MEM_RESERVED) 692 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 693 continue; 694 695 base = drmem.base_addr; 696 size = lmb_size; 697 ranges = 1; 698 699 if (is_kexec_kdump) { 700 ranges = read_usm_ranges(&usm); 701 if (!ranges) /* there are no (base, size) duple */ 702 continue; 703 } 704 do { 705 if (is_kexec_kdump) { 706 base = read_n_cells(n_mem_addr_cells, &usm); 707 size = read_n_cells(n_mem_size_cells, &usm); 708 } 709 nid = of_drconf_to_nid_single(&drmem, &aa); 710 fake_numa_create_new_node( 711 ((base + size) >> PAGE_SHIFT), 712 &nid); 713 node_set_online(nid); 714 sz = numa_enforce_memory_limit(base, size); 715 if (sz) 716 memblock_set_node(base, sz, 717 &memblock.memory, nid); 718 } while (--ranges); 719 } 720 } 721 722 static int __init parse_numa_properties(void) 723 { 724 struct device_node *memory; 725 int default_nid = 0; 726 unsigned long i; 727 728 if (numa_enabled == 0) { 729 printk(KERN_WARNING "NUMA disabled by user\n"); 730 return -1; 731 } 732 733 min_common_depth = find_min_common_depth(); 734 735 if (min_common_depth < 0) 736 return min_common_depth; 737 738 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 739 740 /* 741 * Even though we connect cpus to numa domains later in SMP 742 * init, we need to know the node ids now. This is because 743 * each node to be onlined must have NODE_DATA etc backing it. 744 */ 745 for_each_present_cpu(i) { 746 struct device_node *cpu; 747 int nid; 748 749 cpu = of_get_cpu_node(i, NULL); 750 BUG_ON(!cpu); 751 nid = of_node_to_nid_single(cpu); 752 of_node_put(cpu); 753 754 /* 755 * Don't fall back to default_nid yet -- we will plug 756 * cpus into nodes once the memory scan has discovered 757 * the topology. 758 */ 759 if (nid < 0) 760 continue; 761 node_set_online(nid); 762 } 763 764 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 765 766 for_each_node_by_type(memory, "memory") { 767 unsigned long start; 768 unsigned long size; 769 int nid; 770 int ranges; 771 const __be32 *memcell_buf; 772 unsigned int len; 773 774 memcell_buf = of_get_property(memory, 775 "linux,usable-memory", &len); 776 if (!memcell_buf || len <= 0) 777 memcell_buf = of_get_property(memory, "reg", &len); 778 if (!memcell_buf || len <= 0) 779 continue; 780 781 /* ranges in cell */ 782 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 783 new_range: 784 /* these are order-sensitive, and modify the buffer pointer */ 785 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 786 size = read_n_cells(n_mem_size_cells, &memcell_buf); 787 788 /* 789 * Assumption: either all memory nodes or none will 790 * have associativity properties. If none, then 791 * everything goes to default_nid. 792 */ 793 nid = of_node_to_nid_single(memory); 794 if (nid < 0) 795 nid = default_nid; 796 797 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 798 node_set_online(nid); 799 800 if (!(size = numa_enforce_memory_limit(start, size))) { 801 if (--ranges) 802 goto new_range; 803 else 804 continue; 805 } 806 807 memblock_set_node(start, size, &memblock.memory, nid); 808 809 if (--ranges) 810 goto new_range; 811 } 812 813 /* 814 * Now do the same thing for each MEMBLOCK listed in the 815 * ibm,dynamic-memory property in the 816 * ibm,dynamic-reconfiguration-memory node. 817 */ 818 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 819 if (memory) 820 parse_drconf_memory(memory); 821 822 return 0; 823 } 824 825 static void __init setup_nonnuma(void) 826 { 827 unsigned long top_of_ram = memblock_end_of_DRAM(); 828 unsigned long total_ram = memblock_phys_mem_size(); 829 unsigned long start_pfn, end_pfn; 830 unsigned int nid = 0; 831 struct memblock_region *reg; 832 833 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 834 top_of_ram, total_ram); 835 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 836 (top_of_ram - total_ram) >> 20); 837 838 for_each_memblock(memory, reg) { 839 start_pfn = memblock_region_memory_base_pfn(reg); 840 end_pfn = memblock_region_memory_end_pfn(reg); 841 842 fake_numa_create_new_node(end_pfn, &nid); 843 memblock_set_node(PFN_PHYS(start_pfn), 844 PFN_PHYS(end_pfn - start_pfn), 845 &memblock.memory, nid); 846 node_set_online(nid); 847 } 848 } 849 850 void __init dump_numa_cpu_topology(void) 851 { 852 unsigned int node; 853 unsigned int cpu, count; 854 855 if (min_common_depth == -1 || !numa_enabled) 856 return; 857 858 for_each_online_node(node) { 859 printk(KERN_DEBUG "Node %d CPUs:", node); 860 861 count = 0; 862 /* 863 * If we used a CPU iterator here we would miss printing 864 * the holes in the cpumap. 865 */ 866 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 867 if (cpumask_test_cpu(cpu, 868 node_to_cpumask_map[node])) { 869 if (count == 0) 870 printk(" %u", cpu); 871 ++count; 872 } else { 873 if (count > 1) 874 printk("-%u", cpu - 1); 875 count = 0; 876 } 877 } 878 879 if (count > 1) 880 printk("-%u", nr_cpu_ids - 1); 881 printk("\n"); 882 } 883 } 884 885 static void __init dump_numa_memory_topology(void) 886 { 887 unsigned int node; 888 unsigned int count; 889 890 if (min_common_depth == -1 || !numa_enabled) 891 return; 892 893 for_each_online_node(node) { 894 unsigned long i; 895 896 printk(KERN_DEBUG "Node %d Memory:", node); 897 898 count = 0; 899 900 for (i = 0; i < memblock_end_of_DRAM(); 901 i += (1 << SECTION_SIZE_BITS)) { 902 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 903 if (count == 0) 904 printk(" 0x%lx", i); 905 ++count; 906 } else { 907 if (count > 0) 908 printk("-0x%lx", i); 909 count = 0; 910 } 911 } 912 913 if (count > 0) 914 printk("-0x%lx", i); 915 printk("\n"); 916 } 917 } 918 919 static struct notifier_block ppc64_numa_nb = { 920 .notifier_call = cpu_numa_callback, 921 .priority = 1 /* Must run before sched domains notifier. */ 922 }; 923 924 /* Initialize NODE_DATA for a node on the local memory */ 925 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 926 { 927 u64 spanned_pages = end_pfn - start_pfn; 928 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 929 u64 nd_pa; 930 void *nd; 931 int tnid; 932 933 if (spanned_pages) 934 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n", 935 nid, start_pfn << PAGE_SHIFT, 936 (end_pfn << PAGE_SHIFT) - 1); 937 else 938 pr_info("Initmem setup node %d\n", nid); 939 940 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 941 nd = __va(nd_pa); 942 943 /* report and initialize */ 944 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 945 nd_pa, nd_pa + nd_size - 1); 946 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 947 if (tnid != nid) 948 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 949 950 node_data[nid] = nd; 951 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 952 NODE_DATA(nid)->node_id = nid; 953 NODE_DATA(nid)->node_start_pfn = start_pfn; 954 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 955 } 956 957 void __init initmem_init(void) 958 { 959 int nid, cpu; 960 961 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 962 max_pfn = max_low_pfn; 963 964 if (parse_numa_properties()) 965 setup_nonnuma(); 966 else 967 dump_numa_memory_topology(); 968 969 memblock_dump_all(); 970 971 /* 972 * Reduce the possible NUMA nodes to the online NUMA nodes, 973 * since we do not support node hotplug. This ensures that we 974 * lower the maximum NUMA node ID to what is actually present. 975 */ 976 nodes_and(node_possible_map, node_possible_map, node_online_map); 977 978 for_each_online_node(nid) { 979 unsigned long start_pfn, end_pfn; 980 981 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 982 setup_node_data(nid, start_pfn, end_pfn); 983 sparse_memory_present_with_active_regions(nid); 984 } 985 986 sparse_init(); 987 988 setup_node_to_cpumask_map(); 989 990 reset_numa_cpu_lookup_table(); 991 register_cpu_notifier(&ppc64_numa_nb); 992 /* 993 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 994 * even before we online them, so that we can use cpu_to_{node,mem} 995 * early in boot, cf. smp_prepare_cpus(). 996 */ 997 for_each_present_cpu(cpu) { 998 numa_setup_cpu((unsigned long)cpu); 999 } 1000 } 1001 1002 static int __init early_numa(char *p) 1003 { 1004 if (!p) 1005 return 0; 1006 1007 if (strstr(p, "off")) 1008 numa_enabled = 0; 1009 1010 if (strstr(p, "debug")) 1011 numa_debug = 1; 1012 1013 p = strstr(p, "fake="); 1014 if (p) 1015 cmdline = p + strlen("fake="); 1016 1017 return 0; 1018 } 1019 early_param("numa", early_numa); 1020 1021 static bool topology_updates_enabled = true; 1022 1023 static int __init early_topology_updates(char *p) 1024 { 1025 if (!p) 1026 return 0; 1027 1028 if (!strcmp(p, "off")) { 1029 pr_info("Disabling topology updates\n"); 1030 topology_updates_enabled = false; 1031 } 1032 1033 return 0; 1034 } 1035 early_param("topology_updates", early_topology_updates); 1036 1037 #ifdef CONFIG_MEMORY_HOTPLUG 1038 /* 1039 * Find the node associated with a hot added memory section for 1040 * memory represented in the device tree by the property 1041 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1042 */ 1043 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1044 unsigned long scn_addr) 1045 { 1046 const __be32 *dm; 1047 unsigned int drconf_cell_cnt, rc; 1048 unsigned long lmb_size; 1049 struct assoc_arrays aa; 1050 int nid = -1; 1051 1052 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1053 if (!drconf_cell_cnt) 1054 return -1; 1055 1056 lmb_size = of_get_lmb_size(memory); 1057 if (!lmb_size) 1058 return -1; 1059 1060 rc = of_get_assoc_arrays(memory, &aa); 1061 if (rc) 1062 return -1; 1063 1064 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1065 struct of_drconf_cell drmem; 1066 1067 read_drconf_cell(&drmem, &dm); 1068 1069 /* skip this block if it is reserved or not assigned to 1070 * this partition */ 1071 if ((drmem.flags & DRCONF_MEM_RESERVED) 1072 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1073 continue; 1074 1075 if ((scn_addr < drmem.base_addr) 1076 || (scn_addr >= (drmem.base_addr + lmb_size))) 1077 continue; 1078 1079 nid = of_drconf_to_nid_single(&drmem, &aa); 1080 break; 1081 } 1082 1083 return nid; 1084 } 1085 1086 /* 1087 * Find the node associated with a hot added memory section for memory 1088 * represented in the device tree as a node (i.e. memory@XXXX) for 1089 * each memblock. 1090 */ 1091 static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1092 { 1093 struct device_node *memory; 1094 int nid = -1; 1095 1096 for_each_node_by_type(memory, "memory") { 1097 unsigned long start, size; 1098 int ranges; 1099 const __be32 *memcell_buf; 1100 unsigned int len; 1101 1102 memcell_buf = of_get_property(memory, "reg", &len); 1103 if (!memcell_buf || len <= 0) 1104 continue; 1105 1106 /* ranges in cell */ 1107 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1108 1109 while (ranges--) { 1110 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1111 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1112 1113 if ((scn_addr < start) || (scn_addr >= (start + size))) 1114 continue; 1115 1116 nid = of_node_to_nid_single(memory); 1117 break; 1118 } 1119 1120 if (nid >= 0) 1121 break; 1122 } 1123 1124 of_node_put(memory); 1125 1126 return nid; 1127 } 1128 1129 /* 1130 * Find the node associated with a hot added memory section. Section 1131 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1132 * sections are fully contained within a single MEMBLOCK. 1133 */ 1134 int hot_add_scn_to_nid(unsigned long scn_addr) 1135 { 1136 struct device_node *memory = NULL; 1137 int nid, found = 0; 1138 1139 if (!numa_enabled || (min_common_depth < 0)) 1140 return first_online_node; 1141 1142 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1143 if (memory) { 1144 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1145 of_node_put(memory); 1146 } else { 1147 nid = hot_add_node_scn_to_nid(scn_addr); 1148 } 1149 1150 if (nid < 0 || !node_online(nid)) 1151 nid = first_online_node; 1152 1153 if (NODE_DATA(nid)->node_spanned_pages) 1154 return nid; 1155 1156 for_each_online_node(nid) { 1157 if (NODE_DATA(nid)->node_spanned_pages) { 1158 found = 1; 1159 break; 1160 } 1161 } 1162 1163 BUG_ON(!found); 1164 return nid; 1165 } 1166 1167 static u64 hot_add_drconf_memory_max(void) 1168 { 1169 struct device_node *memory = NULL; 1170 unsigned int drconf_cell_cnt = 0; 1171 u64 lmb_size = 0; 1172 const __be32 *dm = NULL; 1173 1174 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1175 if (memory) { 1176 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1177 lmb_size = of_get_lmb_size(memory); 1178 of_node_put(memory); 1179 } 1180 return lmb_size * drconf_cell_cnt; 1181 } 1182 1183 /* 1184 * memory_hotplug_max - return max address of memory that may be added 1185 * 1186 * This is currently only used on systems that support drconfig memory 1187 * hotplug. 1188 */ 1189 u64 memory_hotplug_max(void) 1190 { 1191 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1192 } 1193 #endif /* CONFIG_MEMORY_HOTPLUG */ 1194 1195 /* Virtual Processor Home Node (VPHN) support */ 1196 #ifdef CONFIG_PPC_SPLPAR 1197 1198 #include "vphn.h" 1199 1200 struct topology_update_data { 1201 struct topology_update_data *next; 1202 unsigned int cpu; 1203 int old_nid; 1204 int new_nid; 1205 }; 1206 1207 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1208 static cpumask_t cpu_associativity_changes_mask; 1209 static int vphn_enabled; 1210 static int prrn_enabled; 1211 static void reset_topology_timer(void); 1212 1213 /* 1214 * Store the current values of the associativity change counters in the 1215 * hypervisor. 1216 */ 1217 static void setup_cpu_associativity_change_counters(void) 1218 { 1219 int cpu; 1220 1221 /* The VPHN feature supports a maximum of 8 reference points */ 1222 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1223 1224 for_each_possible_cpu(cpu) { 1225 int i; 1226 u8 *counts = vphn_cpu_change_counts[cpu]; 1227 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1228 1229 for (i = 0; i < distance_ref_points_depth; i++) 1230 counts[i] = hypervisor_counts[i]; 1231 } 1232 } 1233 1234 /* 1235 * The hypervisor maintains a set of 8 associativity change counters in 1236 * the VPA of each cpu that correspond to the associativity levels in the 1237 * ibm,associativity-reference-points property. When an associativity 1238 * level changes, the corresponding counter is incremented. 1239 * 1240 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1241 * node associativity levels have changed. 1242 * 1243 * Returns the number of cpus with unhandled associativity changes. 1244 */ 1245 static int update_cpu_associativity_changes_mask(void) 1246 { 1247 int cpu; 1248 cpumask_t *changes = &cpu_associativity_changes_mask; 1249 1250 for_each_possible_cpu(cpu) { 1251 int i, changed = 0; 1252 u8 *counts = vphn_cpu_change_counts[cpu]; 1253 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1254 1255 for (i = 0; i < distance_ref_points_depth; i++) { 1256 if (hypervisor_counts[i] != counts[i]) { 1257 counts[i] = hypervisor_counts[i]; 1258 changed = 1; 1259 } 1260 } 1261 if (changed) { 1262 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1263 cpu = cpu_last_thread_sibling(cpu); 1264 } 1265 } 1266 1267 return cpumask_weight(changes); 1268 } 1269 1270 /* 1271 * Retrieve the new associativity information for a virtual processor's 1272 * home node. 1273 */ 1274 static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1275 { 1276 long rc; 1277 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1278 u64 flags = 1; 1279 int hwcpu = get_hard_smp_processor_id(cpu); 1280 1281 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1282 vphn_unpack_associativity(retbuf, associativity); 1283 1284 return rc; 1285 } 1286 1287 static long vphn_get_associativity(unsigned long cpu, 1288 __be32 *associativity) 1289 { 1290 long rc; 1291 1292 rc = hcall_vphn(cpu, associativity); 1293 1294 switch (rc) { 1295 case H_FUNCTION: 1296 printk(KERN_INFO 1297 "VPHN is not supported. Disabling polling...\n"); 1298 stop_topology_update(); 1299 break; 1300 case H_HARDWARE: 1301 printk(KERN_ERR 1302 "hcall_vphn() experienced a hardware fault " 1303 "preventing VPHN. Disabling polling...\n"); 1304 stop_topology_update(); 1305 } 1306 1307 return rc; 1308 } 1309 1310 /* 1311 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1312 * characteristics change. This function doesn't perform any locking and is 1313 * only safe to call from stop_machine(). 1314 */ 1315 static int update_cpu_topology(void *data) 1316 { 1317 struct topology_update_data *update; 1318 unsigned long cpu; 1319 1320 if (!data) 1321 return -EINVAL; 1322 1323 cpu = smp_processor_id(); 1324 1325 for (update = data; update; update = update->next) { 1326 int new_nid = update->new_nid; 1327 if (cpu != update->cpu) 1328 continue; 1329 1330 unmap_cpu_from_node(cpu); 1331 map_cpu_to_node(cpu, new_nid); 1332 set_cpu_numa_node(cpu, new_nid); 1333 set_cpu_numa_mem(cpu, local_memory_node(new_nid)); 1334 vdso_getcpu_init(); 1335 } 1336 1337 return 0; 1338 } 1339 1340 static int update_lookup_table(void *data) 1341 { 1342 struct topology_update_data *update; 1343 1344 if (!data) 1345 return -EINVAL; 1346 1347 /* 1348 * Upon topology update, the numa-cpu lookup table needs to be updated 1349 * for all threads in the core, including offline CPUs, to ensure that 1350 * future hotplug operations respect the cpu-to-node associativity 1351 * properly. 1352 */ 1353 for (update = data; update; update = update->next) { 1354 int nid, base, j; 1355 1356 nid = update->new_nid; 1357 base = cpu_first_thread_sibling(update->cpu); 1358 1359 for (j = 0; j < threads_per_core; j++) { 1360 update_numa_cpu_lookup_table(base + j, nid); 1361 } 1362 } 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * Update the node maps and sysfs entries for each cpu whose home node 1369 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1370 */ 1371 int arch_update_cpu_topology(void) 1372 { 1373 unsigned int cpu, sibling, changed = 0; 1374 struct topology_update_data *updates, *ud; 1375 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1376 cpumask_t updated_cpus; 1377 struct device *dev; 1378 int weight, new_nid, i = 0; 1379 1380 if (!prrn_enabled && !vphn_enabled) 1381 return 0; 1382 1383 weight = cpumask_weight(&cpu_associativity_changes_mask); 1384 if (!weight) 1385 return 0; 1386 1387 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1388 if (!updates) 1389 return 0; 1390 1391 cpumask_clear(&updated_cpus); 1392 1393 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1394 /* 1395 * If siblings aren't flagged for changes, updates list 1396 * will be too short. Skip on this update and set for next 1397 * update. 1398 */ 1399 if (!cpumask_subset(cpu_sibling_mask(cpu), 1400 &cpu_associativity_changes_mask)) { 1401 pr_info("Sibling bits not set for associativity " 1402 "change, cpu%d\n", cpu); 1403 cpumask_or(&cpu_associativity_changes_mask, 1404 &cpu_associativity_changes_mask, 1405 cpu_sibling_mask(cpu)); 1406 cpu = cpu_last_thread_sibling(cpu); 1407 continue; 1408 } 1409 1410 /* Use associativity from first thread for all siblings */ 1411 vphn_get_associativity(cpu, associativity); 1412 new_nid = associativity_to_nid(associativity); 1413 if (new_nid < 0 || !node_online(new_nid)) 1414 new_nid = first_online_node; 1415 1416 if (new_nid == numa_cpu_lookup_table[cpu]) { 1417 cpumask_andnot(&cpu_associativity_changes_mask, 1418 &cpu_associativity_changes_mask, 1419 cpu_sibling_mask(cpu)); 1420 cpu = cpu_last_thread_sibling(cpu); 1421 continue; 1422 } 1423 1424 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1425 ud = &updates[i++]; 1426 ud->cpu = sibling; 1427 ud->new_nid = new_nid; 1428 ud->old_nid = numa_cpu_lookup_table[sibling]; 1429 cpumask_set_cpu(sibling, &updated_cpus); 1430 if (i < weight) 1431 ud->next = &updates[i]; 1432 } 1433 cpu = cpu_last_thread_sibling(cpu); 1434 } 1435 1436 pr_debug("Topology update for the following CPUs:\n"); 1437 if (cpumask_weight(&updated_cpus)) { 1438 for (ud = &updates[0]; ud; ud = ud->next) { 1439 pr_debug("cpu %d moving from node %d " 1440 "to %d\n", ud->cpu, 1441 ud->old_nid, ud->new_nid); 1442 } 1443 } 1444 1445 /* 1446 * In cases where we have nothing to update (because the updates list 1447 * is too short or because the new topology is same as the old one), 1448 * skip invoking update_cpu_topology() via stop-machine(). This is 1449 * necessary (and not just a fast-path optimization) since stop-machine 1450 * can end up electing a random CPU to run update_cpu_topology(), and 1451 * thus trick us into setting up incorrect cpu-node mappings (since 1452 * 'updates' is kzalloc()'ed). 1453 * 1454 * And for the similar reason, we will skip all the following updating. 1455 */ 1456 if (!cpumask_weight(&updated_cpus)) 1457 goto out; 1458 1459 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1460 1461 /* 1462 * Update the numa-cpu lookup table with the new mappings, even for 1463 * offline CPUs. It is best to perform this update from the stop- 1464 * machine context. 1465 */ 1466 stop_machine(update_lookup_table, &updates[0], 1467 cpumask_of(raw_smp_processor_id())); 1468 1469 for (ud = &updates[0]; ud; ud = ud->next) { 1470 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1471 register_cpu_under_node(ud->cpu, ud->new_nid); 1472 1473 dev = get_cpu_device(ud->cpu); 1474 if (dev) 1475 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1476 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1477 changed = 1; 1478 } 1479 1480 out: 1481 kfree(updates); 1482 return changed; 1483 } 1484 1485 static void topology_work_fn(struct work_struct *work) 1486 { 1487 rebuild_sched_domains(); 1488 } 1489 static DECLARE_WORK(topology_work, topology_work_fn); 1490 1491 static void topology_schedule_update(void) 1492 { 1493 schedule_work(&topology_work); 1494 } 1495 1496 static void topology_timer_fn(unsigned long ignored) 1497 { 1498 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1499 topology_schedule_update(); 1500 else if (vphn_enabled) { 1501 if (update_cpu_associativity_changes_mask() > 0) 1502 topology_schedule_update(); 1503 reset_topology_timer(); 1504 } 1505 } 1506 static struct timer_list topology_timer = 1507 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1508 1509 static void reset_topology_timer(void) 1510 { 1511 topology_timer.data = 0; 1512 topology_timer.expires = jiffies + 60 * HZ; 1513 mod_timer(&topology_timer, topology_timer.expires); 1514 } 1515 1516 #ifdef CONFIG_SMP 1517 1518 static void stage_topology_update(int core_id) 1519 { 1520 cpumask_or(&cpu_associativity_changes_mask, 1521 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1522 reset_topology_timer(); 1523 } 1524 1525 static int dt_update_callback(struct notifier_block *nb, 1526 unsigned long action, void *data) 1527 { 1528 struct of_reconfig_data *update = data; 1529 int rc = NOTIFY_DONE; 1530 1531 switch (action) { 1532 case OF_RECONFIG_UPDATE_PROPERTY: 1533 if (!of_prop_cmp(update->dn->type, "cpu") && 1534 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1535 u32 core_id; 1536 of_property_read_u32(update->dn, "reg", &core_id); 1537 stage_topology_update(core_id); 1538 rc = NOTIFY_OK; 1539 } 1540 break; 1541 } 1542 1543 return rc; 1544 } 1545 1546 static struct notifier_block dt_update_nb = { 1547 .notifier_call = dt_update_callback, 1548 }; 1549 1550 #endif 1551 1552 /* 1553 * Start polling for associativity changes. 1554 */ 1555 int start_topology_update(void) 1556 { 1557 int rc = 0; 1558 1559 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1560 if (!prrn_enabled) { 1561 prrn_enabled = 1; 1562 vphn_enabled = 0; 1563 #ifdef CONFIG_SMP 1564 rc = of_reconfig_notifier_register(&dt_update_nb); 1565 #endif 1566 } 1567 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1568 lppaca_shared_proc(get_lppaca())) { 1569 if (!vphn_enabled) { 1570 prrn_enabled = 0; 1571 vphn_enabled = 1; 1572 setup_cpu_associativity_change_counters(); 1573 init_timer_deferrable(&topology_timer); 1574 reset_topology_timer(); 1575 } 1576 } 1577 1578 return rc; 1579 } 1580 1581 /* 1582 * Disable polling for VPHN associativity changes. 1583 */ 1584 int stop_topology_update(void) 1585 { 1586 int rc = 0; 1587 1588 if (prrn_enabled) { 1589 prrn_enabled = 0; 1590 #ifdef CONFIG_SMP 1591 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1592 #endif 1593 } else if (vphn_enabled) { 1594 vphn_enabled = 0; 1595 rc = del_timer_sync(&topology_timer); 1596 } 1597 1598 return rc; 1599 } 1600 1601 int prrn_is_enabled(void) 1602 { 1603 return prrn_enabled; 1604 } 1605 1606 static int topology_read(struct seq_file *file, void *v) 1607 { 1608 if (vphn_enabled || prrn_enabled) 1609 seq_puts(file, "on\n"); 1610 else 1611 seq_puts(file, "off\n"); 1612 1613 return 0; 1614 } 1615 1616 static int topology_open(struct inode *inode, struct file *file) 1617 { 1618 return single_open(file, topology_read, NULL); 1619 } 1620 1621 static ssize_t topology_write(struct file *file, const char __user *buf, 1622 size_t count, loff_t *off) 1623 { 1624 char kbuf[4]; /* "on" or "off" plus null. */ 1625 int read_len; 1626 1627 read_len = count < 3 ? count : 3; 1628 if (copy_from_user(kbuf, buf, read_len)) 1629 return -EINVAL; 1630 1631 kbuf[read_len] = '\0'; 1632 1633 if (!strncmp(kbuf, "on", 2)) 1634 start_topology_update(); 1635 else if (!strncmp(kbuf, "off", 3)) 1636 stop_topology_update(); 1637 else 1638 return -EINVAL; 1639 1640 return count; 1641 } 1642 1643 static const struct file_operations topology_ops = { 1644 .read = seq_read, 1645 .write = topology_write, 1646 .open = topology_open, 1647 .release = single_release 1648 }; 1649 1650 static int topology_update_init(void) 1651 { 1652 /* Do not poll for changes if disabled at boot */ 1653 if (topology_updates_enabled) 1654 start_topology_update(); 1655 1656 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) 1657 return -ENOMEM; 1658 1659 return 0; 1660 } 1661 device_initcall(topology_update_init); 1662 #endif /* CONFIG_PPC_SPLPAR */ 1663