1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/export.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/pfn.h> 23 #include <linux/cpuset.h> 24 #include <linux/node.h> 25 #include <asm/sparsemem.h> 26 #include <asm/prom.h> 27 #include <asm/smp.h> 28 #include <asm/firmware.h> 29 #include <asm/paca.h> 30 #include <asm/hvcall.h> 31 #include <asm/setup.h> 32 33 static int numa_enabled = 1; 34 35 static char *cmdline __initdata; 36 37 static int numa_debug; 38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 39 40 int numa_cpu_lookup_table[NR_CPUS]; 41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 42 struct pglist_data *node_data[MAX_NUMNODES]; 43 44 EXPORT_SYMBOL(numa_cpu_lookup_table); 45 EXPORT_SYMBOL(node_to_cpumask_map); 46 EXPORT_SYMBOL(node_data); 47 48 static int min_common_depth; 49 static int n_mem_addr_cells, n_mem_size_cells; 50 static int form1_affinity; 51 52 #define MAX_DISTANCE_REF_POINTS 4 53 static int distance_ref_points_depth; 54 static const unsigned int *distance_ref_points; 55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 56 57 /* 58 * Allocate node_to_cpumask_map based on number of available nodes 59 * Requires node_possible_map to be valid. 60 * 61 * Note: cpumask_of_node() is not valid until after this is done. 62 */ 63 static void __init setup_node_to_cpumask_map(void) 64 { 65 unsigned int node, num = 0; 66 67 /* setup nr_node_ids if not done yet */ 68 if (nr_node_ids == MAX_NUMNODES) { 69 for_each_node_mask(node, node_possible_map) 70 num = node; 71 nr_node_ids = num + 1; 72 } 73 74 /* allocate the map */ 75 for (node = 0; node < nr_node_ids; node++) 76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 77 78 /* cpumask_of_node() will now work */ 79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 80 } 81 82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, 83 unsigned int *nid) 84 { 85 unsigned long long mem; 86 char *p = cmdline; 87 static unsigned int fake_nid; 88 static unsigned long long curr_boundary; 89 90 /* 91 * Modify node id, iff we started creating NUMA nodes 92 * We want to continue from where we left of the last time 93 */ 94 if (fake_nid) 95 *nid = fake_nid; 96 /* 97 * In case there are no more arguments to parse, the 98 * node_id should be the same as the last fake node id 99 * (we've handled this above). 100 */ 101 if (!p) 102 return 0; 103 104 mem = memparse(p, &p); 105 if (!mem) 106 return 0; 107 108 if (mem < curr_boundary) 109 return 0; 110 111 curr_boundary = mem; 112 113 if ((end_pfn << PAGE_SHIFT) > mem) { 114 /* 115 * Skip commas and spaces 116 */ 117 while (*p == ',' || *p == ' ' || *p == '\t') 118 p++; 119 120 cmdline = p; 121 fake_nid++; 122 *nid = fake_nid; 123 dbg("created new fake_node with id %d\n", fake_nid); 124 return 1; 125 } 126 return 0; 127 } 128 129 /* 130 * get_node_active_region - Return active region containing pfn 131 * Active range returned is empty if none found. 132 * @pfn: The page to return the region for 133 * @node_ar: Returned set to the active region containing @pfn 134 */ 135 static void __init get_node_active_region(unsigned long pfn, 136 struct node_active_region *node_ar) 137 { 138 unsigned long start_pfn, end_pfn; 139 int i, nid; 140 141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 142 if (pfn >= start_pfn && pfn < end_pfn) { 143 node_ar->nid = nid; 144 node_ar->start_pfn = start_pfn; 145 node_ar->end_pfn = end_pfn; 146 break; 147 } 148 } 149 } 150 151 static void map_cpu_to_node(int cpu, int node) 152 { 153 numa_cpu_lookup_table[cpu] = node; 154 155 dbg("adding cpu %d to node %d\n", cpu, node); 156 157 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 158 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 159 } 160 161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 162 static void unmap_cpu_from_node(unsigned long cpu) 163 { 164 int node = numa_cpu_lookup_table[cpu]; 165 166 dbg("removing cpu %lu from node %d\n", cpu, node); 167 168 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 169 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 170 } else { 171 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 172 cpu, node); 173 } 174 } 175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 176 177 /* must hold reference to node during call */ 178 static const int *of_get_associativity(struct device_node *dev) 179 { 180 return of_get_property(dev, "ibm,associativity", NULL); 181 } 182 183 /* 184 * Returns the property linux,drconf-usable-memory if 185 * it exists (the property exists only in kexec/kdump kernels, 186 * added by kexec-tools) 187 */ 188 static const u32 *of_get_usable_memory(struct device_node *memory) 189 { 190 const u32 *prop; 191 u32 len; 192 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 193 if (!prop || len < sizeof(unsigned int)) 194 return 0; 195 return prop; 196 } 197 198 int __node_distance(int a, int b) 199 { 200 int i; 201 int distance = LOCAL_DISTANCE; 202 203 if (!form1_affinity) 204 return distance; 205 206 for (i = 0; i < distance_ref_points_depth; i++) { 207 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 208 break; 209 210 /* Double the distance for each NUMA level */ 211 distance *= 2; 212 } 213 214 return distance; 215 } 216 217 static void initialize_distance_lookup_table(int nid, 218 const unsigned int *associativity) 219 { 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 distance_lookup_table[nid][i] = 227 associativity[distance_ref_points[i]]; 228 } 229 } 230 231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 232 * info is found. 233 */ 234 static int associativity_to_nid(const unsigned int *associativity) 235 { 236 int nid = -1; 237 238 if (min_common_depth == -1) 239 goto out; 240 241 if (associativity[0] >= min_common_depth) 242 nid = associativity[min_common_depth]; 243 244 /* POWER4 LPAR uses 0xffff as invalid node */ 245 if (nid == 0xffff || nid >= MAX_NUMNODES) 246 nid = -1; 247 248 if (nid > 0 && associativity[0] >= distance_ref_points_depth) 249 initialize_distance_lookup_table(nid, associativity); 250 251 out: 252 return nid; 253 } 254 255 /* Returns the nid associated with the given device tree node, 256 * or -1 if not found. 257 */ 258 static int of_node_to_nid_single(struct device_node *device) 259 { 260 int nid = -1; 261 const unsigned int *tmp; 262 263 tmp = of_get_associativity(device); 264 if (tmp) 265 nid = associativity_to_nid(tmp); 266 return nid; 267 } 268 269 /* Walk the device tree upwards, looking for an associativity id */ 270 int of_node_to_nid(struct device_node *device) 271 { 272 struct device_node *tmp; 273 int nid = -1; 274 275 of_node_get(device); 276 while (device) { 277 nid = of_node_to_nid_single(device); 278 if (nid != -1) 279 break; 280 281 tmp = device; 282 device = of_get_parent(tmp); 283 of_node_put(tmp); 284 } 285 of_node_put(device); 286 287 return nid; 288 } 289 EXPORT_SYMBOL_GPL(of_node_to_nid); 290 291 static int __init find_min_common_depth(void) 292 { 293 int depth; 294 struct device_node *chosen; 295 struct device_node *root; 296 const char *vec5; 297 298 if (firmware_has_feature(FW_FEATURE_OPAL)) 299 root = of_find_node_by_path("/ibm,opal"); 300 else 301 root = of_find_node_by_path("/rtas"); 302 if (!root) 303 root = of_find_node_by_path("/"); 304 305 /* 306 * This property is a set of 32-bit integers, each representing 307 * an index into the ibm,associativity nodes. 308 * 309 * With form 0 affinity the first integer is for an SMP configuration 310 * (should be all 0's) and the second is for a normal NUMA 311 * configuration. We have only one level of NUMA. 312 * 313 * With form 1 affinity the first integer is the most significant 314 * NUMA boundary and the following are progressively less significant 315 * boundaries. There can be more than one level of NUMA. 316 */ 317 distance_ref_points = of_get_property(root, 318 "ibm,associativity-reference-points", 319 &distance_ref_points_depth); 320 321 if (!distance_ref_points) { 322 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 323 goto err; 324 } 325 326 distance_ref_points_depth /= sizeof(int); 327 328 #define VEC5_AFFINITY_BYTE 5 329 #define VEC5_AFFINITY 0x80 330 331 if (firmware_has_feature(FW_FEATURE_OPAL)) 332 form1_affinity = 1; 333 else { 334 chosen = of_find_node_by_path("/chosen"); 335 if (chosen) { 336 vec5 = of_get_property(chosen, 337 "ibm,architecture-vec-5", NULL); 338 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & 339 VEC5_AFFINITY)) { 340 dbg("Using form 1 affinity\n"); 341 form1_affinity = 1; 342 } 343 } 344 } 345 346 if (form1_affinity) { 347 depth = distance_ref_points[0]; 348 } else { 349 if (distance_ref_points_depth < 2) { 350 printk(KERN_WARNING "NUMA: " 351 "short ibm,associativity-reference-points\n"); 352 goto err; 353 } 354 355 depth = distance_ref_points[1]; 356 } 357 358 /* 359 * Warn and cap if the hardware supports more than 360 * MAX_DISTANCE_REF_POINTS domains. 361 */ 362 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 363 printk(KERN_WARNING "NUMA: distance array capped at " 364 "%d entries\n", MAX_DISTANCE_REF_POINTS); 365 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 366 } 367 368 of_node_put(root); 369 return depth; 370 371 err: 372 of_node_put(root); 373 return -1; 374 } 375 376 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 377 { 378 struct device_node *memory = NULL; 379 380 memory = of_find_node_by_type(memory, "memory"); 381 if (!memory) 382 panic("numa.c: No memory nodes found!"); 383 384 *n_addr_cells = of_n_addr_cells(memory); 385 *n_size_cells = of_n_size_cells(memory); 386 of_node_put(memory); 387 } 388 389 static unsigned long read_n_cells(int n, const unsigned int **buf) 390 { 391 unsigned long result = 0; 392 393 while (n--) { 394 result = (result << 32) | **buf; 395 (*buf)++; 396 } 397 return result; 398 } 399 400 struct of_drconf_cell { 401 u64 base_addr; 402 u32 drc_index; 403 u32 reserved; 404 u32 aa_index; 405 u32 flags; 406 }; 407 408 #define DRCONF_MEM_ASSIGNED 0x00000008 409 #define DRCONF_MEM_AI_INVALID 0x00000040 410 #define DRCONF_MEM_RESERVED 0x00000080 411 412 /* 413 * Read the next memblock list entry from the ibm,dynamic-memory property 414 * and return the information in the provided of_drconf_cell structure. 415 */ 416 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) 417 { 418 const u32 *cp; 419 420 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 421 422 cp = *cellp; 423 drmem->drc_index = cp[0]; 424 drmem->reserved = cp[1]; 425 drmem->aa_index = cp[2]; 426 drmem->flags = cp[3]; 427 428 *cellp = cp + 4; 429 } 430 431 /* 432 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 433 * 434 * The layout of the ibm,dynamic-memory property is a number N of memblock 435 * list entries followed by N memblock list entries. Each memblock list entry 436 * contains information as laid out in the of_drconf_cell struct above. 437 */ 438 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) 439 { 440 const u32 *prop; 441 u32 len, entries; 442 443 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 444 if (!prop || len < sizeof(unsigned int)) 445 return 0; 446 447 entries = *prop++; 448 449 /* Now that we know the number of entries, revalidate the size 450 * of the property read in to ensure we have everything 451 */ 452 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 453 return 0; 454 455 *dm = prop; 456 return entries; 457 } 458 459 /* 460 * Retrieve and validate the ibm,lmb-size property for drconf memory 461 * from the device tree. 462 */ 463 static u64 of_get_lmb_size(struct device_node *memory) 464 { 465 const u32 *prop; 466 u32 len; 467 468 prop = of_get_property(memory, "ibm,lmb-size", &len); 469 if (!prop || len < sizeof(unsigned int)) 470 return 0; 471 472 return read_n_cells(n_mem_size_cells, &prop); 473 } 474 475 struct assoc_arrays { 476 u32 n_arrays; 477 u32 array_sz; 478 const u32 *arrays; 479 }; 480 481 /* 482 * Retrieve and validate the list of associativity arrays for drconf 483 * memory from the ibm,associativity-lookup-arrays property of the 484 * device tree.. 485 * 486 * The layout of the ibm,associativity-lookup-arrays property is a number N 487 * indicating the number of associativity arrays, followed by a number M 488 * indicating the size of each associativity array, followed by a list 489 * of N associativity arrays. 490 */ 491 static int of_get_assoc_arrays(struct device_node *memory, 492 struct assoc_arrays *aa) 493 { 494 const u32 *prop; 495 u32 len; 496 497 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 498 if (!prop || len < 2 * sizeof(unsigned int)) 499 return -1; 500 501 aa->n_arrays = *prop++; 502 aa->array_sz = *prop++; 503 504 /* Now that we know the number of arrays and size of each array, 505 * revalidate the size of the property read in. 506 */ 507 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 508 return -1; 509 510 aa->arrays = prop; 511 return 0; 512 } 513 514 /* 515 * This is like of_node_to_nid_single() for memory represented in the 516 * ibm,dynamic-reconfiguration-memory node. 517 */ 518 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 519 struct assoc_arrays *aa) 520 { 521 int default_nid = 0; 522 int nid = default_nid; 523 int index; 524 525 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 526 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 527 drmem->aa_index < aa->n_arrays) { 528 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 529 nid = aa->arrays[index]; 530 531 if (nid == 0xffff || nid >= MAX_NUMNODES) 532 nid = default_nid; 533 } 534 535 return nid; 536 } 537 538 /* 539 * Figure out to which domain a cpu belongs and stick it there. 540 * Return the id of the domain used. 541 */ 542 static int __cpuinit numa_setup_cpu(unsigned long lcpu) 543 { 544 int nid = 0; 545 struct device_node *cpu = of_get_cpu_node(lcpu, NULL); 546 547 if (!cpu) { 548 WARN_ON(1); 549 goto out; 550 } 551 552 nid = of_node_to_nid_single(cpu); 553 554 if (nid < 0 || !node_online(nid)) 555 nid = first_online_node; 556 out: 557 map_cpu_to_node(lcpu, nid); 558 559 of_node_put(cpu); 560 561 return nid; 562 } 563 564 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, 565 unsigned long action, 566 void *hcpu) 567 { 568 unsigned long lcpu = (unsigned long)hcpu; 569 int ret = NOTIFY_DONE; 570 571 switch (action) { 572 case CPU_UP_PREPARE: 573 case CPU_UP_PREPARE_FROZEN: 574 numa_setup_cpu(lcpu); 575 ret = NOTIFY_OK; 576 break; 577 #ifdef CONFIG_HOTPLUG_CPU 578 case CPU_DEAD: 579 case CPU_DEAD_FROZEN: 580 case CPU_UP_CANCELED: 581 case CPU_UP_CANCELED_FROZEN: 582 unmap_cpu_from_node(lcpu); 583 break; 584 ret = NOTIFY_OK; 585 #endif 586 } 587 return ret; 588 } 589 590 /* 591 * Check and possibly modify a memory region to enforce the memory limit. 592 * 593 * Returns the size the region should have to enforce the memory limit. 594 * This will either be the original value of size, a truncated value, 595 * or zero. If the returned value of size is 0 the region should be 596 * discarded as it lies wholly above the memory limit. 597 */ 598 static unsigned long __init numa_enforce_memory_limit(unsigned long start, 599 unsigned long size) 600 { 601 /* 602 * We use memblock_end_of_DRAM() in here instead of memory_limit because 603 * we've already adjusted it for the limit and it takes care of 604 * having memory holes below the limit. Also, in the case of 605 * iommu_is_off, memory_limit is not set but is implicitly enforced. 606 */ 607 608 if (start + size <= memblock_end_of_DRAM()) 609 return size; 610 611 if (start >= memblock_end_of_DRAM()) 612 return 0; 613 614 return memblock_end_of_DRAM() - start; 615 } 616 617 /* 618 * Reads the counter for a given entry in 619 * linux,drconf-usable-memory property 620 */ 621 static inline int __init read_usm_ranges(const u32 **usm) 622 { 623 /* 624 * For each lmb in ibm,dynamic-memory a corresponding 625 * entry in linux,drconf-usable-memory property contains 626 * a counter followed by that many (base, size) duple. 627 * read the counter from linux,drconf-usable-memory 628 */ 629 return read_n_cells(n_mem_size_cells, usm); 630 } 631 632 /* 633 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 634 * node. This assumes n_mem_{addr,size}_cells have been set. 635 */ 636 static void __init parse_drconf_memory(struct device_node *memory) 637 { 638 const u32 *uninitialized_var(dm), *usm; 639 unsigned int n, rc, ranges, is_kexec_kdump = 0; 640 unsigned long lmb_size, base, size, sz; 641 int nid; 642 struct assoc_arrays aa; 643 644 n = of_get_drconf_memory(memory, &dm); 645 if (!n) 646 return; 647 648 lmb_size = of_get_lmb_size(memory); 649 if (!lmb_size) 650 return; 651 652 rc = of_get_assoc_arrays(memory, &aa); 653 if (rc) 654 return; 655 656 /* check if this is a kexec/kdump kernel */ 657 usm = of_get_usable_memory(memory); 658 if (usm != NULL) 659 is_kexec_kdump = 1; 660 661 for (; n != 0; --n) { 662 struct of_drconf_cell drmem; 663 664 read_drconf_cell(&drmem, &dm); 665 666 /* skip this block if the reserved bit is set in flags (0x80) 667 or if the block is not assigned to this partition (0x8) */ 668 if ((drmem.flags & DRCONF_MEM_RESERVED) 669 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 670 continue; 671 672 base = drmem.base_addr; 673 size = lmb_size; 674 ranges = 1; 675 676 if (is_kexec_kdump) { 677 ranges = read_usm_ranges(&usm); 678 if (!ranges) /* there are no (base, size) duple */ 679 continue; 680 } 681 do { 682 if (is_kexec_kdump) { 683 base = read_n_cells(n_mem_addr_cells, &usm); 684 size = read_n_cells(n_mem_size_cells, &usm); 685 } 686 nid = of_drconf_to_nid_single(&drmem, &aa); 687 fake_numa_create_new_node( 688 ((base + size) >> PAGE_SHIFT), 689 &nid); 690 node_set_online(nid); 691 sz = numa_enforce_memory_limit(base, size); 692 if (sz) 693 memblock_set_node(base, sz, nid); 694 } while (--ranges); 695 } 696 } 697 698 static int __init parse_numa_properties(void) 699 { 700 struct device_node *memory; 701 int default_nid = 0; 702 unsigned long i; 703 704 if (numa_enabled == 0) { 705 printk(KERN_WARNING "NUMA disabled by user\n"); 706 return -1; 707 } 708 709 min_common_depth = find_min_common_depth(); 710 711 if (min_common_depth < 0) 712 return min_common_depth; 713 714 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 715 716 /* 717 * Even though we connect cpus to numa domains later in SMP 718 * init, we need to know the node ids now. This is because 719 * each node to be onlined must have NODE_DATA etc backing it. 720 */ 721 for_each_present_cpu(i) { 722 struct device_node *cpu; 723 int nid; 724 725 cpu = of_get_cpu_node(i, NULL); 726 BUG_ON(!cpu); 727 nid = of_node_to_nid_single(cpu); 728 of_node_put(cpu); 729 730 /* 731 * Don't fall back to default_nid yet -- we will plug 732 * cpus into nodes once the memory scan has discovered 733 * the topology. 734 */ 735 if (nid < 0) 736 continue; 737 node_set_online(nid); 738 } 739 740 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 741 742 for_each_node_by_type(memory, "memory") { 743 unsigned long start; 744 unsigned long size; 745 int nid; 746 int ranges; 747 const unsigned int *memcell_buf; 748 unsigned int len; 749 750 memcell_buf = of_get_property(memory, 751 "linux,usable-memory", &len); 752 if (!memcell_buf || len <= 0) 753 memcell_buf = of_get_property(memory, "reg", &len); 754 if (!memcell_buf || len <= 0) 755 continue; 756 757 /* ranges in cell */ 758 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 759 new_range: 760 /* these are order-sensitive, and modify the buffer pointer */ 761 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 762 size = read_n_cells(n_mem_size_cells, &memcell_buf); 763 764 /* 765 * Assumption: either all memory nodes or none will 766 * have associativity properties. If none, then 767 * everything goes to default_nid. 768 */ 769 nid = of_node_to_nid_single(memory); 770 if (nid < 0) 771 nid = default_nid; 772 773 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 774 node_set_online(nid); 775 776 if (!(size = numa_enforce_memory_limit(start, size))) { 777 if (--ranges) 778 goto new_range; 779 else 780 continue; 781 } 782 783 memblock_set_node(start, size, nid); 784 785 if (--ranges) 786 goto new_range; 787 } 788 789 /* 790 * Now do the same thing for each MEMBLOCK listed in the 791 * ibm,dynamic-memory property in the 792 * ibm,dynamic-reconfiguration-memory node. 793 */ 794 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 795 if (memory) 796 parse_drconf_memory(memory); 797 798 return 0; 799 } 800 801 static void __init setup_nonnuma(void) 802 { 803 unsigned long top_of_ram = memblock_end_of_DRAM(); 804 unsigned long total_ram = memblock_phys_mem_size(); 805 unsigned long start_pfn, end_pfn; 806 unsigned int nid = 0; 807 struct memblock_region *reg; 808 809 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 810 top_of_ram, total_ram); 811 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 812 (top_of_ram - total_ram) >> 20); 813 814 for_each_memblock(memory, reg) { 815 start_pfn = memblock_region_memory_base_pfn(reg); 816 end_pfn = memblock_region_memory_end_pfn(reg); 817 818 fake_numa_create_new_node(end_pfn, &nid); 819 memblock_set_node(PFN_PHYS(start_pfn), 820 PFN_PHYS(end_pfn - start_pfn), nid); 821 node_set_online(nid); 822 } 823 } 824 825 void __init dump_numa_cpu_topology(void) 826 { 827 unsigned int node; 828 unsigned int cpu, count; 829 830 if (min_common_depth == -1 || !numa_enabled) 831 return; 832 833 for_each_online_node(node) { 834 printk(KERN_DEBUG "Node %d CPUs:", node); 835 836 count = 0; 837 /* 838 * If we used a CPU iterator here we would miss printing 839 * the holes in the cpumap. 840 */ 841 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 842 if (cpumask_test_cpu(cpu, 843 node_to_cpumask_map[node])) { 844 if (count == 0) 845 printk(" %u", cpu); 846 ++count; 847 } else { 848 if (count > 1) 849 printk("-%u", cpu - 1); 850 count = 0; 851 } 852 } 853 854 if (count > 1) 855 printk("-%u", nr_cpu_ids - 1); 856 printk("\n"); 857 } 858 } 859 860 static void __init dump_numa_memory_topology(void) 861 { 862 unsigned int node; 863 unsigned int count; 864 865 if (min_common_depth == -1 || !numa_enabled) 866 return; 867 868 for_each_online_node(node) { 869 unsigned long i; 870 871 printk(KERN_DEBUG "Node %d Memory:", node); 872 873 count = 0; 874 875 for (i = 0; i < memblock_end_of_DRAM(); 876 i += (1 << SECTION_SIZE_BITS)) { 877 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 878 if (count == 0) 879 printk(" 0x%lx", i); 880 ++count; 881 } else { 882 if (count > 0) 883 printk("-0x%lx", i); 884 count = 0; 885 } 886 } 887 888 if (count > 0) 889 printk("-0x%lx", i); 890 printk("\n"); 891 } 892 } 893 894 /* 895 * Allocate some memory, satisfying the memblock or bootmem allocator where 896 * required. nid is the preferred node and end is the physical address of 897 * the highest address in the node. 898 * 899 * Returns the virtual address of the memory. 900 */ 901 static void __init *careful_zallocation(int nid, unsigned long size, 902 unsigned long align, 903 unsigned long end_pfn) 904 { 905 void *ret; 906 int new_nid; 907 unsigned long ret_paddr; 908 909 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); 910 911 /* retry over all memory */ 912 if (!ret_paddr) 913 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); 914 915 if (!ret_paddr) 916 panic("numa.c: cannot allocate %lu bytes for node %d", 917 size, nid); 918 919 ret = __va(ret_paddr); 920 921 /* 922 * We initialize the nodes in numeric order: 0, 1, 2... 923 * and hand over control from the MEMBLOCK allocator to the 924 * bootmem allocator. If this function is called for 925 * node 5, then we know that all nodes <5 are using the 926 * bootmem allocator instead of the MEMBLOCK allocator. 927 * 928 * So, check the nid from which this allocation came 929 * and double check to see if we need to use bootmem 930 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory 931 * since it would be useless. 932 */ 933 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); 934 if (new_nid < nid) { 935 ret = __alloc_bootmem_node(NODE_DATA(new_nid), 936 size, align, 0); 937 938 dbg("alloc_bootmem %p %lx\n", ret, size); 939 } 940 941 memset(ret, 0, size); 942 return ret; 943 } 944 945 static struct notifier_block __cpuinitdata ppc64_numa_nb = { 946 .notifier_call = cpu_numa_callback, 947 .priority = 1 /* Must run before sched domains notifier. */ 948 }; 949 950 static void __init mark_reserved_regions_for_nid(int nid) 951 { 952 struct pglist_data *node = NODE_DATA(nid); 953 struct memblock_region *reg; 954 955 for_each_memblock(reserved, reg) { 956 unsigned long physbase = reg->base; 957 unsigned long size = reg->size; 958 unsigned long start_pfn = physbase >> PAGE_SHIFT; 959 unsigned long end_pfn = PFN_UP(physbase + size); 960 struct node_active_region node_ar; 961 unsigned long node_end_pfn = node->node_start_pfn + 962 node->node_spanned_pages; 963 964 /* 965 * Check to make sure that this memblock.reserved area is 966 * within the bounds of the node that we care about. 967 * Checking the nid of the start and end points is not 968 * sufficient because the reserved area could span the 969 * entire node. 970 */ 971 if (end_pfn <= node->node_start_pfn || 972 start_pfn >= node_end_pfn) 973 continue; 974 975 get_node_active_region(start_pfn, &node_ar); 976 while (start_pfn < end_pfn && 977 node_ar.start_pfn < node_ar.end_pfn) { 978 unsigned long reserve_size = size; 979 /* 980 * if reserved region extends past active region 981 * then trim size to active region 982 */ 983 if (end_pfn > node_ar.end_pfn) 984 reserve_size = (node_ar.end_pfn << PAGE_SHIFT) 985 - physbase; 986 /* 987 * Only worry about *this* node, others may not 988 * yet have valid NODE_DATA(). 989 */ 990 if (node_ar.nid == nid) { 991 dbg("reserve_bootmem %lx %lx nid=%d\n", 992 physbase, reserve_size, node_ar.nid); 993 reserve_bootmem_node(NODE_DATA(node_ar.nid), 994 physbase, reserve_size, 995 BOOTMEM_DEFAULT); 996 } 997 /* 998 * if reserved region is contained in the active region 999 * then done. 1000 */ 1001 if (end_pfn <= node_ar.end_pfn) 1002 break; 1003 1004 /* 1005 * reserved region extends past the active region 1006 * get next active region that contains this 1007 * reserved region 1008 */ 1009 start_pfn = node_ar.end_pfn; 1010 physbase = start_pfn << PAGE_SHIFT; 1011 size = size - reserve_size; 1012 get_node_active_region(start_pfn, &node_ar); 1013 } 1014 } 1015 } 1016 1017 1018 void __init do_init_bootmem(void) 1019 { 1020 int nid; 1021 1022 min_low_pfn = 0; 1023 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 1024 max_pfn = max_low_pfn; 1025 1026 if (parse_numa_properties()) 1027 setup_nonnuma(); 1028 else 1029 dump_numa_memory_topology(); 1030 1031 for_each_online_node(nid) { 1032 unsigned long start_pfn, end_pfn; 1033 void *bootmem_vaddr; 1034 unsigned long bootmap_pages; 1035 1036 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 1037 1038 /* 1039 * Allocate the node structure node local if possible 1040 * 1041 * Be careful moving this around, as it relies on all 1042 * previous nodes' bootmem to be initialized and have 1043 * all reserved areas marked. 1044 */ 1045 NODE_DATA(nid) = careful_zallocation(nid, 1046 sizeof(struct pglist_data), 1047 SMP_CACHE_BYTES, end_pfn); 1048 1049 dbg("node %d\n", nid); 1050 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 1051 1052 NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; 1053 NODE_DATA(nid)->node_start_pfn = start_pfn; 1054 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; 1055 1056 if (NODE_DATA(nid)->node_spanned_pages == 0) 1057 continue; 1058 1059 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); 1060 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); 1061 1062 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 1063 bootmem_vaddr = careful_zallocation(nid, 1064 bootmap_pages << PAGE_SHIFT, 1065 PAGE_SIZE, end_pfn); 1066 1067 dbg("bootmap_vaddr = %p\n", bootmem_vaddr); 1068 1069 init_bootmem_node(NODE_DATA(nid), 1070 __pa(bootmem_vaddr) >> PAGE_SHIFT, 1071 start_pfn, end_pfn); 1072 1073 free_bootmem_with_active_regions(nid, end_pfn); 1074 /* 1075 * Be very careful about moving this around. Future 1076 * calls to careful_zallocation() depend on this getting 1077 * done correctly. 1078 */ 1079 mark_reserved_regions_for_nid(nid); 1080 sparse_memory_present_with_active_regions(nid); 1081 } 1082 1083 init_bootmem_done = 1; 1084 1085 /* 1086 * Now bootmem is initialised we can create the node to cpumask 1087 * lookup tables and setup the cpu callback to populate them. 1088 */ 1089 setup_node_to_cpumask_map(); 1090 1091 register_cpu_notifier(&ppc64_numa_nb); 1092 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, 1093 (void *)(unsigned long)boot_cpuid); 1094 } 1095 1096 void __init paging_init(void) 1097 { 1098 unsigned long max_zone_pfns[MAX_NR_ZONES]; 1099 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 1100 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; 1101 free_area_init_nodes(max_zone_pfns); 1102 } 1103 1104 static int __init early_numa(char *p) 1105 { 1106 if (!p) 1107 return 0; 1108 1109 if (strstr(p, "off")) 1110 numa_enabled = 0; 1111 1112 if (strstr(p, "debug")) 1113 numa_debug = 1; 1114 1115 p = strstr(p, "fake="); 1116 if (p) 1117 cmdline = p + strlen("fake="); 1118 1119 return 0; 1120 } 1121 early_param("numa", early_numa); 1122 1123 #ifdef CONFIG_MEMORY_HOTPLUG 1124 /* 1125 * Find the node associated with a hot added memory section for 1126 * memory represented in the device tree by the property 1127 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1128 */ 1129 static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1130 unsigned long scn_addr) 1131 { 1132 const u32 *dm; 1133 unsigned int drconf_cell_cnt, rc; 1134 unsigned long lmb_size; 1135 struct assoc_arrays aa; 1136 int nid = -1; 1137 1138 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1139 if (!drconf_cell_cnt) 1140 return -1; 1141 1142 lmb_size = of_get_lmb_size(memory); 1143 if (!lmb_size) 1144 return -1; 1145 1146 rc = of_get_assoc_arrays(memory, &aa); 1147 if (rc) 1148 return -1; 1149 1150 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1151 struct of_drconf_cell drmem; 1152 1153 read_drconf_cell(&drmem, &dm); 1154 1155 /* skip this block if it is reserved or not assigned to 1156 * this partition */ 1157 if ((drmem.flags & DRCONF_MEM_RESERVED) 1158 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1159 continue; 1160 1161 if ((scn_addr < drmem.base_addr) 1162 || (scn_addr >= (drmem.base_addr + lmb_size))) 1163 continue; 1164 1165 nid = of_drconf_to_nid_single(&drmem, &aa); 1166 break; 1167 } 1168 1169 return nid; 1170 } 1171 1172 /* 1173 * Find the node associated with a hot added memory section for memory 1174 * represented in the device tree as a node (i.e. memory@XXXX) for 1175 * each memblock. 1176 */ 1177 int hot_add_node_scn_to_nid(unsigned long scn_addr) 1178 { 1179 struct device_node *memory; 1180 int nid = -1; 1181 1182 for_each_node_by_type(memory, "memory") { 1183 unsigned long start, size; 1184 int ranges; 1185 const unsigned int *memcell_buf; 1186 unsigned int len; 1187 1188 memcell_buf = of_get_property(memory, "reg", &len); 1189 if (!memcell_buf || len <= 0) 1190 continue; 1191 1192 /* ranges in cell */ 1193 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1194 1195 while (ranges--) { 1196 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1197 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1198 1199 if ((scn_addr < start) || (scn_addr >= (start + size))) 1200 continue; 1201 1202 nid = of_node_to_nid_single(memory); 1203 break; 1204 } 1205 1206 if (nid >= 0) 1207 break; 1208 } 1209 1210 of_node_put(memory); 1211 1212 return nid; 1213 } 1214 1215 /* 1216 * Find the node associated with a hot added memory section. Section 1217 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1218 * sections are fully contained within a single MEMBLOCK. 1219 */ 1220 int hot_add_scn_to_nid(unsigned long scn_addr) 1221 { 1222 struct device_node *memory = NULL; 1223 int nid, found = 0; 1224 1225 if (!numa_enabled || (min_common_depth < 0)) 1226 return first_online_node; 1227 1228 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1229 if (memory) { 1230 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1231 of_node_put(memory); 1232 } else { 1233 nid = hot_add_node_scn_to_nid(scn_addr); 1234 } 1235 1236 if (nid < 0 || !node_online(nid)) 1237 nid = first_online_node; 1238 1239 if (NODE_DATA(nid)->node_spanned_pages) 1240 return nid; 1241 1242 for_each_online_node(nid) { 1243 if (NODE_DATA(nid)->node_spanned_pages) { 1244 found = 1; 1245 break; 1246 } 1247 } 1248 1249 BUG_ON(!found); 1250 return nid; 1251 } 1252 1253 static u64 hot_add_drconf_memory_max(void) 1254 { 1255 struct device_node *memory = NULL; 1256 unsigned int drconf_cell_cnt = 0; 1257 u64 lmb_size = 0; 1258 const u32 *dm = 0; 1259 1260 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1261 if (memory) { 1262 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1263 lmb_size = of_get_lmb_size(memory); 1264 of_node_put(memory); 1265 } 1266 return lmb_size * drconf_cell_cnt; 1267 } 1268 1269 /* 1270 * memory_hotplug_max - return max address of memory that may be added 1271 * 1272 * This is currently only used on systems that support drconfig memory 1273 * hotplug. 1274 */ 1275 u64 memory_hotplug_max(void) 1276 { 1277 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1278 } 1279 #endif /* CONFIG_MEMORY_HOTPLUG */ 1280 1281 /* Virtual Processor Home Node (VPHN) support */ 1282 #ifdef CONFIG_PPC_SPLPAR 1283 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1284 static cpumask_t cpu_associativity_changes_mask; 1285 static int vphn_enabled; 1286 static void set_topology_timer(void); 1287 1288 /* 1289 * Store the current values of the associativity change counters in the 1290 * hypervisor. 1291 */ 1292 static void setup_cpu_associativity_change_counters(void) 1293 { 1294 int cpu; 1295 1296 /* The VPHN feature supports a maximum of 8 reference points */ 1297 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1298 1299 for_each_possible_cpu(cpu) { 1300 int i; 1301 u8 *counts = vphn_cpu_change_counts[cpu]; 1302 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1303 1304 for (i = 0; i < distance_ref_points_depth; i++) 1305 counts[i] = hypervisor_counts[i]; 1306 } 1307 } 1308 1309 /* 1310 * The hypervisor maintains a set of 8 associativity change counters in 1311 * the VPA of each cpu that correspond to the associativity levels in the 1312 * ibm,associativity-reference-points property. When an associativity 1313 * level changes, the corresponding counter is incremented. 1314 * 1315 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1316 * node associativity levels have changed. 1317 * 1318 * Returns the number of cpus with unhandled associativity changes. 1319 */ 1320 static int update_cpu_associativity_changes_mask(void) 1321 { 1322 int cpu, nr_cpus = 0; 1323 cpumask_t *changes = &cpu_associativity_changes_mask; 1324 1325 cpumask_clear(changes); 1326 1327 for_each_possible_cpu(cpu) { 1328 int i, changed = 0; 1329 u8 *counts = vphn_cpu_change_counts[cpu]; 1330 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1331 1332 for (i = 0; i < distance_ref_points_depth; i++) { 1333 if (hypervisor_counts[i] != counts[i]) { 1334 counts[i] = hypervisor_counts[i]; 1335 changed = 1; 1336 } 1337 } 1338 if (changed) { 1339 cpumask_set_cpu(cpu, changes); 1340 nr_cpus++; 1341 } 1342 } 1343 1344 return nr_cpus; 1345 } 1346 1347 /* 1348 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form 1349 * the complete property we have to add the length in the first cell. 1350 */ 1351 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) 1352 1353 /* 1354 * Convert the associativity domain numbers returned from the hypervisor 1355 * to the sequence they would appear in the ibm,associativity property. 1356 */ 1357 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) 1358 { 1359 int i, nr_assoc_doms = 0; 1360 const u16 *field = (const u16*) packed; 1361 1362 #define VPHN_FIELD_UNUSED (0xffff) 1363 #define VPHN_FIELD_MSB (0x8000) 1364 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) 1365 1366 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { 1367 if (*field == VPHN_FIELD_UNUSED) { 1368 /* All significant fields processed, and remaining 1369 * fields contain the reserved value of all 1's. 1370 * Just store them. 1371 */ 1372 unpacked[i] = *((u32*)field); 1373 field += 2; 1374 } else if (*field & VPHN_FIELD_MSB) { 1375 /* Data is in the lower 15 bits of this field */ 1376 unpacked[i] = *field & VPHN_FIELD_MASK; 1377 field++; 1378 nr_assoc_doms++; 1379 } else { 1380 /* Data is in the lower 15 bits of this field 1381 * concatenated with the next 16 bit field 1382 */ 1383 unpacked[i] = *((u32*)field); 1384 field += 2; 1385 nr_assoc_doms++; 1386 } 1387 } 1388 1389 /* The first cell contains the length of the property */ 1390 unpacked[0] = nr_assoc_doms; 1391 1392 return nr_assoc_doms; 1393 } 1394 1395 /* 1396 * Retrieve the new associativity information for a virtual processor's 1397 * home node. 1398 */ 1399 static long hcall_vphn(unsigned long cpu, unsigned int *associativity) 1400 { 1401 long rc; 1402 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1403 u64 flags = 1; 1404 int hwcpu = get_hard_smp_processor_id(cpu); 1405 1406 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1407 vphn_unpack_associativity(retbuf, associativity); 1408 1409 return rc; 1410 } 1411 1412 static long vphn_get_associativity(unsigned long cpu, 1413 unsigned int *associativity) 1414 { 1415 long rc; 1416 1417 rc = hcall_vphn(cpu, associativity); 1418 1419 switch (rc) { 1420 case H_FUNCTION: 1421 printk(KERN_INFO 1422 "VPHN is not supported. Disabling polling...\n"); 1423 stop_topology_update(); 1424 break; 1425 case H_HARDWARE: 1426 printk(KERN_ERR 1427 "hcall_vphn() experienced a hardware fault " 1428 "preventing VPHN. Disabling polling...\n"); 1429 stop_topology_update(); 1430 } 1431 1432 return rc; 1433 } 1434 1435 /* 1436 * Update the node maps and sysfs entries for each cpu whose home node 1437 * has changed. 1438 */ 1439 int arch_update_cpu_topology(void) 1440 { 1441 int cpu, nid, old_nid; 1442 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1443 struct device *dev; 1444 1445 for_each_cpu(cpu,&cpu_associativity_changes_mask) { 1446 vphn_get_associativity(cpu, associativity); 1447 nid = associativity_to_nid(associativity); 1448 1449 if (nid < 0 || !node_online(nid)) 1450 nid = first_online_node; 1451 1452 old_nid = numa_cpu_lookup_table[cpu]; 1453 1454 /* Disable hotplug while we update the cpu 1455 * masks and sysfs. 1456 */ 1457 get_online_cpus(); 1458 unregister_cpu_under_node(cpu, old_nid); 1459 unmap_cpu_from_node(cpu); 1460 map_cpu_to_node(cpu, nid); 1461 register_cpu_under_node(cpu, nid); 1462 put_online_cpus(); 1463 1464 dev = get_cpu_device(cpu); 1465 if (dev) 1466 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1467 } 1468 1469 return 1; 1470 } 1471 1472 static void topology_work_fn(struct work_struct *work) 1473 { 1474 rebuild_sched_domains(); 1475 } 1476 static DECLARE_WORK(topology_work, topology_work_fn); 1477 1478 void topology_schedule_update(void) 1479 { 1480 schedule_work(&topology_work); 1481 } 1482 1483 static void topology_timer_fn(unsigned long ignored) 1484 { 1485 if (!vphn_enabled) 1486 return; 1487 if (update_cpu_associativity_changes_mask() > 0) 1488 topology_schedule_update(); 1489 set_topology_timer(); 1490 } 1491 static struct timer_list topology_timer = 1492 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1493 1494 static void set_topology_timer(void) 1495 { 1496 topology_timer.data = 0; 1497 topology_timer.expires = jiffies + 60 * HZ; 1498 add_timer(&topology_timer); 1499 } 1500 1501 /* 1502 * Start polling for VPHN associativity changes. 1503 */ 1504 int start_topology_update(void) 1505 { 1506 int rc = 0; 1507 1508 /* Disabled until races with load balancing are fixed */ 1509 if (0 && firmware_has_feature(FW_FEATURE_VPHN) && 1510 get_lppaca()->shared_proc) { 1511 vphn_enabled = 1; 1512 setup_cpu_associativity_change_counters(); 1513 init_timer_deferrable(&topology_timer); 1514 set_topology_timer(); 1515 rc = 1; 1516 } 1517 1518 return rc; 1519 } 1520 __initcall(start_topology_update); 1521 1522 /* 1523 * Disable polling for VPHN associativity changes. 1524 */ 1525 int stop_topology_update(void) 1526 { 1527 vphn_enabled = 0; 1528 return del_timer_sync(&topology_timer); 1529 } 1530 #endif /* CONFIG_PPC_SPLPAR */ 1531